

TICE99IDE

Cross Assembler

User Manual

Rev V1.3

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve

reliability, function or design without further notice. Tenx does not assume any liability arising out of the application or use of

any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Tenx

products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or

uses tenx products for any such unintended or unauthorized application, Buyer shall indemnify and hold tenx and its officers,

employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable

attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or

unauthorized use even if such claim alleges that tenx was negligent regarding the design or manufacture of the part.

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 2 Rev 1.3, 2019/08/26

AMENDMENT HISTORY

Version Date Description

V1.0 Aug, 2012 New release

V1.1 Jan, 2013

1. Modify Features section.

2. Replace "number system" with "value system".

3. Add "==" and "!=" in Logical Operations section.

4. Add .else if.

5. Add comment.

6. Add "_main".

7. Add reference between .EXPORT , .IMPORT and

.AUTOIMPORT .

8. Add default value for “.DEFINEOLDSTYLE”

V1.2 Mar, 2014
1. modify the .autoimport function description

2. High line import instruction: import, export, autoimport

V1.3 Aug, 2019
1. Add (Suspend support, please use ".DT".) mess

age.

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 3 Rev 1.3, 2019/08/26

CONTENTS

AMENDMENT HISTORY ... 2

Features ... 5

1. Limitations ... 5

1.1 Naming Rule ... 5

1.2 Case Sensitive ... 5

1.3 Symbols and Labels.. 5

2. Value System .. 6

2.1 Representation .. 6

2.2 Arithmetic, Bitwise and Logical Operations ... 7

3. Pseudo Instructions ... 11

3.1 Local Specified Instructions .. 11

(1) ".CODE" ... 11
(2) ".RODATA" ... 11
(3) ".END" ... 11

3.2 Chip Type Instruction.. 11

(1) ".CPU" .. 11

3.3 Other Instructions .. 12

(1) ".ADDR" .. 12
(2) ".AUTOIMPORT" ... 12
(3) ".BYT", ".BYTE" ... 12
(4) ".CASE" ... 12
(5) ".DB" .. 13
(6) ".DBYT" ... 13
(7) ".DEFINE" ... 13
(8) ".DEF", ".DEFINED" ... 13
(9) ".DEFINEOLDSTYLE" ... 14
(10) ".DEFSTR" ... 14
(11) ".DN" .. 15
(12) ".DWORD" .. 16
(13) ".ELSE" .. 16
(14) ".ELSEIF", ".ELSE IF" .. 16
(15) ".ENDIF" .. 16
(16) ".ENDMAC",".ENDMACRO" .. 16
(17) ".ENDPROC" ... 16
(18) ".EQU" ... 17

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 4 Rev 1.3, 2019/08/26

(19) ".ERROR" .. 17
(20) ".EXITMAC",".EXITMACRO" .. 18
(21) ".EXPORT" .. 18
(22) “.FIXCODE” .. 18
(23) “.FPLANE0” .. 19
(24) “.FPLANE1” .. 20
(25) ".GLOBAL" ... 20
(26) ".IF" .. 21
(27) ".IFBLANK" .. 21
(28) ".IFDEF" .. 22
(29) ".IFNDEF" ... 22
(30) ".IMPORT" .. 23
(31) ".INCLUDE" .. 23
(32) ".LOCAL" .. 23
(33) ".MAC",".MACRO" .. 24
(34) ".MATCH" ... 25
(35) "_main" .. 26
(36) ".ORG" ... 26
(37) ".PARAMCOUNT" ... 27
(38) ".PROC" ... 27
(39) ".RELOC" .. 28
(40) “.RPLANE” .. 28
(41) ".SEGMENT" ... 29
(42) ".WORD" ... 29
(43) ".XMATCH" .. 30

4. Error Messages .. 31

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 5 Rev 1.3, 2019/08/26

Features

1. Operand can be defined as constant, and the constant can perform arithmetic, bitwise and logical

operations.

2. Macro function. Frequently used program can be written as Macro which can be called by other

programs.

3. Can compile and link multiple source files (Please refer to TICE99 IDE User Manual).

4. Each project can set library path for itself (Please refer to TICE99 IDE User Manual).

5. Provide multi-line comment which is similar with C language (/* -- This is comment -- */) and

conditional compiler pseudo instruction (.if, .elseif, .endif).

1. Limitations

1.1 Naming Rule

The string of variable, constant and label can only use below text symbols:

0 ~ 9, a ~ z, A ~ Z, “_”, however cannot be started with the number 0 ~ 9. Length of name is unlimited.

1.2 Case Sensitive

When assembling label name and macro name, user can decide whether to set as case sensitive (default

setting is case sensitive, please refer to .CASE).

1.3 Symbols and Labels

(1) Numeric constants

Numeric constants are defined using equal sign (‘=’), for example:

two = 2

Then user can use constant “two” at anywhere in the program, and the content is 2.

<Example>: four = two * two

(2) Standard labels

1. The usage of labels is to define a label name at the beginning of each line, and the label name is

then followed by a colon.

2. The statement without operand and it does not conflict with instruction name, and then assembler

will treat it as label.

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 6 Rev 1.3, 2019/08/26

(3) Local labels and symbols

Use .PROC instruction, it can setup a program segment. Labels and symbols which are declared

inside the segment are regarded as having local property. Outside this segment, these labels and

symbols are treated as unknown and cannot be accessed.

(4) Using macros to define labels and constants

Sometimes, using macros to define labels and constants is not so convenient, but it may be

convenient in some case. For example, use .DEFINE instruction to define symbols or other constants

which are used in other place. Basically, using macro is not restricted; it can be used in low level

operation or calculation. In addition, you can also use macro to define string constant (the other data

types of symbols are not allowed).

<Example>:

.DEFINE two 2

.DEFINE version "SOS V2.3"

 four = two * two ; Ok

.byte version ; Ok

.PROC ; Start local scope

 two = 3 ; "two = 3", two is local constant

.ENDPROC ; end of local scope

2. Value System

2.1 Representation

(1) Binary

(1-1). Use “B” as identifier (“B” is case-insensitive), or use “%” at the beginning.

<Example>: 1000B, 10000100B, 1011b, b’10001000’

(1-2). Use “%” at the beginning.

<Example>: %1000, %10000100

(1-3). Use “B” at the beginning, use single quotes to mark the beginning and end of the value.

<Example>: B'1000', B'10000100'

(2) Decimal: no need to add any identifier

<Example>: 20, .20

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 7 Rev 1.3, 2019/08/26

Decimal (10, .10) syntax support

(3) Hexadecimal

(3-1). Use “H” as identifier (“H” is case-insensitive)

<Example>: 8H, 0FFH, 0fh

(3-2). Use “$” at the beginning.

<Example>: $9A, $FD

(It is suggested to use $ at the beginning, to avoid confusion in .EQU and .DN name

definition)

(3-3). Use “0x” at the beginning (“x” is case-insensitive)

<Example>: 0x8, 0X0FF

(4) Constant or address: Use “.EQU” as identifier (“EQU” is case-insensitive). Or an equal sign “=” is

followed behind the constant name.

<Example 1>: addr .EQU 4

<Example 2>: addr = 4

2.2 Arithmetic, Bitwise and Logical

Operations

In source code, there are some operations for the constants, including arithmetic operations, bitwise

operations, and logical operations. Arithmetic operations follow the order of precedence of four types

operations which is multiplication and division first, then addition and subtraction. The operators are as

below:

"+": addition operator

"-": subtraction operator

"*": multiplication operator

"/": division operator

"%", ".MOD": modular operator

<Example>

addr .equ 4

movlw addr%3 ; movlw 1

movlw addr .mod 4 ; movlw 0

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 8 Rev 1.3, 2019/08/26

"<<": left shift operator

<Example>

adde .equ 2

movlw adde<<2 ; movlw 8

">>": right shift operator

<Example>

adde .equ 8

movlw adde>>2 ; movlw 2

"|", ".BITOR": bit-wise OR operator

<Example>

adde .equ 2

movlw addr | 4 ; movlw 6

movlw addr .BITOR 2 ; movlw 2

"&", ".BITAND": bit-wise AND operator

<Example>

adde .equ 6

movlw adde & 4 ; movlw 4

movlw adde .BITAND & 2 ; movlw 2

"~", ".BITNOT": bit-wise NOT operator

<Example>

Correct:

adde .equ 2

molvw ~adde & $FF ; movlw $FD

movlw .BITNOT adde & $FF ; movlw $FD

Wrong:

adde .equ 2

movlw ~adde

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 9 Rev 1.3, 2019/08/26

movlw .BITNOT adde

"^", ".BITXOR": bit-wise XOR operator

<Example>

adde .equ $F0

movlw adde ^ $FF ; movlw $0F

movlw adde .BITXOR $FF ; movlw $0F

"(", ")": parentheses

<Example> Two-tier parentheses calculation

HIGHT .equ ((10+5)*2)/3

"=" or “==”: assign operator (equal to)

"<>" or “!=”: comparison operator (not equal to)

"<": comparison operator (less than)

">": comparison operator (greater than)

"<=": comparison operator (less than or equal to)

">=": comparison operator (greater than or equal to)

"&&", ".AND": Boolean AND operator

<Example>

adde .equ 0

.IF (adde>1) && 1

movlw adde ; Will not execute

.ENDIF

"||", ".OR": Boolean OR operator

<Example>

adde .equ 1

.IF (adde>1) || 1

movlw adde+$02 ; movlw $03

.ENDIF

".XOR": Boolean XOR operator

<Example>

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 10 Rev 1.3, 2019/08/26

adde .equ 20

.IF (adde >20) .xor 0

movlw $20

.ENDIF

"!", ".NOT": Boolean NOT operator

<Example>

adde .equ 1

.IF !(adde >20)

movlw $20

.ENDIF

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 11 Rev 1.3, 2019/08/26

3. Pseudo Instructions

3.1 Local Specified Instructions

Below segments have no precedence order; however, each segment must use KEYWORD to separate

each other. No need to define unused segment.

(1) ".CODE"

Switch to code segment, case-insensitive. Define the program source code in this segment. It is

abbreviation of “.segment "CODE"”.

(2) ".RODATA"

Switch to data segment, case-insensitive. It is used to define Table ROM contents; in addition, it can

use labels

(3) ".END"

Case-insensitive, it can be declared only once. Assembler will be forced to terminate if this

instruction is encountered. Assembler will stop here, although the end of instruction is read from

include file.

3.2 Chip Type Instruction

(1) ".CPU"

Case-insensitive, it can be declared only once, and can be declared anyplace outside of the segment

(it is suggested to declare “.CPU” on the beginning of the file). The declaration is as below:

.CPU chip_species ;chip_species: chip code

<Example>

.CPU TM57FLA80

.CODE

……….

movlw 10H

……….

.END

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 12 Rev 1.3, 2019/08/26

3.3 Other Instructions

(1) ".ADDR"

Define the data of 2-byte size. This is an alias name for ".WORD" instruction, and it is more readable

when using “.ADDR” especially the data content is address. This instruction must be followed by a

series of expressions (not necessarily have to be constant value, can also be an identifier).

<Example>

.addr $0D00, $AF13, _Clear

(2) ".AUTOIMPORT"

Auto import symbol definition feature. Using .autoimport on or .autoimport + to enable auto import

symbol definition feature; or using .autoimport off or .autoimport - to disable auto import symbol

definition feature (this is default value). The main difference between enable/disable auto import

symbol definition features is: when the feature is enabled, undefined symbol during compilation

stage will be ignored automatically and will not generate error messages, until linking stage, after

linking all routines, when the symbol is not defined in all routines, the error messages of undefined

symbol will be generated. Otherwise, when this feature is disabled and .import directive is not used

to import the symbol definition, the undefined symbol during compilation stage will show undefined

symbol error. (Please refer to .EXPORT, .IMPORT for the usage).

<Example>

.autoimport + ; Enable auto import symbol feature

or

.autoimport on ; Enable auto import symbol feature

(3) ".BYT", ".BYTE"

Define the data of 1-byte size. This instruction must be followed by a series of consecutive

expressions or string. (Suspend support, please use ".DT".)

<Example>

.byte 'l', 'i', 'n', 'k'

.byt 'f', 'i', 'l', 'e', $0D, $00

(4) ".CASE"

Enable or disable the case-sensitivity function during assembling time, default is disabled (means the

identifier is case-insensitive by default). This instruction must be followed by a “+” or “-” sign to

decide whether to enable or disable.

<Example>

.case - ; Case-insensitive (reserved keyword or variable name)

or

.case on ; Case-sensitive (reserved keyword or variable name)

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 13 Rev 1.3, 2019/08/26

(5) ".DB"

Define the data of byte size. (Suspend support, please use ".DT".)

<Example>

.RODATA

.db '2','3','4', '5' ; The byte results are $32 $33 $34 $35

.org 10h

.byte $12, $34, $56, $78, $9a ; Data are set starting from TABLE

 ; ROM address 10h

.org 20h

.db $11, $22, $33, $44 ; Data are set starting from TABLE

 ; ROM address 20h

.db 'A', 'B', 'C', 'D'

(6) ".DBYT"

Define the data of 2-byte and high/low byte can be exchanged. This instruction must be followed by

a series of word ranged. (Suspend support, please use ".DT".)

<Example>

.dbyt $1234, $4512

The byte results are $12、$34、$45、$12, and will be written into current segment

according to this order.

(7) ".DEFINE"

This instruction must be followed by an identifier (macro name); in addition it can be followed by a

series of variable in parentheses. After the parentheses, can be followed by a series of variable,

please refer to .MACRO.

(8) ".DEF", ".DEFINED"

This instruction must contain a defined parameter inside the parentheses. This parameter will be

checked, if this parameter has been defined somewhere else before current program position, the

function will return TRUE; otherwise, return FALSE. Below <Example> can replace .IFDEF

instruction:

<Example>

.if .defined(a)

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 14 Rev 1.3, 2019/08/26

(9) ".DEFINEOLDSTYLE"

Declare identifier name can use special character, such as () [], etc…, default value is: allow

identifier name using special character.

<Example>

.defineoldstyle on ; enabled

T_0.5S .equ 3DH

.define LCDBrightness_(12Div19) b'00000001'

.define LCDpin_use_com[0~3]andseg[20~23] b'00010000'

.define LCD_ON 0x23

movlw LCDBrightness_(12Div19)

movlw LCDpin_use_com[0~3]andseg[20~23]

movlw LCD_ON

movlw LCDBrightness_(12Div19)

movlw LCD_ON

movlw T_0.5S

.defineoldstyle off ; disabled

(10) ".DEFSTR"

.defstr (.defstring) :

<Example>

SET_BANK0 .defstr BSF 03H,5

SET_BANK0 ; The same as BSF 03H,5

The same as using .define instruction to define:

.define SET_BANK0 BSF 3,5

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 15 Rev 1.3, 2019/08/26

(11) ".DN"

Declare a variable to replace the address of data RAM, and define the Byte amount of data RAM

which is occupied by this variable. In the program, this variable can directly replace the address of

data RAM address. This instruction can only be declared inside RAM segment and constant segment.

The declaration is as follows:

Variable .DN Value

where

Variable: variable name

Value: declare byte count of data RAM which is occupied by this variable, but it

does not exceed max address of the data RAM. This instruction must be

used together with ORG instruction, in order to define the starting address

of the data RAM.

<Example>

.RAM

.ORG 20H ; Define the start address of data RAM variable

DISPLAY .DN 1 ; Declare the data RAM 20H address as DISPLAY

SPEED .DN 2 ; Declare the data RAM 21H and 22H address

 ; as SPEED

 ; SPEED replaces the 21H address of data

 ; RAM

 ; SPEED+1 replaces the 22H address of data

 ; RAM

CHAR .DN 1 ; Declare the data RAM 23H address as CHAR

ORG 30H

LCD1 .DN 1 ; Declare the data RAM 30H address as LCD1

.ENDRAM

.CODE

……

movwf SPEED ; SPEED replaces data RAM 21H address

 ; SPEED+1 replaces data RAM 22H address

……

.END

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 16 Rev 1.3, 2019/08/26

(12) ".DWORD"

Define 4-byte data type; this instruction must be followed by a series of consecutive expressions.

(Suspend support, please use ".DT".)

<Example>

.dword $12344512, $12FA489

(13) ".ELSE"

Conditional instruction, which is used to reverse the condition expression (Please refer to .ERROR).

(14) ".ELSEIF", ".ELSE IF"

Conditional instruction, which is used to reverse current condition expression and to check other

conditional expressions (Please refer to .ERROR).

".ELSEIF" is compatible with ".ELSE IF" instruction.

(15) ".ENDIF"

Conditional instruction which ends an .IF or .ELSE statement (Please refer to .ERROR).

(16) ".ENDMAC",".ENDMACRO"

End of macro definition (Please refer to .MACRO).

(17) ".ENDPROC"

End of part of program segment (Please refer to .PROC).

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 17 Rev 1.3, 2019/08/26

(18) ".EQU"

This instruction is used to define constant and it is case-sensitive. Declaration is as follows:

 Constant .EQU data

where

Constant: constant name

Data: constant content

<Example 1>

VALUE1 .EQU 10H

<Example 2>

.RODATA

AH .EQU 00H

BH .EQU 01H

.CODE

MOVLW AH ; AH is equal to 00H.

MOVLW BH ; BH is equal to 01H.

.END

(19) ".ERROR"

Assembly error warning. Assembler will output a user-defined error message, and therefore object

file will not be created. This instruction is used to check the conditions which must be meet by

assembler.

<Example 1>

.if foo = 1

……

.elseif bar = 1 ; same as .else if bar == 1, or .elseif bar == 1

……

.else

.error "Must define foo or bar!"

.endif

<Example 2>

.if DEBUG!=1 ; same as .if DEBUG <> 1

.error "No support in Debug mode"

.endif

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 18 Rev 1.3, 2019/08/26

(20) ".EXITMAC",".EXITMACRO"

Jump out from the macro immediately. This instruction is frequently used in recursive macro (Please

refer to .MACRO).

(21) ".EXPORT"

Let the other programming files (*.asm, *.c) can also linked to current declared symbols. In this

instruction, user must use commas to separate a list of symbols. Below <Example> uses two

programming files for illustration, those are main.asm and labels.asm (Please refer

to .AUTOIMPORT , .IMPORT).

<Example>

Main.asm

.include “$_texn_TM57FLA80_$.inc”

.autoimport on

call lab

.end

 labels.asm

.export lab

lab:

movlw 02H

movwf 20H

(22) “.FIXCODE”

A switch to open or close “Freeze auto-switch RAM Bank” function, the default is closed (which

means the auto-switch RAM Bank is taken over by compiler). This instruction must be followed by a

“+” or “-” sign to decide whether to open or close the function.

 <Example>

.fixcode + ; Freeze auto-switch RAM Bank

.fixcode - ; Auto-switch RAM Bank is done by compiler

In some conditions, if user wants to decide when to switch RAM Bank, user can use pseudo

instruction .fixcode + for this purpose. Compiler will temporarily close auto-switch RAM Bank

function, until .fixcode - is found, and then it will be reopened.

It is suggested that .fixcode + and .fixcode – should be used in pair, and when switch RAM Bank by

user is not necessary, then switch RAM Bank should be done by compiler, to avoid unexpected error.

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 19 Rev 1.3, 2019/08/26

(23) “.FPLANE0”

In inc or asm file, user can define particular register as a significant constant variable name (refer

to .EQU). Before a variable declaration is defined, RAM segment pseudo instructions

(.FPLANE0, .FPLANE1, or .RPLANE) can be optionally used to clearly indicate the memory

location of the variable (F-Plane bank0, F-Plane bank1 or R-Plane).

In using .FPLANE0, .FPLANE1, or .RPLANE pseudo instructions, it is suggested to

declare .RPLANE at first then declare .FPLANE0 or .FPLANE1.

Example,

.RPLANE

 INDR EQU 00H

.FPLANE0

 INDF EQU 00H

.FPLANE1

 ABC_B1 EQU 30H

where

1. Constant variable INDR and the other variables which are defined before .FPLANE0

pseudo instruction are all defined in R-Plane location.

2. Constant variable INDF and the other variables which are defined before .FPLANE1

pseudo instruction are all defined in F-Plane bank0 location.

3. Constant variable ABC_B1 and variables defined later are all defined in F-Plane bank1

location.

Note:

1. Without declare pseudo instruction of RAM block, the variable are defined in F-Plane bank0

location by default.

2. If there is bank1 in operating memory, and declare a constant variable in F-Plane bank1, user still

needs to control bank switch during instruction operation (i.e, by using instruction: bsf 0x3,5 to

switch to bank1).

3. The purpose of .FPLANE0, .FPLANE1, or .RPLANE pseudo instructions is to classify the

defined constant variable according to RAM block, and it can be shown according to the class in

TICE99IDE assembler variable window. It is shown as below figure:

Define the constant variable is in

R-Plane location

Define the constant variable is in F-

Plane Bank0 location

Define the constant variable is in F-

Plane Bank1 location

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 20 Rev 1.3, 2019/08/26

(24) “.FPLANE1”

The same as .FPLANE0, define the declared variable is in F-Plane Bank1 location.

(25) ".GLOBAL"

Declare global symbols. This instruction declaration must use commas to separate a list of symbols.

The list of symbols are defined somewhere in source code, and they are exported. Import must be

applied when other program needs to use these symbols. Besides, the same symbol is allowed to be

used both in.IMPORT or .EXPORT instructions.

<Example>

.global foo, bar

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 21 Rev 1.3, 2019/08/26

(26) ".IF"

Evaluate an expression and based on the result value of the expression to determine whether

assembler proceeds to output. This expression must be a constant expression, which means all

operators must be a defined constant. If the expression value is 0, it means FALSE; otherwise, it

means TRUE (Please refer to .ERROR).

(27) ".IFBLANK"

Conditional instruction, determine whether the parameters of macro are imported or not. If the

condition does not hold, the next program will not be assembled until meet the .ELSE or .ELSEIF

or .ENDIF instruction. This instruction is generally used to determine whether the parameters of

macro are imported, if macro parameters are not imported, then it is TRUE, otherwise, is FALSE.

<Example>

.macro ADD2 v1,v2,sum

movlw v1

.ifblank v2

addlw sum ; If v2 IS NOT imported

.else

addlw v2 ; If v2 IS imported

.endif

movwf sum

.endmacro

.code

ADD2 1, , sum ; If no parameters are imported, must be replaced

 ; by “,”

.endcode

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 22 Rev 1.3, 2019/08/26

(28) ".IFDEF"

Conditional instruction, test whether symbol is defined. This instruction must be followed by a

symbol name. If the condition is hold (TRUE), means that symbol is defined, otherwise, is FALSE

(Please refer to.MACRO).

<Example>

v1 .equ $10

.ifdef v2 ; If v2 IS defined

v3 .equ (v1>>3)

movlw v2

movwf 0x20

nop

.else ; If v2 IS NOT defined

v3 .equ (v1>>2)

movlw value2

movwf 0x20

nop

.endif

(29) ".IFNDEF"

Conditional instruction, test whether symbol is defined. This instruction must be followed by a

symbol name. If the condition is hold (TRUE), means that symbol is not defined, otherwise, is

FALSE.

<Example>

v1 .equ $10

.ifndef v2 ; If v2 IS NOT defined

v3 .equ (v1>>3)

movlw v2

movwf 0x20

nop

.else ; If v2 IS defined

v3 .equ (v1>>2)

movlw value2

movwf 0x20

nop

.endif

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 23 Rev 1.3, 2019/08/26

(30) ".IMPORT"

Import a symbol from the other module, this instruction is followed by a string of comma-separated

imported symbol (Please refer to .EXPORT, .AUTOIMPORT for the usage).

<Example>

.import foo, bar

(31) ".INCLUDE"

Include another file; the depth of nested including file is up to 16 levels.

Syntax:

 #include "filename"

If filename consists of file path (Ex: #include "\tm57fla80\test\tm57.inc"), it will directly open

include file, however, if the filename does not consist of file path (Ex: #include "tm57.ic"), the

search priority will be as follows:

(1). At first, search the files in the project path

(2). If not found in (1), then search the installed path of TICE99IDE

(3). Search other include path which user specified

<Example>

.include "subs.inc"

(32) ".LOCAL"

Declare local label name, it can be used only in the macro; it cannot be used outside the macro. The

purpose of using local declared label is to avoid problem especially when macro is expanded many

times, the label will be used repeatedly. If local label is used outside the macro, error message will

occur during assembling time.

<Example>

.macro ADD1 v1,v2,sum

.local L1 ; L1 is defined as label in ADD1 macro,

 ; program outside macro cannot refer this label

movlw v1

movwf v2

call L1

movwf v2

L1:

movlw sum

ret

.endmacro

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 24 Rev 1.3, 2019/08/26

(33) ".MAC",".MACRO"

Start a macro definition, this instruction must be followed by an identifier (macro name) and can use

comma to separate the identifier of the macro parameters.

<Example>

.CODE

.macro foo arg1, arg2, arg3

.if arg3 >0

.define sum 123

.endif

.if .paramcount < 3 ; Determine whether the imported

; variable of macro is less than 3

.error "Too few parameters for macro foo" ; Output user-defined

; error message

.endif

.if .paramcount > 3 ; Determine whether the imported

; variable of macro is larger than 3

.error "Too many parameters for macro foo" ; Output user-defined

; error message

.exitmacro

.endif

movlw 0x01

movwf 0x20

movwf 0x21

.ifdef sum ; Determine whether sum is defined

addlw 0x04

.exitmacro

.endif

subwf 0x20,0 ; Subtract the content of W with content

; in RAM 20H

.endmacro

start :

foo 5,9,

foo 5,9,1

goto start

.END

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 25 Rev 1.3, 2019/08/26

(34) ".MATCH"

Built-in function. Matches two token lists against each other. This is most useful within macros,

since macros are not stored as strings, but as lists of tokens. The syntax is

.MATCH(<token list #1>, <token list #2>)

Generally, macro parameter can be used as token list. Both token list may contain arbitrary tokens

with the exception of the terminator token (comma resp. right parenthesis) and

 - end-of-line

 - end-of-file

Please note that the function only compares tokens, not token attributes. So any number is equal to

any other number, regardless of the actual value. The same is true for strings. If you need to compare

tokens and token attributes, use the .XMATCH function.

<Example>

Match_Value .MACRO V1, V2,

.IF (.MATCH(V1,V2)) ; Compare if the type of V1 and V2 is the same

MOVLW V1+V2 ; If yes, MOV V1+V2 TO W

MOVWF rs ; MOV W TO RSR

NOP

.ELSE ; If not, execute NOP

NOP

.ENDIF

.IF (.XMATCH(V1,V2)) ; Compare if the value and type of V1 and V2

; are the same

MOVLW V1+V2

MOVWF pbd

NOP

.ELSE ; If value or type is different, then execute this..

MOVLW V2-V1

MOVWF pbd

NOP

.ENDIF

.ENDM

.DEFINE TEST1 'A' ; Define TEST1=’ A’, ASCII code is 041H

.DEFINE TEST2 41h ; Define TEST2 = $41

.DEFINE TEST3 'C' ; Define TEST3 = ‘C’, ASCII code is 043H

Match_Value TEST1, TEST2

Match_Value TEST1, TEST3

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 26 Rev 1.3, 2019/08/26

(35) "_main"

Define the entry point of program in ASM file, same as void main() in C program to let Link

program set the PC value, which is suggested when there are more than one *.ASM in one project or

it is mixed project.

(36) ".ORG"

Define a starting address, for the follow-up program or the use of variable declarations. It can be

defined multiple times in the same segment. If it is used in table segment (.RODATA), it is not

suitable for C and ASM hybrid project. It is suggested for user to use in pure ASM project, can use

with .RELOC instruction to avoid mistaken overlap condition. This instruction is case-insensitive,

and the declaration is as follows:

.ORG Setting_addr

Setting addr: program, RAM or Table ROM address

When using ORG instruction in code segment, user can directly define next effective source address

in the program. But, behind the label name, cannot be followed by “.ORG”.

<Example>

.code

………

btfss 0x0a, 1

goto 30H

btfss 0x0b, 0

goto 40H

btfss 0x0c, 1

goto 50H

.org 30H ; Program PC address is 30H

movlw 1H

……

.org 40H ; Program PC address is 40H

movlw 2H

……

.org 50H ; Program PC address is 50H

movlw 3H

……

.end

When using ORG instruction in RAM segment, user can directly define next data RAM address

which is represented by data RAM variable which is defined by “DN” instruction.

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 27 Rev 1.3, 2019/08/26

(37) ".PARAMCOUNT"

Used in macro, to decide the number of parameters which are used in the macro (Please refer

to .MACRO).

(38) ".PROC"

Using .PROC command will enter lexical declaration of function. All symbols defined after .PROC

will only exist in this local declaration block, and cannot be accessed from outside. The symbols

defined outside the declaration layer can be accessed as long as they are not redefined by local words.

The symbols in other declaration layer will not cause naming conflicts, therefore, user can use same

name in different declaration block to declare variables. When .ENDPROC instruction is found, the

lexical declaration layer will be ended.

There are at most 8 layers of lexical declaration layer (for example, TM57FLA80 has 8

layers). .PROC instruction must be followed by a function name or label, to be called by this

program function or other function. To allow other program to call, .export instruction must

be used at first to export the program name. In this way, when it is in link process, linked

program can use “.import” or “.autoimport on” pseudo instruction to check every symbol

name which is imported, whether it is exported in other function by using .export pseudo

instruction, if not, then the link error message will occur.

<Example>

.export Clear ; export program name, to be called by other program

.proc Clear ; Declare portion of Clear program, start a new

 ; declaration level

movlw $01

Clear_all : ; Clear_all is for local; if it is used in other place,

; it will not cause error in the same symbol

movlw $02

movlw $03

.endproc ; End of this declaration layer

Clear_all: ; Will not conflict with Clear_all mentioned above

movlw $04

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 28 Rev 1.3, 2019/08/26

(39) ".RELOC"

Interrupt “.ORG” command; let linker reorganize PC address (use with .ORG command).

<Example>

.RODATA ; Declare TABLE ROM segment

.org 00h

.db 03fh,0f3h

.db 00fh,0f0h

.db 0cfh,0fch

.org 20h

.db 0f1h,00fh

.db 0f0h,00fh

.db 0f8h,08fh

.CODE

.RELOC ; Interrupt the .org which is set in .RODATA, let link program to

; organize the PC address

LCD_clear:

MOVLW $00

MOVWR $20

MOVWR $21

MOVWR $22

(40) “.RPLANE”

The same as .FPLANE0, define the declared variable is in R-Plane location.

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 29 Rev 1.3, 2019/08/26

(41) ".SEGMENT"

Command to switch to another segment. CODE and RODATA regularly output to their segments.

The so-called “segment” is a kind of named data block; the default segment is program segment.

There may be up to 254 different segments per object file (and up to 65534 per executable). CODE

and RODATA are the two most frequently commands which are used to declare segment. Segment

declaration command is followed by user defined segment name (there are some restrictions on the

naming, it is suggested to use segment name which meets variable naming rule).

<Example>

.segment "RODATA" ; Switch to data segment

INT_Counter:

.db set1 $02

.db set2 $03

.segment "CODE" ; Switch to program segment

IntCounterMode:

movlw $20/set1

movlw $30/set2

(42) ".WORD"

Define 2 bytes data type; this command must be followed by a string of consecutive expressions

(word ranged, not necessarily be a constant value).

<Example>

.word $0D00, $AF13

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 30 Rev 1.3, 2019/08/26

(43) ".XMATCH"

Built-in function. Matches two token lists against each other. This is most useful within macros,

since macros are not stored as strings, but as lists of tokens

The syntax is

.XMATCH(<token list #1>, <token list #2>)

Often a macro parameter is used for any of the token lists. Both token list may contain arbitrary

tokens with the exception of the terminator token (comma resp. right parenthesis) and

- end-of-line

- end-of-file

The function compares tokens and token values. If you need a function that just compares the type of

tokens, have a look at the .MATCH function.

<Example>

Match_Value .MACRO V1, V2,

.IF (.MATCH(V1,V2)) ; Decide whether the TYPE of V1 and V2 is

; the same

MOVLW V1+V2 ; If yes, MOV V1+V2 TO W

MOVWF rsr ; MOV W TO RSR

NOP

.ELSE ; If not, execute NOP

NOP

.ENDIF

.IF (.XMATCH(V1,V2)) ; Decide whether the TYPE and content of

; V1 and V2 are similar

MOVLW V1+V2

MOVWF pbd

NOP

.ELSE ; If there is a different, perform the following code

MOVLW V2-V1

MOVWF pbd

NOP

.ENDIF

.ENDM

.DEFINE TEST1 'A' ; TEST1 is character ‘A’, ASCII code is 041H

.DEFINE TEST2 41h ; TEST2 is $41

.DEFINE TEST3 'C' ; TEST3 is character ‘C’, ASCII code is 043H

Match_Value TEST1, TEST2

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 31 Rev 1.3, 2019/08/26

4. Error Messages

1. "Command/operation not implemented"

2. "Cannot open include file"

Please make sure whether the file exists.

3. "Cannot read from include file"

Please make sure whether the file exists.

4. "Include nesting too deep"

Include files cannot be more than 245 levels depth.

5. "Invalid input character: "

6. "Hex digit expected"

Please refer to Value System– Hexadecimal representation.

7. "Digit expected"

Please refer to Value System– Decimal representation.

8. "`0' or `1' expected"

Please refer to Value System– Binary representation.

9. "Numerical overflow"

The integer is too large, must be less than or equal to $FFFFFFFF.

10. "Control statement expected"

<Example>

.INCLUDE a.asm Correction: .INCLUDE "a.asm"

11. "Too many characters"

12. "`:' expected"

A colon is missing in the Label definition.

13. "`(' expected"

A left parenthesis is missing in the arithmetic operation.

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 32 Rev 1.3, 2019/08/26

14. "`)' expected"

A right parenthesis is missing in the arithmetic operation.

15. ***Reserved***

16. "`,' expected"

<Example>

BCF port

Correction:

BCF port,0

17. "Boolean switch value expected (on/off/+/-)"

18. ***Reserved***

19. ***Reserved***

20. "Integer constant expected"

21. "String constant expected"

<Example>

.include a.asm Correction: .include "a.asm"

22. "Character constant expected"

23. "Constant expression expected"

Constant name is undefined.

24. "Identifier expected"

The character in variable, constant and label can only contain below text symbols: '0' ~ '9', 'a' ~

'z', 'A' ~ 'Z', '_', however cannot be started with the number 0 ~ 9.

25. "`.ENDMACRO' expected"

'.ENDMACRO' instruction must be used together with '.MACRO'.

26. "Option key expected"

27. "`=' expected"

28. ***Reserved***

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 33 Rev 1.3, 2019/08/26

29. "User error:"

User defined error message.

30. "String constant too long"

The max size of string constant is up to 255 characters.

31. "Newline in string constant"

String constant must be in the same line.

32. "Illegal character constant"

<Example>

.BYTE 'c1','2' Correction: .BYTE 'c','2'

33. "Illegal addressing mode"

34. "Illegal character to start local symbols"

35. "Illegal use of local symbol"

36. "Illegal segment name"

37. "Illegal segment attribute"

38. "Illegal macro package name"

39. "Illegal emulation feature"

40. "Illegal scope specify"

41. "Syntax error"

42. "Symbol is already defined"

Symbol is defined repeatedly.

43. "Undefined symbol"

If the symbol name is in other source file, please use '.AUTOIMPORT ON'.

44. "Symbol is already marked as import"

45. "Symbol is already marked as export"

46. "Exported symbol is undefined"

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 34 Rev 1.3, 2019/08/26

Symbol name is not defined.

47. ***Reserved***

48. "Unexpected end of file"

49. "Unexpected end of line"

<Example>

.BYTE 'c','2', Correction: .BYTE 'c','2'

50. ***Reserved***

51. "Division by zero"

52. "Modulo operation with zero"

53. "Range error"

The integer constant size is more than data type size.

<Example>

.BYTE $1234 Correction: .BYTE $12

54. "Too many macro parameters"

There are too many parameters for a macro.

55. "Macro parameter expected"

56. "Circular reference in symbol definition"

57. "Symbol redeclaration mismatch"

58. "Alignment value must be a power of 2"

59. "Duplicate `.ELSE'"

'.ELSE' is reused before '.ENDIF'.

60. "Conditional assembly branch was never closed"

'.ENDIF' is missing in the end of the '.IF' or '.ELSE' conditional assembly branch.

61. "Lexical level was not terminated correctly"

62. "No open lexical level"

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 35 Rev 1.3, 2019/08/26

63. "Segment attribute mismatch"

64. "Segment stack overflow"

65. "Segment stack is empty"

66. "Segment stack is not empty at end of assembly"

67. ***Reserved***

68. "Counter underflow"

69. ***Reserved***

70. ***Reserved***

71. "File name `%s' not found in file table"

72. "'.DN' must define in '.RAM' segment"

'.DN' must be used in '.RAM' segment.

73. "`.ENDRAM' expected"

'.RAM' and '.ENDRAM' must be in pairs.

74. "`.DN' expected"

'.DN' must be used in '.RAM' segment (Please refer to Pseudo Instruction – Other Instructions).

75. "Illegal data"

76. "Operand error"

The number of the operand is error.

<Example>

movlw src<<1, 1 ; Correction: movlw src <<1

77. "Cannot open COE file"

Please make sure whether COE file exists.

78. ***Reserved***

TICE99IDE Cross Assembler User Manual

UM-TICE99IDEASM_E 36 Rev 1.3, 2019/08/26

79. "Program ROM (XXXXH) out of range (YYYYH)"

The max address of Program ROM is YYYYH, XXXXH is out of range.

80. "Table ROM (XXXXH) out of range (YYYYH)"

The max address of Table ROM is YYYYH, XXXXH is out of range.

	AMENDMENT HISTORY
	Features
	1. Limitations
	1.1 Naming Rule
	1.2 Case Sensitive
	1.3 Symbols and Labels

	2. Value System
	2.1 Representation
	2.2 Arithmetic, Bitwise and Logical Operations

	3. Pseudo Instructions
	3.1 Local Specified Instructions
	3.2 Chip Type Instruction
	(1) ".CPU"

	3.3 Other Instructions
	(1) ".ADDR"
	(2) ".AUTOIMPORT"
	(3) ".BYT", ".BYTE"
	(4) ".CASE"
	(5) ".DB"
	(6) ".DBYT"
	(7) ".DEFINE"
	(8) ".DEF", ".DEFINED"
	(9) ".DEFINEOLDSTYLE"
	(10) ".DEFSTR"
	(11) ".DN"
	(12) ".DWORD"
	(13) ".ELSE"
	(14) ".ELSEIF", ".ELSE IF"
	(15) ".ENDIF"
	(16) ".ENDMAC",".ENDMACRO"
	(17) ".ENDPROC"
	(18) ".EQU"
	(19) ".ERROR"
	(20) ".EXITMAC",".EXITMACRO"
	(21) ".EXPORT"
	(22) “.FIXCODE”
	(23) “.FPLANE0”
	(24) “.FPLANE1”
	(25) ".GLOBAL"
	(26) ".IF"
	(27) ".IFBLANK"
	(28) ".IFDEF"
	(29) ".IFNDEF"
	(30) ".IMPORT"
	(31) ".INCLUDE"
	(32) ".LOCAL"
	(33) ".MAC",".MACRO"
	(34) ".MATCH"
	(35) "_main"
	(36) ".ORG"
	(37) ".PARAMCOUNT"
	(38) ".PROC"
	(39) ".RELOC"
	(40) “.RPLANE”
	(41) ".SEGMENT"
	(42) ".WORD"
	(43) ".XMATCH"

	4. Error Messages

