

TM57 C Compiler

User Manual

Rev V1.4

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve

reliability, function or design without further notice. tenx does not assume any liability arising out of the application or use of

any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. tenx

products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or

uses tenx products for any such unintended or unauthorized application, Buyer shall indemnify and hold tenx and its officers,

employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable

attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or

unauthorized use even if such claim alleges that tenx was negligent regarding the design or manufacture of the part.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 2 Rev 1.4, 2022/06/30

AMENDMENT HISTORY

Version Date Description

V1.0 Aug, 2011 New release

V1.1 Jan, 2013

1. Add section: TM57 series C compiler special features

2. Add RPLANE, FPLANE, bank1 keywords

3. Bit operation only for F-Plane

4. Add description of operation register

5. Add description of union features

6. Add bit variable addressing is across bank

7. Return value is saved to op2

8. Change "assembler" to "assembly"

9. Add variable name will be changed after compiler

10. Add interrupt protection function

11. Add section 7

12. Add section 8

13. Add section 9

14. Add section 10

V1.2 Oct, 2013

1. Add arrange the starting TABLE ROM address for global

const variable and function

2. Use pragma directive to specify the address of global const

variable

3. Specify the address of function in function definition section

4. Use pseudo directive ".fixcode" in inline asm

5. Add #pragma into the directive table

6. Add section of "Pragma Directive (#pragma)"

7. Add section of avoid using .org xx instruction in C and

assemble hybrid programming

8. Add the method of new a library project in IDE

V1.3 Sep, 2021
1. Add bit field struct comment.

2. Add new asm format specifier %n and description.

V1.4 Jun, 2022
1. Add tableromdt description for Pragma Directive (#pragma)

(support since 0.5.7 version)

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 3 Rev 1.4, 2022/06/30

CONTENTS

AMENDMENT HISTORY ... 2

CONTENTS .. 3

1. An Overview of TM57 C .. 7

TM57 Series C Compiler Special Features .. 7

Compiling C programs .. 8

Lexical Conventions ... 10

Source Program Character Set ... 10

Comments ... 11

Identifiers .. 11

Keywords .. 12

Constants ... 12

Numeric Constants ... 13

Character Constants .. 13

Enumeration Constants ... 13

Global Constants .. 14

String Literals ... 15

Operators .. 15

Punctuators ... 15

2. Meaning of Identifiers .. 16

Disambiguating names ... 16

Scope .. 16

Block Scope ... 16

Function Scope ... 16

Function Prototype Scope .. 17

File Scope (Global Scope) .. 17

Name Spaces of Identifiers .. 17

Linkage of Identifiers ... 18

Storage Duration .. 18

3. Declarations .. 19

Storage Class Specifiers ... 19

Type Specifiers ... 21

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 4 Rev 1.4, 2022/06/30

Fplane / Rplane Declarations .. 21

Structure and Union Declarations .. 24

Declaring and Using Bit Fields in Structures and Union ... 25

Bit Data Type .. 26

Bitwise Operator .. 28

Enumeration Declarations ... 29

Type Qualifiers ... 29

Declarators .. 30

Pointer Declarators .. 30

Array Declarators .. 31

Function Declarators and Prototypes ... 33

asm Declarators .. 34

Restrictions on Declarators ... 37

Typedef .. 39

Initialization .. 40

Initialization of Aggregates ... 40

4. Expressions and Operators ... 41

Operator Precedence and Associativity Rules in C .. 41

Primary Expressions .. 42

Postifix Expressions ... 42

Array Subscripting Operator .. 42

Structure and Union References ... 43

Indirect structure and Union References ... 43

Postfix ++ and Postfix – ... 43

Unary Operators .. 44

Address-of and Indirection Operators ... 44

Unary + and Unary – Operators ... 44

Logical Negation ! and Bitwise Negation ~ Operators .. 45

Prefix ++ and Prefix -- Operators ... 45

Sizeof Unary Operator ... 45

Multiplicative Operators ... 46

Additive Operators ... 46

Shift Operators ... 47

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 5 Rev 1.4, 2022/06/30

Relational Operators (< > <= >=) ... 47

Equality Operators (== !=) .. 48

Logical AND Operators (&&), Logical OR Operators (||) ... 48

Conditional Operator ... 48

5. Statements ... 50

Expression Statements ... 50

Block Statement .. 50

Selection Statements ... 50

if Statement ... 51

switch Statement ... 52

Iteration Statements ... 52

while Statement .. 53

do Statement ... 53

for Statement .. 54

Jump Statements .. 55

goto Statement .. 55

continue Statement ... 55

break Statement ... 56

return Statement .. 56

Labeled Statement .. 56

Interrupt .. 57

(1) R-Plane ... 59
(2) F-Plane Bank 0 ... 59
(3) F-Plane Bank 1 ... 60

ISR_SaveData, ISR_RestoreData ... 61

ISR_SaveData_5, ISR_RestoreData_5, ISR_SaveData_10, ISR_RestoreData_10 69

6. Preprocessors .. 74

Macro Definition .. 74

Non-parameter Macro Definition ... 74

Definition of Macro with Parameters ... 75

Files Include .. 75

Conditional Compilation ... 75

Pragma Directive (#pragma) ... 76

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 6 Rev 1.4, 2022/06/30

7. Mix of C and Assembly Code in C Project .. 78

Basic Concept ... 78

C Program Calls Assembly Function without Passing Parameter 79

C Program Calls Assembly Function with Passing Parameter 79

Assembly Code Calls C Function .. 80

C and Assembly Language Hybrid Programming Experiences 81

(1) Using assembly instructions carefully.. 81
(2) Try to use embedded inline asm to replace .. 81
(3) Avoid using .org xx command while compiling C/ASM hybrid programming 81

8. Create Function Library ... 82

Function Library .. 82

Use Function Library ... 82

Methods to Create the Library ... 82

How to Use Function Library ... 85

9. Memory Map .. 86

10. Appendix ... 87

Example 1 .. 87

Example 2 .. 91

Example 3 .. 92

Example 4 .. 94

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 7 Rev 1.4, 2022/06/30

1. An Overview of TM57 C

TM57 Series C Compiler Special Features

TM57 series C compiler complies with ANSI C standard (but, TM57 series C compiler does not support

function pointer). Besides, to achieve optimal operating performance and control efficiency of tenx

microcontroller, and to provide better programming support for C compiler programmer, the following

features are added:

1. Bit variable

 Declare variable of bit data type only in the global scope of program, please refer to Bit Data

Type for the declaration syntax.

 Using bit field in structure, union, please refer to Declaring and Using Bit Fields in Structures and

union for the declaration syntax.

2. To allow C compiler programmer arranges global variable and function address more freely to

meet actual needs. TM57 C compiler provides a feature to specify global variable address to

which register (F-Plane or R-Plane) and specify starting TABLE ROM address for global const

variable and function. In implementation, if F-Plane RAM has more than one bank, user can

also determine global variable to be saved in specified bank of F-Plane.

 For declaration variable to specified register, please refer to Fplane / Rplane Declarations for the

declaration syntax and notes.

 Arrange the starting TABLE ROM address for global const variable, user can specify #pragma

tableromaddr to achieve this purpose.

 Specify the TABLE ROM address for function definition, please refer to Function Declarators.

3. Provide interrupt function and many interrupt protection features: when interrupt routing is

triggered, operating register content may change and affect the result. Tenx provides not only

auto-save chip, but also many kinds of interrupt protection features. These features allow user

to decide which content of operating register will be saved efficiently based on different

programming complexity.

 The corresponding relationship between programming complexity and operating register, please

refer to Operation_Register.

 Operating register memory map, please refer to Memory Map.

 Assembly subroutine code with interrupt protection feature, please refer to Interrupt_Protection.

 Precautions when interrupt protection feature is enabled, please refer to Interrupt_Restrictions.

4. To meet single-chip’s special command operating feature and real time control, assembly code

relative to C programming language is more consistent with the needs of a single-chip.

Therefore, C language and assembly code mixed programming is allowed in C project.

 Embed assembly code (asm , __asm__) directly in C program, please refer to Asm Declarators
for the declaration syntax.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 8 Rev 1.4, 2022/06/30

 To avoid variable, parameter, or function name in assembly code which may cause spelling and

maintain problem, it is suggested to use Format Symbol to replace variable name, please refer to

format_specifier.

 C code and assembly code mixed programming and example: (1) In C code calls assembly

function, which is divided into with/without parameter, (2) In assembly code calls C function.

Please refer to Mix of C and Assembly Code in C Project.

 In some conditions, the most suitable C language and assembly code mixed programming

experience sharing, please refer to C and Assembly Language Hybrid Programming Experiences.

5. Support library

 C or assembly code can use TICE99 IDE tool to create function library, please refer to Methods

to Create the Library for the detail steps to create library.

 Library reference, please refer to How to Use Function Library.

Compiling C programs

Microcontroller programs must fit in the available on-chip program memory, since it would be costly to

provide a system with external, expandable memory. Compilers and assemblers are used to convert high-

level language and assembly language codes into a compact machine code to be saved in the

microcontroller's memory.

Compiling C programs requires you to work with five kinds of files:

1. Regular source code files: These files contain function definitions, and have names which

end in ".c" by convention.

2. Header files: These files contain function declarations (also known as function prototypes)

and various preprocessor statements. They are used to allow source code files to access

externally-defined functions. Header files end in ".h" by convention.

3. Object files: These files are produced as the output of the compiler. They consist of function

definitions in binary form, but they are not executable by themselves. Object files end in ".o"

by convention.

4. Chip relative files: including runtime library files (runtime57_XXX.lib files) and configure

files (.cfg files). These files contain the information about memory relocation and instruction

sets for each kind of chips.

5. Binary executables: These are produced as the output of a program called a "linker". The

linker links together a number of object files to produce a binary file which can be directly

executed. Binary executables end in ".bin" by convention.

There are other kinds of files as well, assembly files (".s" files), and variable information files (".cfn"

files), but you won't normally need to deal with them directly.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 9 Rev 1.4, 2022/06/30

Source Codes

(.c files)

Header Files

(.h files)

Compiler (cc57.exe)

Assembly

File (.s file)

Assembler (ca89.exe)

57sysdef.inc

Instruction Macro

Definition File

Library Maker
(tmxxlib.exe)

Object File

(.o file)

Object File

 (.o file)

Library File

(.lib file)

Linker (ld89.exe)

Configure File

(.cfg file)

Binary File

(.bin file)

Library File

(.lib file)

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 10 Rev 1.4, 2022/06/30

Lexical Conventions

A lexical element refers to a character or groupings of characters that may legally appear in a source file.

This section contains discussions of the C lexical conventions including tokens, character sets, comments,

identifiers and constant literals.

A token is a series of contiguous characters that the C compiler treats it as a data unit. Blanks, tabs,

newlines, and comments are collectively known as “white space.” White space is ignored by C compiler

except as it serves to separate tokens. Some white space is required especially when it will separate

otherwise adjacent identifiers, keywords, and constants. White space makes a program easier to read and

maintain when it is used properly.

There are six different types of tokens:

 Identifiers

 Keywords

 Constant

 Literals

 Operators

 Punctuators

Source Program Character Set

The following lists the basic source character sets that are available at both compile time and execution

time:

 The uppercase and lowercase letters of the English alphabet

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 The decimal digits 0 through 9

0 1 2 3 4 5 6 7 8 9

 The underscore character (_)

 The following punctuators (A punctuator is a character that has syntactic and semantic

meaning)

! # & ({

" % ’) }

, - . /

; = []

< > \ _

~ * + :

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 11 Rev 1.4, 2022/06/30

 The space character

 Escape Sequences: some special and nongraphic characters are represented by the

escape sequences.

The escape sequences and the characters they represent are:

Escape Sequence Character Represented

\b Backspace

\f Form feed (new page)

\n New-line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\’ Single quotation mark

\" Double quotation mark

\\ Backslash

Comments

A comment is text replaced during preprocessing by a single space character; the compiler therefore

ignores all comments.

There are two kinds of comments:

 The /* (slash, asterisk) characters introduce a comment, followed by any sequence of

characters (including new lines), and the */ characters terminate a comment. This kind

of comment is commonly called a C-style comment.

 The // (two slashes) characters followed by any sequence of characters. A new line not

immediately preceded by a backslash terminates this form of comment. This kind of

comment is commonly called a single-line comment.

Note: You cannot nest C-style comments inside other C-style comments. It means that each comment ends at the

first occurrence of */. But You can nest single line comment within C-style comments

Identifiers

An identifier, or name, consists of an arbitrary number of letters, digits, or the underscores (_). The first

character cannot be a digit. Uppercase and lowercase letters of identifier are distinct. The C compiler

distinguishes between uppercase and lowercase letters in identifiers. For example, TENX and tenx

represent different identifiers.

Identifiers provide names for the following language elements:

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 12 Rev 1.4, 2022/06/30

 Functions

 Objects

 Labels

 Function parameters

 Macros and macro parameters

 Typedefs

 Struct and union names

Keywords

Keywords are identifiers reserved by the language for special use. Although you can use them for

preprocessor macro names, it is poor programming style. Only the exact spelling of keywords is reserved.

To extend the ability of the C language to MCU features, some extra keywords are added into the TM57

C compiler. The following lists the reserved keywords in this compiler:

asm enum short void

break extern signed while

case for static __asm__

char goto struct interrupt

continue if switch rplane

default int typedef bit

Do long union FPLANE

else Return unsigned RPLANE

 bank1

Note:

 __asm__, interrupt, rplane, RPLANE, FPLANE, bank1 and bit are the extra keywords for MCU.

 float and double are NOT supported

Constants

A constant is non-addressable, it means its value is stored somewhere in memory, but we have no means

of accessing that address. Every constant has a value and a data type.

The value of any constant does not change while the program runs and must be in the range of

representable values for its type. The following are the available types of constant:

 Numeric constant

 Character constant

 Enumeration constant

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 13 Rev 1.4, 2022/06/30

Numeric Constants

Numeric constant can be presented by decimal, hexadecimal and octal which depending on prefix

modifier.

An octal constant consisting of a sequence of digits is considered octal if it begins with 0 (zero). An octal

constant consists of the digits 0 through 7 only. A sequence of digits preceded by 0x or 0X is considered

a hexadecimal integer. The hexadecimal digits include [aA] through [fF], which have values of 10

through 15. The suffix [L] or [l] traditionally indicate numeric constants of data type long. The suffix is

allowed, but is superfluous, it makes program easier to be read.

 Syntax:

- Decimal: Default

- Hexadecimal constant: Digit prefix with “0x”

- Octal constant: Digit prefix with “0”

 Example:

12, 34 // Decimal constant

0x5A, 0xB2 // Hexadecimal constant

014 // Octal constant

3452L // Numeric constant of type long

Note: Binary constant is not supported.

Character Constants

A character constant is a character enclosed in single quotation marks, such as ‘x’. The value of a

character constant is the numerical value of the character in the machine’s character set. The type of a

character constant is int.

Enumeration Constants

In ANSI C, enumeration constants are simply integer constants that may be used anywhere. It means

names declared as enumerators have type int. Similarly, ANSI C allows the assignment of other integer

variables to variables of enumeration type, with no error.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 14 Rev 1.4, 2022/06/30

Global Constants

In TM57 C, global constant variables are stored in TABLE ROM (program memory). For example,

declare a global constant: const int gInt=10; compiler address variable in 0009~000a, and data are

combined by the last two bytes of the length of data type. In this example, the variable data is 0x000A =

10.

User can also use preprocessor directive: #pragma tableromaddr to define starting address of global

variable, for example, global variable array[6] is addressed at 0x0100; global variable gVar1 does not

need to define address and it is addressed by C compiler. C program is shown as below figure:

Note: Please note the arrangement of global variable, to avoid address conflicted error.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 15 Rev 1.4, 2022/06/30

String Literals

A string literal is a sequence of characters surrounded by double quotation marks, such as "abc". A string

literal has type array of char and is initialized with the given characters. TM57 C compiler will place a

null byte (\0) at the end of each string literal so that programs that scan the string literal can find its end.

In addition, the escapes as those described for character constants can be used (See Source Program

Character Set for a list of escapes).

Operators

An operator specifies an operation to be performed. The operators [] and () must occur in pairs, possibly

separated by expressions. Operator can be one of the following:

[](). ->

++ - - & * + - ~ ! sizeof

/ % << >> < > <= >= == != ^ | && ||

? :

= *= /= %= += -= <<= >>= &= ^= |=

Punctuators

A punctuator is a symbol that has semantic significance but does not specify an operation to be

performed. The punctuators [], (), and { } must occur in pairs, possibly separated by expressions,

declarations, or statements. Punctuator is one of the following:

[](){ } * , : = ; … #

Some operators, determined by context, are also punctuators. For example, the array index indicator [] is

a punctuator in a declaration.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 16 Rev 1.4, 2022/06/30

2. Meaning of Identifiers

An ANSI C identifier is disambiguated by four characteristics: its scope, name space, linkage, and

storage duration. Storage-class specifiers are discussed in this chapter only in terms of their effect on an

object’s storage duration and linkage.

 Disambiguating names

This section discusses the ways of C disambiguates names: scope, name space, linkage, and storage

class.

Scope

The largest region of a program in which a given identifier is visible and can potentially be used to refer

to its object is called the scope of identifier. Compiler uses the rules of scope and name resolution to

determine whether a reference to an identifier is legal at a given point in a file.

Block Scope

Block scope is the scope of automatic variables which is declared within a function or a block. No

conflict occurs if the same identifier is declared in two different blocks. When one block is nested inside

another, the identifier from the outer block is usually visible in the nested block. The other one in the

nested block hides until the end of the enclosed block is reached. The outer declaration is restored when

program control returns to the outer block. This is called block visibility.

Function Scope

Only labels have function scope. A label is implicitly declared by its appearance in the program text and

is visible until the end of the current function that declares it.

A label can be used in a goto Statement before the actual label is seen.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 17 Rev 1.4, 2022/06/30

Function Prototype Scope

If an identifier appears within the list of parameter declarations in a function prototype that is not part of

a function definition, it has function prototype scope. Function prototype scope terminates at the end of

the prototype.

Consider the following example:

char * getEnvName (const char * name);

int name;

The int variable name does not conflict with the parameter name because the parameter went out of

scope at the end of the prototype. However, the prototype is still in scope.

File Scope (Global Scope)

File scope (or global scope) applies to identifiers appearing outside of any block, function, or function

prototype. An identifier with global scope and internal linkage is visible from the point where it is

declared to the end of the translation unit.

An identifier with global scope is also accessible for the initialization of global variables. If that identifier

is declared extern, it is also visible at link time in all object files being linked.

Name Spaces of Identifiers

The C compiler sets up name spaces to distinguish among identifiers referring to different kinds of

entities. Identical identifiers in different name spaces do not interfere with each other, even if they are in

the same scope. You can redefine identifiers in the same name space but within enclosed program blocks.

ANSI C recognizes the following four distinct name spaces:

 Tags: struct, union, and enum tags have a single name space.

 Labels: labels are in their own name space.

 Members: each struct or union has its own name space for its members.

 Ordinary identifiers: the following identifiers must be unique within a single scope.

- C function names

- Variable names

- Names of function parameters

- Enumeration constants

- typedef names

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 18 Rev 1.4, 2022/06/30

Linkage of Identifiers

Linkage refers to the use or availability of an identifier that across multiple translation units or within a

single one. The term translation unit refers to a source code file plus all the header and other source files

that are included after preprocessing with the #include directive, minus any source lines skipped because

of conditional preprocessing directives (because there are some conditional compilation of pre-

processing instructions, #if…#else…#endif). Linkage allows the correct association of each instance of

an identifier with one particular object or function.

Storage Duration

The scope of an identifier is interrelated with the storage duration of the identified object, which is the

length of time that an object remains in an identified region of storage. The lifetime of the object is

influenced by its storage duration, which in turn is affected by the scope of the object identifier.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 19 Rev 1.4, 2022/06/30

3. Declarations

Declarations determine the interrelated attributes of an object: storage class, type, scope, visibility,

storage duration, and linkage.

Declarations have the following form:

declaration: declaration-specifiers [init-declarator-list]

The declaration specifiers consist of a sequence of specifiers that determine the linkage, storage duration,

and part of the type of the identifiers indicated by the declarator.

declaration-specifiers: storage-class-specifier [declaration-specifiers]

 type-specifier [declaration-specifiers]

 type-qualifier [declaration-specifiers]

The init-declarator-list is a comma-separated sequence of declarators and it is optional, each of which

can have an initializer.

init-declarator-list: init-declarator

 init-declarator-list , init-declarator

init-declarator: Declarator

 declarator = initializer

Declarations determine the following properties of data objects and their identifiers:

 Scope, the region of program text in which an identifier can be used to access its object.

 Visibility, the region of program text from which legal access can be made to the

identifier’s object.

 Duration, the period during while the identifiers have real, physical objects allocated in

memory.

 Linkage, the correct association of an identifier to one particular object.

 Type, which determines how much memory is allocated to an object and how the bit

patterns found in the storage allocation of that object should be interpreted by the

program.

Storage Class Specifiers

The storage class specifier indicates linkage and storage duration. Storage class specifiers have the

following form:

storage-class-specifier: static

 extern

 typedef

 rplane

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 20 Rev 1.4, 2022/06/30

The typedef specifier does not reserve storage and is called a storage-class specifier only for syntactic

convenience.

An rplane declaration enables users to address a global variable in the appointed rplane RAM.

Example:

rplane int _gx; // Allocation R plane variable _gx at global area

 void main(void)

{

 int i,j;

 _gx = i+j; // save i+j to R-plane RAM _gx

 }

Note: even some of the TM57 series chips provide write operation mode in R-plane RAM, but it is not allowed to

read or write R-plane RAM data. Please see the relative specification document of current TM57 chip for

detail.

#define _PWRDOWN 0x03

unsigned char _powerdown @_PWRDOWN:RPLANE ;

rplane int _gx;

 void main(void)

{

 unsigned char uc;

 rplane int ri; // Error, must allocation at global area

 uc=_gx; // it will show Error when compiling,

// if R-plane RAM is write only (Ex: TM57PA40 chip)

 uc=_powerdown; // it will show Error when compiling/assembling,

// if R-plane RAM is write only (Ex: TM57PA40 chip)

}

The following rules apply to the usage of storage class specifiers:

 A declaration can have at most one storage class specifier. If the storage class specifier

is missing from a declaration, then this storage is maintained only during the execution

of the block where the object is defined (auto variable).

 Identifiers declared within a function with the storage class extern must have external

linkage, which means that it can be called from other translation units.

 Identifiers declared with the storage class static have static storage duration, and either

internal linkage (if declared outside a function) or no linkage (if declared inside a

function). If the identifiers are initialized, the initialization is performed once before the

beginning of execution. If no explicit initialization is performed, static objects are

implicitly initialized to zero.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 21 Rev 1.4, 2022/06/30

Type Specifiers

Type specifiers are listed below. The syntax is as follows:

type-specifier: struct-or-union-specifier

 typedef-name

 enum-specifier

 char

 short

 int

 long

 signed

 unsigned

 void

 bit

Note: data type float and double are NOT supported.

Fplane / Rplane Declarations

In TM57 chip series, the register is divided into two memory blocks: F-Plane and R-Plane. It gives a

more convenience way to enable users to address a global variable in the appointed R-plane or F-plane

RAM. RAM storage declaration has the following form:

declaration: type-specifier Var_name @ Address [@bit]:(RPLANE|FPLANE)

Address format without "@" modifier is a decimal address, otherwise is a hexadecimal address.

Example:

C code ASM code

/* Specify the address of var: F_Addr to 0x30 in F-

plane*/

// declare global variable

unsigned char F_Addr@0x30:FPLANE;

main()

{

 F_Addr=0x20; /* initial value = 0x20 */

}

000000: 3001 GOTO 0x1

000001: 2005 CALL 0x5

000002: 1920 MOVLW 0x20

000003: 00B0 MOVWF 0x30

000004: 0040 RET

000005: 0040 RET

TM57 C provides a bit operation for F-Plane in order to maintain bit type of IC register. The address

range for IC control address which can be address bit field, please see IC specification for detail. Bit

operation example as below:

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 22 Rev 1.4, 2022/06/30

/* Specify the address of var: Addr to 0x30 in F-Plane*/

// declare global variable to access the bit field 0 of address 0x30 in F-Plane

unsigned bit Addr@0x30@0:FPLANE;

main()

{

 Addr=0x20; /* initial value = 0x20 */

}

Note:

 In R-plane, the instructions that are allowed to do memory access are MOVWR, MOVRW, and we do

not recommend doing bit-wise operation because the data unit is BYTE.

 F-plane and R-plane declarations only enable users to address a global variable.

In linking process, linker will address the operation register from 0x20 to 0x37 (24 bytes) in F-Plane

RAM, but the actual register usage depends on the complexity of operation, and whether there is bit

variable declaration in program. The maximum register usage is as follows:

Address Size (bytes) Operation Register Address Range

0x20~0x2F 16 op1 ~ op4 Floating

- 1 tmp1 Floating

- 4 stkptr Floating

Determining whether to save operating register (op1~op4, tmp1, stkptr) and allocate the memory to save

the content of register depend on the programming computational complexity (refer to

registers_in_expression). This means that with the increase of the computational complexity, there are

more operating register involved. Besides, consider efficient usage of memory and interrupt protection

storage register, linker uses contiguous allocation memory to save operating registers which are used in

computational procedure, and sets accurately the memory size needed. Therefore, the range of operating

register address is not fixed. Furthermore, the common bit variable address range decided by linker is

0x20 ~ 0x3F, the actual bit variable address after saving operating register is described as following

example:

Assume in computing process, needs to save op1: 2 bytes, op3: 4 bytes, and stkptr: 1 byte, at the same

time there are two bit variables declared in the program. Therefore, 0x20 ~ 0x26 is assigned to store op1,

op3 and stkptr register, and 0x27 is assigned to store two bit variables.

Note:Bit variable declaration described above means common bit variable declaration (not specific bank1 and F-

Plane address of bit variable declaration), which means the address of bit variable which is decided by linker,

for example: bit bVal;.

Address range mentioned above is reserved for runtime library computing, use address range to store

computational result. It is suggested that user do not use this address range to avoid unexpected error

op1 op3 stkptr Bit variable

0x20 0x22 0x26 0x27

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 23 Rev 1.4, 2022/06/30

occurs, especially when there are C code and ASM code occur at the same time in a project. Furthermore,

it is strongly recommended that user using a simple expression to reduce computational complexity.

Below table shows registers may be used in all arithmetic expressions.

 Common rules:

 Multiplication

8

Multiplication

16

Multiplication

32

Division 8 Division

16

Division

32

op1

op2

op3 - -

op4 - - - -

tmp1 - - - - -

 Addition – subtraction expression: depends on the complexity of expression, there will be

different registers adjustment, actual register usage condition, please check the interpreter result

in *.s file.

 Subtraction 8 Subtraction

16

Subtraction

32

Addition

16

Addition

32

op1 -

op2 -

op3 - - - - -

op4 - - - - -

tmp1 - - - - -

 Memory content copy Pointer (read/write)

computational

op1

op2

op3

op4 - -

tmp1 - -

Note: Below three examples will trigger memory content copy computational:

1. String initialization

2. Table ROM copy

3. String expression

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 24 Rev 1.4, 2022/06/30

Structure and Union Declarations

A structure is an object consisting of an ordered group of data members. Unlike the elements of an array,

each member within a structure can have various data type. A union is an object that can, at a given time,

contain any one of several members.

Structure and union specifiers have the same form. The syntax is as follows:

struct-or-union-specifier: struct-or-union {struct-decl-list}

 struct-or-union identifier {struct-decl-list}

 struct-or-union identifier

struct-or-union: struct

 union

The struct-decl-list is a sequence of declarations for the members of the structure or union.

The declaration syntax between struct and union is similar, but from the viewpoint of the memory, each

member of struct has its own memory space. The space occupied by a struct is the sum of the memory

space occupied by each struct and the boundary alignment.

Unlike struct, union does not configure the memory space for each member, but all union data members

share the same memory space. The memory size is the largest data type among the members. Therefore,

when any data content in a field changes, it will relatively affect the content of other fields. This means,

at the same time, only the data of one member can be saved. Therefore, a union only configured a large

enough space to store the largest data member.

Use structures to group logically related objects. In the following example, line int street_no; through to

char *postal_code; declare the structure tag address:

struct address {

int street_no;

char *street_name;

char *city;

char *prov;

char *postal_code;

};

struct address perm_address;

struct address temp_address;

struct address *p_perm_address = &perm_address;

/*

The variables perm_address and temp_address are instances of the structure data type address.

Both contain the members described in the declaration of address. The pointer p_perm_address

points to a structure of address and is initialized to point to perm_address.

*/

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 25 Rev 1.4, 2022/06/30

Declaring and Using Bit Fields in Structures and Union

ANSI C allows integer members to be stored into memory spaces smaller than the compiler would

ordinarily allow. These space-saving structure members are called bit fields, and their width in bits can

be explicitly declared. Bit fields are used in programs that must force a data structure to correspond to a

fixed hardware representation and are unlikely to be portable.

The default type of field members is int, but whether it is signed or unsigned int is defined by the

implementation. Therefore, you should specify the signedness of bit fields when they are declared.

struct on_off {

unsigned light : 1; // Low Bytes

unsigned toaster : 1;

unsigned ac : 4;

unsigned clock : 1;

unsigned flag: 1;//High Bytes

} kitchen ;

In the above example, the structure kitchen contains five members totaling 1 byte. The following table

describes the storage that each member occupies:

Member Name Storage Occupied

Light 1 bit

toaster 1 bit

ac 4 bits

clock 1 bit

flag 1 bit

In the previous section, it is mentioned that when a field data in union changes, it will relatively affect

the content of other fields. This union feature provides an efficient storage control in hardware

programming. Below is an example:

Assume a variable flag which occupies a byte is defined in programming code, in implementation, if

each bit is to be set individually at the same time, union definition can be used to operate Byte and bit

data members which occupy the same memory space.

union test{

unsigned char flag;

bit flag_bit0;//Low Bytes

bit flag_bit1;

bit flag_bit2;

bit flag_bit3;

bit flag_bit4;

bit flag_bit5;

bit flag_bit6;

bit flag_bit7;//High Bytes

}TEST;

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 26 Rev 1.4, 2022/06/30

From TEST example, we can operate a byte data (ex: TEST.flag=10;), and at the same time can operate

each bit of data (ex: TEST.flag_bit=1;). In this way, no need to use OR, AND or SHIFT operation, to

achieve the same effects. In 8-bit single-chip programming, it provides intuitive and convenience of C

code, and the flexibility of assembly language.

Note:

1. The data type of each struct member is unlimited, therefore, when bit-field and other data type member

are declared at the same struct, it is suggested to use continuous declaration of bit-field to save the

memory space. In this way, linker will centralize the configuration address according to byte units.

2. Struct and union can declare specific address. Below is the syntax to specify the address:

declaration: struct-or-union identifier Var_name @ Address :(RPLANE|FPLANE)

Bit Data Type

Different from ANSI C, TM57 C has built-in support for bit fields. Bit datatype is used to store boolean

information, i.e. 1 or 0 (true or false). Use the bit datatype to represent true/false or yes/no types of data,

such as status flag, led status…..

In TM57 single chip series, the basic data unit of control register is the binary digit, or bit. Values with

more than two states require multiple bits. The first half of F-Plane is bit-addressable, while the second

half of F-Plane is not bit-addressable, and please see specification for the detail. The format is as below:

bit-specifier: bit identifier

bit idenifier@address@bit:plane_type

bit idenifier:bank1

plane_type FPLANE

Note: bit type variable can only be declared in global area. And also, when it is necessary to specify bit variable

RAM storage address, it is allowed only in FPLANE.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 27 Rev 1.4, 2022/06/30

If a local variable is declared as a bitfield, a read/write may access the entire storage unit (that is byte)

containing the field. Below is the example

Declare a global bit variable and address in F-PLANE.

Example:

Bit variable according to actual needs can assign address at bank1 of F-Plane (when it is unsigned, linker

default setting address is at bank0, therefore no need to assign address at bank0). Linker sets bit address

at bank1 of F-Plane as the starting address. Below figure using TM57FLA80 as example, bank1

0 1 0

Address: 0x0020 in FPLANE

Bit 2 : gBit_3

Bit 1 : gBit_2

Bit 0 : gBit_1

Address: 0020.0 (0x0020 bit 0)

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 28 Rev 1.4, 2022/06/30

addressable starting address is 0x30, therefore the bit variable b0, b1, b2, b3 assigned address at bank1 is

the first 0~3 bits of 0x30.

Please note that the length of the integer variable in example is l1, the storage address is across bank0

and bank1, linker will configure variable l1 address to 0x7e~0x7f of bank0 and 0x31~0x32 of bank1, to

avoid the configured address 0x30. This means, when there is bit variable with assigned address in bank1

and variable in program which across bank0 and bank1, the across bank variable configuration will be

readjusted by linker, to avoid repeat addressing.

Suggestion: when declare bit variable, it is suggested to use continuous declaration, in this way, linker will

centralize the configuration address, to save address space. Otherwise, if it is uncontinuous

declaration bit address, linker will not continuously configure the address, this will cause

address space wasted.

Bitwise Operator

For bit data type, TM57 C supports the following operator:

 Mathematic operator : + - * /

 Bitwise operator : & | ~

Note: shift operator (<< >>) is not supported for bit variable

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 29 Rev 1.4, 2022/06/30

Enumeration Declarations

An enumeration is a data type which consists of a set of values that are named integral constants. The

syntax is as follows:

enum-specifier: enum {enum-list}

 enum {identifier enum-list}

 enum identifier

enum-list: enumerator

 enum-list , enumerator

enumerator: identifier

 identifier = constant-expression

When you define an enumeration data type, you specify a set of identifiers. The identifiers are declared

as int constants and can appear wherever such constants are allowed. Each identifier in this set is an

enumeration constant.

The value of the enumeration constant is determined in the following way:

1. An equal sign (=) and a constant expression after the enumeration constant gives an

explicit value to the constant. The identifier represents the value of the constant

expression.

2. If no explicit value is assigned, the leftmost constant in the list receives the value zero

(0).

3. Identifiers with no explicitly assigned values receive the integer value that is one greater

than the value represented by the previous identifier.

Example:

enum grain { oats, wheat, barley, corn, rice };

/* 0 1 2 3 4 */

enum grain { oats=1, wheat, barley, corn, rice };

/* 1 2 3 4 5 */

enum grain { oats, wheat=10, barley, corn=20, rice };

/* 0 10 11 20 21 */

Type Qualifiers

Type qualifiers have the following syntax:

type-qualifier: const

The const qualifier explicitly declares a data object as a data item that cannot be changed any more. You

cannot use const data objects in expressions requiring a modifiable lvalue. For example, a const data

object cannot appear on the lefthand side of an assignment statement. Although a const variable cannot

be modified, it can be initialized following the same rules as the initialization of any other object.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 30 Rev 1.4, 2022/06/30

In TM57 C compiler, global constant variable will be addressed to the memory area of program ROM, in

order to save RAM memory space. Local constant variable is still addressed to the memory of RAM.

Example:

const char _szmydata[] = ”hello”;

const unsigned char _szdata[]={0x10,0x20,0x30,0x40,0x50,0x60};

const int _idata=0x55AA;

Note: const pointer declaration is not supported.

Declarators

A declarator designates a data object or a function with the scope, storage duration, and type indicated

by the declaration. Each declarator contains exactly one identifier; it is this identifier that is declared. In

the declaration “T D1;” D1 is simply an identifier, then the type of the identifier is T.

In a declarator, you can specify the type of an object to be an array, a pointer, or a reference. You can

also perform initialization in a declarator. The following table illustrates some examples of declarators:

Example Description

int year year is an int data object.

int *node node is a pointer to an int data object.

int name[12] name is an array of 12 int elements.

int *move() move is a function returning a pointer to an int

extern const int sys_clock sys_clock is a constant integer and external linkage

TM57 C compiler is for 8-bit single chip, and the definition and length of supported data types are list as

below.

Data type Size (bytes) Scope

char 1 -128 ~ 127

unsigned char 1 0 ~ 255

short 2 -32768 ~ 32767

unsigned short 2 0 ~ 65535

int 2 -32768 ~ 32767

unsigned int 2 0 ~ 65535

long 4 -2147483648 ~ 2147483647

unsigned long 4 0 ~ 4294967295

pointer 1 0 ~ 255

bit 1 0 ~ 1

Pointer Declarators

A pointer type variable holds the address of a data object or a function. A pointer can refer to an object of

any one data type except to a reference. A pointer is classified as a scalar type, means that it can hold

only one value at a time. Pointer declarators have the form:

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 31 Rev 1.4, 2022/06/30

pointer: * type-qualifier-listopt

 * type-qualifier-listopt pointer

When you use pointers in an assignment operation, you must make sure that the types of the pointers in

the operation are compatible. It means two pointers types with the same type qualifiers are compatible if

they point to objects of compatible types.

Example:

int section[80];

int *student = section;

Some common uses for pointers are:

 To access elements of an array or members of a structure.

 To access an array of characters as a string.

 To pass the address of a variable to a function. By referencing a variable through its

address, a function can change the contents of that variable.

Array Declarators

An array is a collection of objects which have the same data type. Individual objects in an array, called

elements, are accessed by their position in the array. The subscripting operator ([]) provides the

mechanics for creating an index to array elements.

array: Type identifier [constant-expression]

The initializer for an array is a comma-separated list of constant expressions enclosed in braces ({ }).

The initializer is preceded by an equal sign (=).

Example:

int number[3] = { 5, 7, 2 };

The array number contains the following values: number[0] is 5, number[1] is 7 and number[2] is 2.

Example:

int item[] = { 1, 2, 3, 4, 5 };

The TM57 C compiler gives item of the five initialized elements, since no size is specified and there are

five initializers.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 32 Rev 1.4, 2022/06/30

GInitializing a string constant places the null character (\0) at the end of the string if there is room or if

the array dimensions are not specified. The following definitions show character array initializations:

static char name1[] = { ’J’, ’o’, ’y’ };

static char name2[] = { "Joy" };

static char name3[4] = "Joy";

static char name4[4]= "Joys";//Error,because string contains \0 at the end ,so you can put a

//maximum of 3 characters.

The following definition explicitly initializes six elements in a 12-element array:

static int matrix[3][4] =

{

{1, 2},

{3, 4},

{5, 6}

};

Element Value Element Value Element Value

matrix[0][0] 1 matrix[1][0] 3 matrix[2][0] 5

matrix[0][1] 2 matrix[1][1] 4 matrix[2][1] 6

matrix[0][2] 0 matrix[1][2] 0 matrix[2][2] 0

matrix[0][3] 0 matrix[1][3] 0 matrix[2][3] 0

The following rules apply to array declarations:

 If the array is a fixed length array, the expression is enclosed in square brackets. If it

exists, it must be an integral constant expression whose value is greater than zero.

 When several “array of” specifications are adjacent, it means a multi-dimensional array

is created; the constant expressions that specify the bounds of the arrays can be missing

only for the first member of the sequence.

 The absence of the first array dimension is allowed if the array is external and the actual

definition (which allocates storage) is given elsewhere, or if the declarator is followed

by initialization. In the latter case, the size is calculated from the number of elements

supplied.

 The array type is “fixed length array” if the size expression is an integer constant

expression, and the element type has a fixed size.

 In order for two array types to be compatible, their element types must be compatible. In

addition, if both of their size specifications are present and are integer constant

expressions, they must have the same value.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 33 Rev 1.4, 2022/06/30

Function Declarators and Prototypes

When a function is invoked for which a function prototype is in scope, an attempt is made to convert

each actual parameter to the type of the corresponding formal parameter specified in the function

prototype, superseding the default argument promotions. The number of parameters appearing in the

parameter list at the point of call must agree in number with those in the function prototype.

The following are two examples of function prototypes:

long foo(int *first, int second);

int *fip(int a, long l, int b);

It is recommended to use the ANSI C function prototype. In traditional C, however, the implementation

of prototypes was incomplete. In one case, a significant difference still exists between the ANSI C and

the traditional C implementations of prototypes.

ANSI C Traditional C

void adjust_xy (short x, short y) {…..} void adjust_xy (x, y)

 short x;

short y;

{…..}

Note: Recursive function is not supported.

The return value of C function is saved in F-Plane RAM, i.e. saved in the operation register: op2. A

function prototype should be declared before the function can be called. Besides, the same with const

variable, it allows user to define functioni in TABLE ROM (program memory) address. Below example

shows function f1specifies ROM address 0x0100, but function f2 does not specify ROM address. Please note,

ROM address can only be specified in definition section of function.

char f1(char, char); // Cannot specify address in function declaration

char f2(char, char);

void main()

{

char a = 5;

char b = 2;

char c = 0;

c = f1(a, b);

c = f2(a, b);

}

 char f1(char i, char j)@0x0100 //In function declaration specifies ROM address 0x0100,

{

if(i < j)

return (j - i);

else

return (i - j);

}

 char f2(char i, char j)

{

return (i + j);

}

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 34 Rev 1.4, 2022/06/30

asm Declarators

The keyword asm stands for assembly code. In this implementation, the TM57 C compiler recognizes

and ignores the keyword asm in a declaration. The syntax is

 asm (<string literal>[, optional parameters]) ;

or

 __asm__ (<string literal>[, optional parameters]) ;

The asm statement may be used inside a function (but don’t use it on global file level). An inline

assembly statement is a primary expression, so it may also be used as part of an expression. The contents

of the string literal are preparsed by the compiler and inserted into the generated assembly output, so that

it can be further processed by the backend and especially the optimizer. For this reason, the compiler

does only allow regular TM57XX opcodes to be used with the inline assembly.

The built-in inline assembly is not a replacement for the full-blown macro assembly which comes with

the compiler. For example, the instruction parameter address in embedded assembly code, when exceeds

bank0 area of its IC, C Compiler will automatically insert bank instruction within instructions. In

TM57FLA80 as example, in instruction asm(“movwf 0xFD”), parameter address 0xFD exceeds 0x80

(the size of bank0), therefore C Compiler will convert asm(“movwf 0xFD”) into 3 instructions as below

BSF 0x03, 5 // Change to bank1

MOVWF 0x7D // 0xFD - 0x80 = 0x7D of Bank1

..

BCF 0x03, 5 // Change to bank0

Original Instruction After Compiling

In some actual implementation, if it needs to control bank switching manually, not controlled by C

Compiler, user can use assembly pseudo code .fixcode to block RAM Bank auto function.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 35 Rev 1.4, 2022/06/30

Original Instruction After Compiling

Note: Inline assembly statements are subject to all optimizations done by the compiler. There is currently no way to

protect an inline assembly statement from being moved or removed completely by the optimizer. If in doubt,

check the generated assembly output, or disable optimizations.

The string literal may contain format specifiers from the following list. For each format specifier, an

argument is expected which is inserted instead of the format specifier before passing the assembly code

line to the backend.

Format specifier Description

%b Numerical 8-bit value

%w Numerical 16-bit value

%l Numerical 32-bit value

%v Assembly name of a (global) variable or function

%o Stack offset of a (local) variable

%% The % sign itself

%n

Specifically for bsf, bcf, btfsc, btfss instructions, if it’s the above

instruction, it will determine which bit the variable is in and add it t

o the instruction.

※ Only applicable to bit type variables

Ex:

bit bb;//Assume 0x20, bit 0

asm(“bsf %n”,bb); //

Result:

bsf 0x20,0

Using these format specifiers, you can access C #defines, variables or similar stuff from the inline

assembly. For example, to load the value of a C #define into the W accumulator, one would use

#define OFFS 23

__asm__ ("MOVLW %b", OFFS);

Or,

to access a struct member of a static variable:

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 36 Rev 1.4, 2022/06/30

#define offsetof(type, member) (unsigned) (&((type*) 0)->member)

typedef struct {

unsigned char x;

unsigned char y;

unsigned char color;

} pixel_t;

static pixel_t pixel;

__asm__ ("MOVLW %v+%b", pixel,offsetof(pixel_t, color));

or

__asm__ ("MOVLW %v+%b", pixel, &pixel.color); // no need to define #define offsetof

Note: Do not embed the assembly labels that are used as names of global variables or functions into your asm

statements.

Code like this:

int foo;

int bar () { return 1; }

__asm__ ("MOVFW _foo"); /* DON’T DO THAT! */

...

__asm__ ("call _bar"); /* DON'T DO THAT EITHER! */

The original global variable and function name in the .s file after C compiler compiles will be added with

‘-’ as prefix in the name of variable or function. As above example, the global variable declaration: int

foo=0;, in the corresponding output .s file will become as below:

MOVLW $00 ;1,n=1,2

MOVWF _foo+0

MOVWF _foo+1

Variable name foo is converted into _foo; please note that for local variable and parameter name do not

follow this conversion rule. Therefore, avoid spelling and maintaining problem in variable, parameter or

function name in asm expression. In C program, when using inline asm expression, it is suggested to use

format symbol to replace variable name, the usage such as __asm__(“MOVFW %v”, foo);. Similarly,

when function without input parameter is called, such as __asm__(“call _bar”), it is suggested to use

bar(); to replace directly.

Example1: Coding as full assembly code in C function:

char *strcpy(char *tar,char *src)

{

// Return tar value from op2 (0x24)

asm("movfw %o",tar);

asm("movwf op2"); // return tar pointer in op2 address (0x24)

asm("_strcpy_LOOP:"); // generate label name

// Read from source

asm("movfw %o",src); // Set offset of LOCAL name src

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 37 Rev 1.4, 2022/06/30

asm("call runtime_Ind_Read"); // call indirect read

asm("movwf op3"); // op3 to write to target

// Save to target

asm("movfw %o",tar); // Set offset of LOCAL name tar (strcpy_LOCAL+1)

asm("call runtime_Ind_Write"); // call indirect write

// Check end

asm("testz op3");

asm("btfsc STATUS, ZERO_FLAG");

asm("ret");

// Next

asm("incf %o,1",src);

asm("incf %o,1",tar);

asm("goto _strcpy_LOOP");

}

Example2: in *.C file call ASM

Main(void)

{

Asm(“CALL asmLabelDelay”); //in *.ASM file need “.export asmLabelDelay”

}

In Example 1 of appendix, listed series related expression function implementation using inline asm.

Restrictions on Declarators

Not all the possibilities allowed by the syntax of declarators are permitted. The following restrictions are

applied:

 Functions cannot return arrays or functions although they can return pointers. We

suggest using the following statements for example to return array in a function.

int* subFoo(int x);

void main(void)

{

……

int C[10],*p;

p = subFoo(value1);

for(i=0; i<10; ++i)

{

C[i] = *p;

++p;

}

….

}

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 38 Rev 1.4, 2022/06/30

// subFoo: assign array elements

int* subFoo(int x)

{

int B[10];

int i;

for(i=0; i<10; ++i)

B[i] = 10;

return B;

}

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 39 Rev 1.4, 2022/06/30

 No arrays of functions exist although arrays of pointers to functions can exist.

 A structure or union cannot contain a function. The below example of structure

declaration is not allowed:

struct ERROR_STRUCT

{

int i;

int y;

int foo(int var)

{

.....

return var;

};

};

Typedef

A typedef declaration lets you define your own identifiers that can be used in place of type specifiers

such as int, long, struct, and pointer. Declarations with the storage class specifier typedef do not reserve

storage. The names you define using typedef are not new data types, but synonyms for the data types or

combinations of data types they represent.

The following statements declare TLENGTH as a synonym for int and then use this typedef to declare

length, width, and height as integer variables:

typedef int TLENGTH;

LENGTH length, width, height;

The following declarations are equivalent to the above declaration:

Int length, width, height;

Similarly, typedef can be used to define object type such as structure, union. For example:

typedef struct {

int scruples;

int drams;

int grains;

} WEIGHT;

The structure WEIGHT can then be used in the following declarations:

WEIGHT chicken, cow, horse, whale;

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 40 Rev 1.4, 2022/06/30

Initialization

A declaration of an object or of an array of unknown size can specify an initial value for the identifier

being declared. The initializer is preceded by ‘=’ and consists of an expression or a list of values

enclosed in nested braces:

initializer: assignment-expression

 {initializer-list}

initializer-list: initializer

 initializer-list , initializer

Initialization of Aggregates

In TM57 C, objects that are struct or union types can be initialized, even if they have automatic storage

duration. union are initialized using the type of the first named element in their declaration. When the

declared variable is a struct or array, the initializer consists of a brace-enclosed, comma-separated list of

initializers for the members of the aggregate written in increasing subscript or member order.

Example:

union dc_u {

int d;

char *cptr;

};

union dc_u dc0 = { 4 };

A final abbreviation allows a char array to be initialized by a string literal. In this case, successive

characters of the string literal initialize the members of the array.

char msg[] = "Syntax error on line %s\n";

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 41 Rev 1.4, 2022/06/30

4. Expressions and Operators

This chapter introduces the various expressions and operators available in C. The sections describing

expressions and operators are presented roughly in order of precedence

Operator Precedence and Associativity Rules in C

Operators in C have rules of precedence and associativity that determine how operands group with

operators and expressions are evaluated. Precedence is the priority for grouping different types of

operators with their operands. Associativity is the left-to-right or right-to-left order for grouping

operands to operators that have the same precedence. An operator’s precedence is meaningful only if

other operators with higher or lower precedence are present. Expressions with higher-precedence

operators are evaluated first.

The following table lists the C language operators in order of precedence and shows the direction of

associativity for each operator (L-R means left-to-right, L-R means right-to-left):

Tokens (From High to Low

Priority)

Operators Class Associativity

Identifiers, constants, string

literal, parenthesized expres

sion

Primary expression Primary

() [] -> . Function calls, subscripting, in

direct selection, direct selection

Postfix L-R

++ -- Increment, decrement

(postfix)

Postfix L-R

++ -- increment, decrement (prefix) Prefix R-L

! ~ + - & sizeof *

Logical and bitwise NOT, unar

y plus and minus, address, size,

indirection

Unary R-L

(type) Cast Unary R-L

* / % Multiplicative Binary L-R

+ - Additive Binary L-R

<< >> Left shift, right shift Binary L-R

< <= > >= Relational comparisons Binary L-R

== != Equality comparisons Binary L-R

& Bitwise and Binary L-R

^ Bitwise exclusive or Binary L-R

| Bitwise inclusive or Binary L-R

&& Logical and Binary L-R

|| Logical or Binary L-R

? : conditional Ternary R-L

= += -= *= /= %= ^= &= |=

<<= >>=

Assignment Binary R-L

, Comma Binary L-R

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 42 Rev 1.4, 2022/06/30

Primary Expressions

The following are all considered as “primary expressions:”

Identifiers An identifier refers to an object is an lvalue. An identifier refers to a

function is a function designator.

Constants A constant’s type is determined by its form and value

String literals A string literal’s type is “array of char,” subject to Modification.

Parenthesized

expressions

A parenthesized expression’s type and value are identical to

those of the unparenthesized expression. The presence of

parentheses does not affect whether the expression is an

lvalue, rvalue, or function designator.

Postifix Expressions

Postfix operators are operators that appear after their operands. A postfix expression is a primary

expression, or a primary expression that contains a postfix operator. The following summarizes the

available postfix operators:

Operator Function Usage Example

member selection object . member Table.Color

member selection pointer -> member Table->Color

subscripting pointer [expr] ArrayOne[2]

function call expr (expr_list) Foo(a,b,c)

value construction type (expr_list) Long(intOne)

postfix increment lvalue -- Lindex--

postfix decrement lvalue ++ Lindex++

Array Subscripting Operator

A postfix expression followed by an expression in [] (square brackets) specifies an element of an array.

The expression within the square brackets is referred to as a subscript. The first element of an array has

the subscript zero. The expression code[10] refers to the 11th element of the array code.

In a multidimensional array, you can refer each element (in the order of increasing storage locations) by

incrementing the right-most subscript most frequently. For example, the following statement gives the

value 100 to each element in the array code[4][3][6]:

Int first, second, third;

for (first = 0; first < 4; ++first)

{

for (second = 0; second < 3; ++second)

{

for (third = 0; third < 6; ++third)

{

code[first][second][third] = 100;

}

}

}

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 43 Rev 1.4, 2022/06/30

Structure and Union References

A postfix expression followed by a dot followed by an identifier denotes a structure or union reference.

The syntax is as follows:

postfix-expression. identifier

The postfix expression must be a structure or a union, and the identifier must name a member of the

structure or union. The value is the value of the named member of the structure or union, and is an lvalue

if the first expression is an lvalue. The result has the type of the indicated member and the qualifiers of

the structure or union.

Indirect structure and Union References

The -> (arrow) operator is used to access structure or union members using a pointer. A postfix-

expression followed by an arrow (built from – and >) followed by an identifier is an indirect structure or

union reference. The syntax is as follows:

postfix-expression-> identifier

The postfix expression must be a pointer to a structure or a union, and the identifier must name a

member of that structure or union. The result is an lvalue referring to the named member of the structure

or union to which the postfix expression points. The result has the type of the selected member, and the

qualifiers of the structure or union to which the postfix expression points. Thus, the expression E1-

>MOS is the same as (*E1).MOS.

Postfix ++ and Postfix –

The syntax of postfix ++ and postfix -- is as follows:

postfix-expression ++

postfix-expression --

When postfix ++ is applied to a modifiable lvalue, the result is the value of the object referred to by the

lvalue. After the result is noted, the object is incremented by 1 (one). The type of the result is the same as

the type of the lvalue expression. The result is not an lvalue.

When postfix -- is applied to a modifiable lvalue, the result is the value of the object referred to by the

lvalue. After the result is noted, the object is decremented by 1 (one). The type of the result is the same

as the type of the lvalue expression. The result is not an lvalue.

For both postfix ++ and postfix -- operators, updating the stored value of the operand may be delayed

until the next sequence point.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 44 Rev 1.4, 2022/06/30

Unary Operators

A unary expression contains one operand and a unary operator. All unary operators have the same

precedence and have right- to-left associativity. A unary expression is therefore a postfix expression. As

indicated in the following descriptions, the usual arithmetic conversions are performed on the operands

of most unary expressions. The following table summarizes the operators for unary expressions:

Operator Function Usage

size of object in bytes sizeof (expr)

size of type in bytes sizeof type

prefix increment ++ lvalue

prefix decrement -- lvalue

complement ~ expr

not ! expr

unary minus - expr

unary plus + expr

address of & lvalue

indirection or dereference * expr

Address-of and Indirection Operators

The unary * operator means "indirection"; the cast expression must be a pointer, and the result is either

an lvalue referring to the object to which the expression points, or a function designator. The operand of

the unary & operator can be either a function designator or an lvalue that designates an object. If it is an

lvalue, the object it designates cannot be a bit field, and it cannot be declared with the storage class

register. The result of the unary & operator is a pointer to the object or function referred to by the lvalue

or function designator.

Unary + and Unary – Operators

The result of the unary - operator is the negative of its operand. The integral promotions are performed

on the operand, and the result has the promoted type and the value of the negative of the operand.

The + (unary plus) operator maintains the value of the operand. The operand can have any arithmetic

type or pointer type. The result is not an lvalue.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 45 Rev 1.4, 2022/06/30

Logical Negation ! and Bitwise Negation ~ Operators

The ! (logical negation) operator determines whether the operand evaluates to 0 (false) or nonzero (true).

The result of the logical negation operator ! is 1 if the value of its operand is zero, and 0 if the value of its

operand is nonzero.

The following two expressions are equivalent:

!right;

right == 0;

The ~ (bitwise negation) operator yields the bitwise complement of the operand. In the binary

representation of the result, every bit has the opposite value of the same bit in the binary representation

of the operand. The operand must have an integral type. The result has the same type as the operand but

is not an lvalue.

Example:

Suppose x represents the decimal value 5. The 8-bit binary representation of x is:

00000101 . The expression ~x yields the following result: 11111010

Prefix ++ and Prefix -- Operators

The prefix operators ++ and -- increment and decrement their operands. Their syntax is as follows:

++unary-expression

--unary-expression

The object referred to by the modifiable lvalue operand of prefix ++ is incremented. The expression

value is the new value of the operand but is not an lvalue. The expression ++x is equivalent to x += 1.

The prefix -- decrements its lvalue operand in the same way that prefix ++ increments it.

Sizeof Unary Operator

The sizeof operator yields the size in bytes of its operand, which can be an expression or the

parenthesized name of a type.

In TM57 C compiler, the size of a char is 1 (one), the size of an int is 2, and the size of a long is 4. Its

major use is in communication with routines such as storage allocators and I/O systems. The syntax of

the sizeof operator is as follows:

sizeof unary-expression

sizeof (type-name)

The sizeof operator may not be applied to:

 A bit field

 A function type

 An undefined structure or class

 An incomplete type (such as void)

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 46 Rev 1.4, 2022/06/30

Multiplicative Operators

The multiplicative operators *, /, and % group from left to right. The usual arithmetic conversions are

performed. The following is the syntax for the multiplicative operators:

multiplicative expression: cast-expression

multiplicative-expression * cast-expression

multiplicative-expression / cast-expression

multiplicative-expression % cast-expression

Operands of * and / must have arithmetic type. Operands of % must have integral type. The binary *

operator indicates multiplication, and its result is the product of the operands. The binary / operator

indicates division of the first operator (dividend) by the second (divisor). Integral division results in the

integer quotient whose magnitude is less than or equal to that of the true quotient, and with the same sign.

The binary % operator yields the remainder from the division of the first expression (dividend) by the

second (divisor). The operands must be integral.

Additive Operators

The additive operators + and - associate from left to right. The usual arithmetic conversions are

performed. The syntax for the additive operators is as follows:

additive-expression: multiplicative-expression

additive-expression + multiplicative-expression

additive-expression - multiplicative-expression

A pointer to an object in an array can be added to a value having integral type. The result is a pointer of

the same type as the pointer operand. The result refers to another element in the array, offset from the

original element by the amount of the integral value treated as a subscript. If the resulting pointer points

to storage outside the array, other than the first location outside the array, the result is undefined. The

compiler does not provide boundary checking on the pointers. For example, after the addition, ptr points

to the third element of the array:

int array[5];

int *ptr;

ptr = array+ 2;

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 47 Rev 1.4, 2022/06/30

Shift Operators

The bitwise shift operators move the bit values of a binary object. The bitwise shift operators << and >>

associate from left to right. Each operand must be an integral type. The integral promotions are

performed on each operand. The syntax is as follows:

shift-expression: additive-expression

shift-expression << additive-expression

shift-expression >> additive-expression

Operator Usage

<< Indicates the bits are to be shifted to the left.

>> Indicates the bits are to be shifted to the right.

For example, if left_op has the value 4019, the bit pattern (in 16-bit format) of left_op is:

0000111110110011

The expression left_op << 3 yields:

0111110110011000

Relational Operators (< > <= >=)

The relational operators compare two operands and determine the validity of a relationship. The type of

the result is int and has the values 1 if the specified relationship is true, and 0 if false. The result is not an

lvalue.

Operator Usage

<
Indicates whether the value of the left operand is less than the value of the right op

erand.

>
Indicates whether the value of the left operand is greater than the value of the right

operand.

<=
Indicates whether the value of the left operand is less than or equal to

the value of the right operand.

>=
Indicates whether the value of the left operand is greater than or equal

to the value of the right operand.

When the operands are pointers, the result is determined by the locations of the objects to which the

pointers refer. If the pointers do not refer to objects in the same array, the result is not defined. If two

pointers refer to the same object, they are considered equal.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 48 Rev 1.4, 2022/06/30

Equality Operators (== !=)

The equality operators, like the relational operators, compare two operands for the validity of a

relationship. The equality operators, however, have a lower precedence than the relational operators. The

type of the result is int and has the values 1 if the specified relationship is true, and 0 if false.

Operator Usage

== Indicates whether the value of the left operand is equal to the value of

the right operand.

!= Indicates whether the value of the left operand is not equal to the value of the righ

t operand.

Logical AND Operators (&&), Logical OR Operators (||)

The && (logical AND) operator indicates whether both operands are true. If both operands have nonzero

values, the result has the value 1. Otherwise, the result has the value 0. The type of the result is int. Both

operands must have an arithmetic or pointer type. The usual arithmetic conversions on each operand are

performed.

Expression Result

1 && 0 0

1 && 6 1

0 && 0 0

The || (logical OR) operator indicates whether either operand is true. If either of the operands has a

nonzero value, the result has the value 1. Otherwise, the result has the value 0. The type of the result is

int. Both operands must have an arithmetic or pointer type. The usual arithmetic conversions on each

operand are performed.

Expression Result

1 || 0 1

1 || 6 1

0 || 0 0

Conditional Operator

A conditional expression is a compound expression that contains a condition implicitly converted to bool

(operand1), an expression to be evaluated if the condition evaluates to true (operand2), and an expression

to be evaluated if the condition has the value false (operand3).

(operand1 ? operand2 : operand3)

The first operand is evaluated, and its value determines whether the second or third operand is evaluated:

 If the value is true, the second operand is evaluated.

 If the value is false, the third operand is evaluated.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 49 Rev 1.4, 2022/06/30

The result is the value of the second or third operand.

The following expression determines which variable has the greater value, y or z, and assigns the greater

value to the variable x:

x = (y > z) ? y : z;

The following is an equivalent statement:

if (y> z)

x = y ;

else

x = z;

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 50 Rev 1.4, 2022/06/30

5. Statements

A statement is a complete instruction to the computer, it is the smallest independent computational unit,

specifies an action to be performed. In most cases, statements are executed in sequence.

Expression Statements

Usually expression statements are expressions evaluated for their side effects, such as assignments or

function calls. A special case is the null statement, which consists of only a semicolon.

Examples of Expressions:

printf("Account Number: \n"); /* call to the printf */

marks = dollars * exch_rate; /* assignment to marks */

(difference < 0) ? ++losses : ++gain; /* conditional increment */

Block Statement

A block statement, or compound statement, lets you group any number of data definitions, declarations,

and statements into one statement. Declarations within compound statements have block scope. If any of

the identifiers in the declaration list were previously declared, the outer declaration is hidden for the

duration of the block, after which it resumes its force.

Selection Statements

Selection statements include if and switch statements. Selection statements choose one of a set of

statements to execute based on the evaluation of the expression. Theexpression is referred to as the

controlling expression.

selection-statement: if (expression) statement

if (expression) statement else statement

switch (expression) statement

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 51 Rev 1.4, 2022/06/30

if Statement

An if statement is a selection statement that allows more than one possible flow of control. You can

optionally specify an else clause on the if statement. If the test expression evaluates to a zero value and

an else clause exists, the statement associated with the else clause runs. If the test expression evaluates to

a non-zero value, the statement following the expression runs and the else clause is ignored.

When if statements are nested and else clauses are present, a given else is associated with the closest

preceding if statement within the same block.

Conditional expression

Statement block is executed if

condition is true (satisfied)

Statement block is executed if

condition is false (not satisfied)

true

false

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 52 Rev 1.4, 2022/06/30

switch Statement

A switch statement is a selection statement that lets you transfer control to different statements within the

switch body depending on the value of the switch expression. The switch expression must evaluate to an

integral or enumeration value. The body of the switch statement contains case clauses that consist of:

 A case label

 An optional default label

 A case expression

 A list of statements.

If the switch expression matches a case expression, the statements following the case expression are

processed until a break statement is encountered or the end of the switch body is reached.

Example:

char key;

…..

switch (key)

{

case ’+’:

add();

break;

case ’-’:

subtract();

break;

case ’*’:

multiply();

break;

case ’/’:

divide();

break;

default:

break;

}

Iteration Statements

Iteration statements execute the attached statement (called the body) repeatedly until the controlling

expression evaluates to zero. In the for statement, the second expression is the controlling expression.

The format is as follows:

iteration-statement: while (expression) statement

do statement while (expression) ;

for ([expression] ; [expression] ; [expression]) statement

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 53 Rev 1.4, 2022/06/30

while Statement

A while statement repeatedly runs the body of a loop until the controlling expression evaluates to a zero

value (0). A break, return, or goto statement can cause a while statement to end, even when the condition

does not evaluate to 0.

Conditional

expression

Statement block is executed

if condition is true (satisfied)

true

false

While loop statement

do Statement

Unlike the while statement, the controlling expression of a do-while statement is evaluated after each

execution of the body. Because of the order of processing, the statement is run at least once.

Statement block

Conditional

expression

false

true

Do while loop statement

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 54 Rev 1.4, 2022/06/30

for Statement

A for statement lets you do the following:

 Evaluate an expression before the first iteration of the statement (initialization)

 Specify an expression to determine whether or not the statement should be processed

(the condition)

 Evaluate an expression after each iteration of the statement (often used to increment for

each iteration)

 Repeatedly process the statement if the controlling part does not evaluate to 0.

A break, return, or goto statement can cause a for statement to end, even when the second expression

does not evaluate to 0. If you omit expression2, you must use a break, return, or goto statement to end

the for statement.

The first expression specifies initialization for the loop. The second expression is the controlling

expression, which is evaluated before each iteration. The third expression often specifies incrementation.

It is evaluated after each iteration.

Loop initialization

Conditional

expression

Statement block is executed if

condition is true (satisfied)

Loop control statement

true

false

For loop statement

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 55 Rev 1.4, 2022/06/30

Jump Statements

Jump statements cause unconditional transfer of control. The syntax is as follows:

jump-statement: goto identifier;

continue;

break;

return [expression]

goto Statement

A goto statement causes your program to be transferred unconditionally to the statement associated with

the label specified on the goto statement.

goto identifier;

The identifier must name a label located in the enclosing function. If the label has not yet appeared, it is

implicitly declared.

Because the goto statement can interfere with the normal sequence of processing, it makes a program

more difficult to read and maintain. Often, a break statement, a continue statement, or a function call can

eliminate the need for a goto statement.

Example:

int i=0;

Label:

if(i < 10)

goto Label;

continue Statement

The continue statement can appear only in the body of an iteration statement. It causes control to pass to

the loop-continuation portion of the smallest enclosing while, do, or for statement; that is, to the end of

the loop.

while (condition)

{

…………………

if(…)

 continue;

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 56 Rev 1.4, 2022/06/30

break Statement

A break statement lets you end an iterative (do, for, or while) statement or a switch statement and exit

from it at any point other than the logical end. A break may only appear on one of these statements. In an

iterative statement, the break statement ends the loop and moves control to the next statement outside the

loop.

while (condition)

{

…………………

…………………

break;

…………………

…………………

}

return Statement

A return statement ends the processing of the current function and returns control to the caller of the

function. The return statement cannot have an expression if the type of the current function is void. If

the end of a function is reached before the execution of an explicit return, an implicit return (with no

expression) is executed.

Labeled Statement

There are three kinds of labels: identifier, case, and default. Labeled statements have the following

syntax:

Labeled-statement: identifier : statement

case constant-expression : statement

default : statement

Any statement can have a label attached as a simple identifier. The scope of such a label is the current

function. Thus, labels must be unique within a function.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 57 Rev 1.4, 2022/06/30

Interrupt

In contrast to general-purpose computers, microcontrollers used in embedded systems often seek to

optimize interrupt latency over instruction throughput. Issues include both reducing the latency, and

making it be more predictable (to support real-time control). tenx microcontrollers provide a real time

(predictable, though not necessarily fast) response to events in the embedded system they are controlling.

The interruption implementation will produce a directly change to the timers and the counters. In TM57

C compiler, the interrupt format is:

Interrupt service

routine :

void interrupt <function(void)> @ <interrupt vector address>

The <interrupt vector address> means if there are many interrupt vectors in MCU, for example in

TM57FLA80 chip, there has following interrupts: Pin interrupts, Timer interrupt, PWM/CMP/ADC and

Wakeup Timer/USI interrupt. We give the sequence 0x01(TMR0) , 0x02(TMR1) , 0x03(TMR2) ,

0x04(PWM0) , 0x05(WKT) , 0x06(XINTA) , 0x07(XINTB) , 0x08(UART) , 0x09(SPI) to match IC

interrupt vector.

For TM57FLA80, the declaration of interrupt as below:

void interrupt TMR0_Intrerrupt(void) @ 0x01 {….}

void interrupt TMR1_Intrerrupt(void) @ 0x02 {….}

void interrupt TMR2_Intrerrupt(void) @ 0x03 {….}

void interrupt PWM0_Intrerrupt(void) @ 0x04 {….}

void interrupt WKT_Intrerrupt(void) @ 0x05 {….}

void interrupt XINTA_Intrerrupt(void) @ 0x06 {….}

void interrupt XINTB_Intrerrupt(void) @ 0x07 {….}

void interrupt UART_Intrerrupt(void) @ 0x08 {….}

void interrupt SPI_Intrerrupt(void) @ 0x09 {….}

Interrupt Service Routine must not have any parameter; otherwise the compiler will generate error.

Example:

//RPLANE

char OPTION @0x02:RPLANE;

//FPLANE

char INTE1 @0x08:FPLANE;

char INTF1 @0x09:FPLANE;

char TIMER0 @0x01:FPLANE;

char TM1CTRL @0x0D:FPLANE;

int temp_b=0;

unsigned char Timer_Buf=0xF0;

main()

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 58 Rev 1.4, 2022/06/30

{

char c=0;

int a=0;

TIMER0=Timer_Buf;

OPTION=0;

INTE1=0x10; // Enable Timer0 Interrupt

for(c=0;;c++)

++a;

}

void interrupt TM0_Interrupt(void)@0x01

{

TIMER0=Timer_Buf;

INTF1=0;

++temp_b;

}

In the above example, after setting related setting for TMR0 Interrupt, then use an infinite loop to let

TMR0 overflow. It will execute interrupt service.

Note: Different from the usage of general function, the interruption implementation will execute automatically

when the interrupt condition has been matched.

In actual application, after interrupt is triggered and before executing interrupt service routine, operation

related Data RAM must be stored in advance (especially when this interrupt service routine will change

the operation of related data). In this way, after the interrupt service routine, the operation data can be

restored. After interrupt is executed, control process can still execute correctly and continuously, means

to ensure that the operation result will not be affected by the interrupt execution and cause errors.

Please note that ISR_SaveData and ISR_RestoreData assembly subroutines have been implemented in all

TM57 series single chip runtime library, user can call the two subroutines mentioned above according to

the actual application. Besides, to avoid the execution time of the two subroutine mentioned above is too

long, we provided ISR_SaveData_5, ISR_RestoreData_5, and ISR_SaveData_10, ISR_RestoreData_10

for another choice. Where ISR_SaveData_10 and ISR_RestoreData_10 are used for R-Plane data register.

The differences among ISR_SaveData, ISR_SaveData_5 and ISR_SaveData_10 is mainly in the different

type of operation data saved (later will be explained in detail). According to the actual computational

complexity, user can use interrupt protection subroutine to save Data RAM more efficiently.

In order not to affect current saved memory data content, when interrupt occurs, ISR_SaveData,

ISR_SaveData_5, and ISR_SaveData_10 will store the operation data beforehand in the end of the

memory address. According to the whole project and function routine which are included, linker will

calculate all operation register or stack pointer register used in the program. And according to this

amount, calculated from the last address of the address space needed, stored orderly the operation

register, status register, op1~op4 or stkptr data contents, and stored in the end of the memory.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 59 Rev 1.4, 2022/06/30

According to the single chip characteristics, memory location of data register can be divided into three

types: (1) R-Plane, (2) F-Plane Bank0, (3) F-Plane Bank1. According to the TM57 series chip features,

the detail implementation will be described below.

(1) R-Plane

Status value and expression data is stored in the end of the R-Plane RAM memory address. For example,

in TM57FLA80, assume the expression data to be stored include: working register, status register, and

op1, then the data stored address is as follows:

 Storage Address

Working register 0xFA

Status register 0xFB

op1 0xFC~0xFF

TM57 series chips which store operation data in R-Plane are as below, with the common features as

follows

 R-Plane memory is readable and writable

R-Plane final address

TM57FE80 0xFF

TM57FLA80 0xFF

TM57ML40 0xFF

(2) F-Plane Bank 0

Status value and expression data is stored in the end of the F-Plane Bank0 memory address. For example,

in TM57PE11, assume the expression data to be stored include: working register, status register, and op1,

then the stored address is as follows:

 Storage Address

Working register 0x4A

Status register 0x4B

op1 0x4C~0x4F

TM57 series chips which store operation data in F-Plane Bank0 are as below, with the common features

as follows

 F-Plane contains only one Bank

 R-Plane only allows write but not read

F-Plane bank0 final address

TM57ME20 0x7F

TM57P11 0x4F

TM57P12 0x4F

TM57PA10 0x5F

TM57PA10A 0x5F

TM57PE10 0x4F

TM57PE11 0x4F

TM57PE11A 0x4F

TM57PE12 0x4F

TM57PE12A 0x4F

TM57RE12 0x4F

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 60 Rev 1.4, 2022/06/30

(3) F-Plane Bank 1

Status value and expression data is stored in the end of the F-Plane Bank1 memory address. For example,

in TM57PA40, assume the expression data to be stored include: working register, status register, and op1,

then the data stored address is as follows:

 Storage Address

Working register 0x7A

Status register 0x7B

op1 0x7C~0x7F

TM57 series chips which store operation data in F-Plane Bank1 are as below, with the common features

as follows

 F-Plane contain two Banks

 R-Plane only allows write but not read

F-Plane bank1 final address

TM56FA40 0x7F

TM57FA40 0x7F

TM57PA40 0x7F

TM57PA20 0x7F

TM57PA20A 0x7F

TM57PE40 0x7F

TMU3130 0x7F

TMU3131 0x7F

TMU3132 0x7F

Note: Although the R-Plane memory of TMU3130, TMU3131 and TMU3132 is readable and writable, but it is

conflicted with USB read-write address. Therefore, the expression data storage address is changed to F-Plane

Bank1.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 61 Rev 1.4, 2022/06/30

ISR_SaveData, ISR_RestoreData

Register content saved in ISR_SaveData, is the max register content needed in all program computation

(not the used register after interrupt is triggered). Therefore, for more efficient usage of the limited

memory space, user can design store/restore function according to actual interrupt application, or using

ISR_SaveData_5 or ISR_SaveData_10 function to store important register content to response the real

register usage condition.

Assume only op1~op2 are used in program when interrupt is triggered. But all project program can use

up to op1~op4. Executing runtime library ISR_SaveData() will store working register, status register and

op1~op4, user can define function which is similar to ISR_SaveData() (or using ISR_SaveData_5 or

ISR_SaveData_10) to store working register, status register and op1~op2 to save memory space. When

user define store and restore function, it is necessary to remind user to pay attention to the following rule

when coding:

 Please follow single chip characteristic and refer to every chip applicable condition to

decide the storage memory location, for example, TM57FA40 is supposed to store in

Bank1 of F-Plane; while TM57FLA80 is in R-Plane.

 When status and computation data are saved in R-Plane and Bank0 of F-Plane, it is not

necessary to consider switching and data copy problem between Bank when store and

restore data. The only thing is when it is stored in Bank1 of F-Plane, user needs to pay

attention about those problems (because status and computation register is stored in

Bank0 of F-Plane as default setting).

Below example is for user’s reference about C code of interrupt trigger and interrupt service routine,

using ISR_SaveData() and ISR_RestoreData() to store and restore related Data RAM computational

(Note: Calling ISR_SaveData_5, ISR_RestoreData_5, ISR_SaveData_10 and ISR_RestoreData_10 in C

code is using the same way).

C code: counter_Function() is the function which will be executed in interrupt service routine.

void predivider_initial(void)

void counter_Function(void);

// Function prototype of asm codes

void ISR_SaveData(void);

void ISR_RestoreData(void);

main()

{

 predivider_initial();

while(1)

 {

 ….. // do something

 }

}

void interrupt counter_Interrupt(void) @ 0x1c

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 62 Rev 1.4, 2022/06/30

{

 ….

 ISR_SaveData(); // Save data

 counter_Function();

 ISR_RestoreData(); // Restore data

 ….

}

// Initial process

void predivider_initial(void)

{

 ….. // initialization process

}

void counter_Function(void)

{

 ….. // do something

}

Below is the implementation assembly code of ISR_SaveData and ISR_RestoreData in runtime library to

store and restore computational related Data RAM, which is divided into three types: R-Plane, F-Plane

Bank0 and F-Plane Bank1, described with examples below:

 R-Plane: Below is TM57FLA80 as example

.autoimport on

.export _ISR_SaveData,_ISR_RestoreData

SAVEADDR = __RPLANE_ADDRESS_MAX__ - (1 + __OPXSTKPTRSIZE__ +

__STKPTRSAVESIZE__)

SAVESTKPTRADDR = (__RPLANE_ADDRESS_MAX__- __STKPTRSAVESIZE__) + 1

.proc _ISR_SaveData

 MOVFW FSR

 MOVWR SAVEADDR

 MOVFW RSR

 MOVWR SAVEADDR+1

 MOVFW op1

 MOVWR SAVEADDR+2

 MOVLW op1+1

 MOVWF FSR

 MOVLW SAVEADDR+3

 MOVWF RSR

 MOVLW (__OPXSTKPTRSIZE__ - 1)+__STKPTRSAVESIZE__

 movwf op1 ; counter

 addwf FSR,1

 addwf RSR,1

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 63 Rev 1.4, 2022/06/30

loop:

 decf RSR,1

 decf FSR,1

 movfw R0

 MOVWR R0

 decfsz op1

 goto loop

 RET

.endproc

.proc _ISR_RestoreData

 MOVLW SAVEADDR+3

 MOVWF RSR

 MOVLW op1+1

 MOVWF FSR

 MOVLW (__OPXSTKPTRSIZE__ - 1)+__STKPTRSAVESIZE__

 movwf op1 ; counter

 addwf FSR,1

 addwf RSR,1

loop:

 decf FSR,1

 decf RSR,1

 MOVRW R0

 movwf R0

 decfsz op1

 goto loop

 MOVRW SAVEADDR+2

 MOVWF op1

 MOVRW SAVEADDR+1

 MOVWF RSR

 MOVRW SAVEADDR

 MOVWF FSR

 RET

.endproc

 F-Plane Bank0: below is TM57PA10 as example

.autoimport on

.export _ISR_SaveData,_ISR_RestoreData

#define _BANK_FLAG 5

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 64 Rev 1.4, 2022/06/30

 SAVEADDR = __FPLANE_ADDRESS_MAX__ -(1 + 1 + __OPXSTKPTRSIZE__ +

__STKPTRSAVESIZE__)

 SAVESTKPTRADDR = __FPLANE_ADDRESS_MAX__-(__STKPTRSAVESIZE__)+1

.proc _ISR_SaveData

 MOVWF SAVEADDR

 MOVFW STATUS

 MOVWF SAVEADDR+1

 MOVFW op1

 MOVWF SAVEADDR+2

 MOVFW op1+1

 MOVWF SAVEADDR+3

 MOVFW FSR

 MOVWF SAVEADDR+4

 MOVLW (__OPXSTKPTRSIZE__ - 2)+__STKPTRSAVESIZE__

 movwf op1

 testz op1

 btfsc STATUS,ZERO_FLAG

 ret

loop:

 movlw op1+1

 movwf FSR

 movfw op1

 addwf FSR

 movfw R0

 movwf op1+1

 movlw SAVEADDR+4

 movwf FSR

 movfw op1

 addwf FSR

 movfw op1+1

 movwf R0

 decfsz op1

 goto loop

 RET

.endproc

.proc _ISR_RestoreData

 MOVLW (__OPXSTKPTRSIZE__ - 2)+__STKPTRSAVESIZE__

 movwf op1

 testz op1

 btfsc STATUS,ZERO_FLAG

 goto L0

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 65 Rev 1.4, 2022/06/30

loop:

 movlw SAVEADDR+4

 movwf FSR

 movfw op1

 addwf FSR

 movfw R0

 movwf op1+1

 movlw op1+1

 movwf FSR

 movfw op1

 addwf FSR

 movfw op1+1

 movwf R0

 decfsz op1

 goto loop

L0:

 MOVFW SAVEADDR+4

 MOVWF FSR

 MOVFW SAVEADDR+2

 MOVWF op1

 MOVFW SAVEADDR+3

 MOVWF op1+1

 MOVFW SAVEADDR+1

 MOVWF STATUS

 MOVFW SAVEADDR

 RET

.endproc

 F-Plane Bank1: below is TM57PA40 as example

.autoimport on

.export _ISR_SaveData,_ISR_RestoreData

#define _BANK_FLAG 5

SAVEADDR = (__FPLANE_ADDRESS_MAX__-0x80) - (2 + __OPXSTKPTRSIZE__ +

__STKPTRSAVESIZE__)

SAVESTKPTRADDR = (__FPLANE_ADDRESS_MAX__-

((__BANK1_OFFSET_VALUE__-0x80)+__STKPTRSAVESIZE__))+1

.fixcode +

.proc _ISR_SaveData

 BTFSC STATUS,_BANK_FLAG

 GOTO BANK1

 BSF STATUS,_BANK_FLAG

 MOVWF SAVEADDR

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 66 Rev 1.4, 2022/06/30

 BCF STATUS,_BANK_FLAG

 goto B0

BANK1:

 MOVWF SAVEADDR

B0:

 MOVFW STATUS

 BSF STATUS,_BANK_FLAG

 MOVWF SAVEADDR+1

 MOVFW op1

 MOVWF SAVEADDR+2

 MOVFW op1+1

 MOVWF SAVEADDR+3

 MOVFW FSR

 MOVWF SAVEADDR+4

 MOVLW (__OPXSTKPTRSIZE__ - 2)+__STKPTRSAVESIZE__

 movwf op1

 testz op1

 btfsc STATUS,ZERO_FLAG

 ret

loop:

 movlw op1+1

 BCF STATUS,_BANK_FLAG

 movwf FSR

 movfw op1

 addwf FSR

 movfw R0

 movwf op1+1

 movlw SAVEADDR+4

 BSF STATUS,_BANK_FLAG

 movwf FSR

 movfw op1

 addwf FSR

 movfw op1+1

 movwf R0

 decfsz op1

 goto loop

 RET

.endproc

.proc _ISR_RestoreData

 MOVLW (__OPXSTKPTRSIZE__ - 2)+__STKPTRSAVESIZE__

 movwf op1

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 67 Rev 1.4, 2022/06/30

 testz op1

 btfsc STATUS,ZERO_FLAG

 goto SAVE_FSR

loop:

 movlw SAVEADDR+4

 movwf FSR

 movfw op1

 addwf FSR

 BSF STATUS,_BANK_FLAG

 movfw R0

 movwf op1+1

 movlw op1+1

 movwf FSR

 movfw op1

 addwf FSR

 movfw op1+1

 BCF STATUS,_BANK_FLAG

 movwf R0

 decfsz op1

 goto loop

SAVE_FSR:

 BSF STATUS,_BANK_FLAG

 MOVFW SAVEADDR+4

 MOVWF FSR

RES_OP1:

 MOVFW SAVEADDR+2

 MOVWF op1

 MOVFW SAVEADDR+3

 MOVWF op1+1

W_S:

 MOVFW SAVEADDR+1

 MOVWF STATUS

 BTFSS STATUS,_BANK_FLAG

 GOTO L0

 MOVFW SAVEADDR

 RET

L0:

 BSF STATUS,_BANK_FLAG

 MOVFW SAVEADDR

 BCF STATUS,_BANK_FLAG

 RET

.endproc

.fixcode –

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 68 Rev 1.4, 2022/06/30

Definitions of variables in the program:

Variables Definition

__RPLANE_ADDRESS_MAX__ The final address of R-Plane memory.

__FPLANE_ADDRESS_MAX__ The final address of F-Plane memory.

__OPXSTKPTRSIZE__ The linker calculates the whole memory size which is

occupied by the computation register or stack pointer

register in project and including function library code.

__BANK1_OFFSET_VALUE__ F-Plane Bank1 relative to Bank0, offset value of

Bank1 common data block.

__STKPTRSAVESIZE__ Compiler reserves memory storage stkptr size during

compilation according to computational complexity,

the default value is 0.

Note: Please be careful with below two restrictions in interrupt implementation

1. Nested interrupt routine call is not allowed (i.e. enter another interrupt routine before leaving an interrupt

routine)

2. If interrupt routine needs to declare variable to do calculation, it is suggested not to declare as local

variable, but global variable, in order to save stack space.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 69 Rev 1.4, 2022/06/30

ISR_SaveData_5, ISR_RestoreData_5, ISR_SaveData_10, ISR_RestoreData_10

Some tenx chips have built-in auto saving function, this function before and after interrupt routine

execution will auto store and restore the content of working register and status register. User can simply

enable below flags to trigger the auto saving function.

Chip Name Flag address, bit

TM57ME20 RPLANE 0x0B,7

TM57FLA80 RPLANE 0x10,4

TM57ML40 RPLANE 0x10,5

TM57FE80 RPLANE 0x07,5

TMU3130 RPLANE 0x07,5

TMU3131 RPLANE 0x07,5

TM56FA40 RPLANE 0x0B,2

The register contents of auto saving function and interrupt protection program are repetitive (i.e.

repetitive working register and status register), therefore interrupt protection program implements in

above chip will be able to complete its job in a simpler way.

Note: before starting interrupt protection program in the chip with auto saving function, interrupt protection

function will trigger auto saving function, then do the protection action. Therefore, during interrupt

protection program execution, do not disable auto saving function manually, otherwise, it will cause

incomplete storage protection action.

Below is implementation assembly code in runtime library : ISR_SaveData_5, ISR_RestoreData_5,

ISR_SaveData_10 and ISR_RestoreData_10 store and restore operations Data RAM. We describe the

implementation code which stores data into F-Plane or R-Plane according to whether the chips have auto

saving function.

 R-Plane:

Chip which stores interrupt protection data into R-Plane mostly contains auto saving function. Therefore,

according to the saved register content and different amount, interrupt protection assembly code is

divided into two types.

Store

op1, op1+1, op3+2

Store

op1, op1+1, op1+2, op1+3, op2, op3, op3+1, op3+2

.autoimport on

.export _ISR_SaveData_5,_ISR_RestoreData_5

SAVEADDR5 = __RPLANE_ADDRESS_MAX__-

(1 + 1)

;***

; save op1,op1+1,op3+2

;***

.proc _ISR_SaveData_5

 MOVFW op1

 MOVWR SAVEADDR5

.autoimport on

.export _ISR_SaveData_10,_ISR_RestoreData_10

 SAVEADDR10 = __RPLANE_ADDRESS_MAX__-

(1 + 6)

;***

; save op1,op1+1,op1+2,op1+3,op2,op3,op3+1,op3+2

;***

.proc _ISR_SaveData_10

 MOVFW op1

 MOVWR SAVEADDR10+2

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 70 Rev 1.4, 2022/06/30

Store

op1, op1+1, op3+2

Store

op1, op1+1, op1+2, op1+3, op2, op3, op3+1, op3+2

 MOVFW op1+1

 MOVWR SAVEADDR5+1

 MOVFW op3+2

 MOVWR SAVEADDR5+2

 RET

.endproc

.proc _ISR_RestoreData_5

 MOVRW SAVEADDR5

 MOVWF op1

 MOVRW SAVEADDR5+1

 MOVWF op1+1

 MOVRW SAVEADDR5+2

 MOVWF op3+2

 RET

.endproc

 MOVFW op1+1

 MOVWR SAVEADDR10+3

 MOVFW op1+2

 MOVWR SAVEADDR10+4

 MOVFW op1+3

 MOVWR SAVEADDR10+5

 MOVFW op2

 MOVWR SAVEADDR10+6

 MOVFW op3

 MOVWR SAVEADDR10+7

 MOVFW op3+1

 MOVWR SAVEADDR10+8

 MOVFW op3+2

 MOVWR SAVEADDR10+9

 RET

.endproc

.proc _ISR_RestoreData_10

 MOVRW SAVEADDR10+9

 MOVWF op3+2

 MOVRW SAVEADDR10+8

 MOVWF op3+1

 MOVRW SAVEADDR10+7

 MOVWF op3

 MOVRW SAVEADDR10+6

 MOVWF op2

 MOVRW SAVEADDR10+5

 MOVWF op1+3

 MOVRW SAVEADDR10+4

 MOVWF op1+2

 MOVRW SAVEADDR10+3

 MOVWF op1+1

 MOVRW SAVEADDR10+2

 MOVWF op1

 ; MOVRW SAVEADDR10+1

 ; MOVWF STATUS

 ; MOVRW SAVEADDR10

 RET

.endproc

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 71 Rev 1.4, 2022/06/30

 F-Plane Bank0:

With Auto Saving Function

Store: op1, op1+1, op3+2
Without Auto Saving Function

Store: W, Status, op1, op1+1, op3+2

.autoimport on

.export _ISR_SaveData_5,_ISR_RestoreData_5

#define _BANK_FLAG 5

 SAVEADDR5 = 0x7D

.proc _ISR_SaveData_5

 MOVFW op1

 MOVWF SAVEADDR5+0

 MOVFW op1+1

 MOVWF SAVEADDR5+1

 MOVFW op3+2

 MOVWF SAVEADDR5+2

 RET

.endproc

.proc _ISR_RestoreData_5

 MOVFW SAVEADDR5

 MOVWF op1

 MOVFW SAVEADDR5+1

 MOVWF op1+1

 MOVFW SAVEADDR5+2

 MOVWF op3+2

; MOVFW SAVEADDR5+1

; MOVWF STATUS

; MOVFW SAVEADDR5

 RET

.endproc

.autoimport on

.export _ISR_SaveData_5,_ISR_RestoreData_5

#define _BANK_FLAG 5

 SAVEADDR5 = 0x5B

.proc _ISR_SaveData_5

 MOVWF SAVEADDR5 ; save W

 MOVFW STATUS

 MOVWF SAVEADDR5+1

 MOVFW op1

 MOVWF SAVEADDR5+2

 MOVFW op1+1

 MOVWF SAVEADDR5+3

 MOVFW op3+2

 MOVWF SAVEADDR5+4

 RET

.endproc

.proc _ISR_RestoreData_5

 MOVFW SAVEADDR5+2

 MOVWF op1

 MOVFW SAVEADDR5+3

 MOVWF op1+1

 MOVFW SAVEADDR5+4

 MOVWF op3+2

 MOVFW SAVEADDR5+1

 MOVWF STATUS

 MOVFW SAVEADDR5

 RET

.endproc

Note: Command SAVEADDR5 = 0x##, where the ## value changes according to actual RAM size of the chip.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 72 Rev 1.4, 2022/06/30

 F-Plane Bank1:

With Auto Saving Function Without Auto Saving Function

.autoimport on

.export _ISR_SaveData_5,_ISR_RestoreData_5

#define _BANK_FLAG 5

 SAVEADDR5 = 0x7D

.fixcode +

.proc _ISR_SaveData_5

 BTFSC STATUS,_BANK_FLAG

 GOTO B1

 BSF STATUS,_BANK_FLAG

 MOVFW op1

 MOVWF SAVEADDR5+0

 MOVFW op1+1

 MOVWF SAVEADDR5+1

 BCF STATUS,_BANK_FLAG

 MOVFW op3+2

 BSF STATUS,_BANK_FLAG

 MOVWF SAVEADDR5+2

 BCF STATUS,_BANK_FLAG

 ret

B1:

 MOVFW op1

 MOVWF SAVEADDR5

 MOVFW op1+1

 MOVWF SAVEADDR5+1

 BCF STATUS,_BANK_FLAG

 MOVFW op3+2

 BSF STATUS,_BANK_FLAG

 MOVWF SAVEADDR5+2

 RET

.endproc

.proc _ISR_RestoreData_5

 BSF STATUS,_BANK_FLAG

 MOVFW SAVEADDR5

 MOVWF op1

 MOVFW SAVEADDR5+1

 MOVWF op1+1

 MOVFW SAVEADDR5+2

 BCF STATUS,_BANK_FLAG

 MOVWF op3+2

 RET

.autoimport on

.export _ISR_SaveData_5,_ISR_RestoreData_5

#define _BANK_FLAG 5

 SAVEADDR5 = 0x7B

.fixcode +

.proc _ISR_SaveData_5

 BTFSC STATUS,_BANK_FLAG

 GOTO B1

 BSF STATUS,_BANK_FLAG

 MOVWF SAVEADDR5 ; save W

 BCF STATUS,_BANK_FLAG

 MOVFW STATUS

 BSF STATUS,_BANK_FLAG

 MOVWF SAVEADDR5+1

 MOVFW op1

 MOVWF SAVEADDR5+2

 MOVFW op1+1

 MOVWF SAVEADDR5+3

 BCF STATUS,_BANK_FLAG

 MOVFW op3+2

 BSF STATUS,_BANK_FLAG

 MOVWF SAVEADDR5+4

 BCF STATUS,_BANK_FLAG

 ret

B1:

 MOVWF SAVEADDR5

 MOVFW STATUS

 MOVWF SAVEADDR5+1

 MOVFW op1

 MOVWF SAVEADDR5+2

 MOVFW op1+1

 MOVWF SAVEADDR5+3

 BCF STATUS,_BANK_FLAG

 MOVFW op3+2

 BSF STATUS,_BANK_FLAG

 MOVWF SAVEADDR5+4

 RET

.endproc

.proc _ISR_RestoreData_5

 BSF STATUS,_BANK_FLAG

 MOVFW SAVEADDR5+2

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 73 Rev 1.4, 2022/06/30

With Auto Saving Function Without Auto Saving Function

.endproc

.fixcode -

 MOVWF op1

 MOVFW SAVEADDR5+3

 MOVWF op1+1

 MOVFW SAVEADDR5+4

 BCF STATUS,_BANK_FLAG

 MOVWF op3+2

 BSF STATUS,_BANK_FLAG

 MOVFW SAVEADDR5+1

 MOVWF STATUS

 BTFSS STATUS,_BANK_FLAG

 GOTO L0

 MOVFW SAVEADDR5

 RET

L0:

 BSF STATUS,_BANK_FLAG

 MOVFW SAVEADDR5

 BCF STATUS,_BANK_FLAG

 RET

.endproc

.fixcode -

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 74 Rev 1.4, 2022/06/30

6. Preprocessors

The preprocessor is a program that is invoked by the compiler to process code before compilation.

Commands for that program are lines of the source file beginning with the character #, which

distinguishes them from lines of source program text. The preprocessed source code, an intermediate file,

must be a valid C program, because it becomes the input to the compiler.

Preprocessor directives and the related subject of macro expansion are discussed in this section. After an

overview of preprocessor directives, the topics covered include textual macros, file inclusion, conditional

compilation directives, and pragmas.

The preprocessor is controlled by the following directives:

Directive Description

#define Defines a macro

#undef Removes a preprocessor macro definition.

#include Inserts text from another source file.

#if Conditionally suppresses portions of source code, depending on the result of a c

onstant expression.

#ifdef Conditionally includes source text if a macro name is defined.

#ifndef Conditionally includes source text if a macro name is not defined.

#else Conditionally includes source text if the previous #if, #ifdef, #ifndef,

or #elif test fails.

#elif #ifndef, or #elif test fails, depending on the value of a constant

expression.

#endif Ends conditional text.

#pragma Set compiler status or to order compiler to finish some certain actions.

Macro Definition

A preprocessor define directive directs the preprocessor to replace all subsequent occurrences of a macro

with specified replacement tokens.

Non-parameter Macro Definition

The #define directive can contain an object-like definition or a function-like definition.

#define versus const_value

The #define directive can be used to create a name for a numerical, character, or string constant, whereas

a const object of any type can be declared.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 75 Rev 1.4, 2022/06/30

Definition of Macro with Parameters

A macro argument can be empty (consisting of zero preprocessing tokens).

For example,

#define SUM(a,b,c) a + b + c

SUM(1,2,3)

// 1 is substituted for a, 2 is substituted for b, and 3 is substituted for c. */

Files Include

A preprocessor include directive causes the preprocessor to replace the directive with the contents of the

specified file. A preprocessor #include directive has the following format:

 #include <file1.h>

 Or

 #include “file1.h”

For example:

#include <july.h>

Conditional Compilation

A preprocessor conditional compilation directive causes the preprocessor to conditionally suppress the

compilation of portions of source code. These directives test a constant expression or an identifier to

determine which tokens the preprocessor should pass on to the compiler and which tokens should be

bypassed during preprocessing. The directives are:

 #if

 #ifdef

 #else

 #ifndef

 #elif

 #endif

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 76 Rev 1.4, 2022/06/30

Pragma Directive (#pragma)

This directive is used to specify different options to the compiler. These options are specific for the

platform and the compiler you use. If the compiler does not support a specific argument for #pragma, it

ignores the #pragma directive without any error or warning message.

 #pragma tableromaddr

This pragma allows you to set the starting TABLE ROM address of global const variable which behind

this pragma statement, and require you pass off to turn the option off. The specification is as follows:

declaration: #pragma tableromaddr (const_variable_start_address)

 #pragma tableromaddr (off)

 #pragma tableromdt

This pragma allows you to pointer value to global constant variable ,and use dt format access in ROM,if

not enabled ,use retlw to access.(support since 0.5.7 version)

declaration: #pragma tableromdt (on)

Const int value=0x3FFF; // declare a constant global variable, the following table use the difference

between dt and retlw of constant global variables.

dt Retlw

advantage:

occupies the size of 1 ROM,which is conducive to the use

of variables.

shortcoming:

the dt maximum value is 0x3FFF,only support int、

unsigned int、short、unsigned short .

Int、short range:-8191~8191

unsigned int 、unsigned short range:0~16383

supports specific IC use

advantage:

Constant global variable scope is the same as the

local variable.

Char:-128~128

Unsigned char:0~255

Int、short:-32767~32767

Unaigned int、unsigned short:0~65534

Long:- 2147483647~2147483647

Unsigned long:0~4294967295

shortcoming:

when using the int type ,will occupy the size of 2

ROMs

Long type will occupy the size of 4 ROMs,will take

up more ROM space.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 77 Rev 1.4, 2022/06/30

dt Retlw

Support tableromdt IC:

TM57ME16

TM57ME16AS

TM57ME18

TM57MA25

TM57MA28

TM57MA28B

TM57MA29

TM57MA29C

TM57MA21B

TM57MA15

TM57MA16

TM57MA1668

TM57MA1672

TM57M5526C

TM57M5536C

TM57MA17

TM57MA18

TM57P8620

TM57P8625

TM57P8640

TM57P8645

TM57M5620

TM57M5625

TM57M5640

TM57M5645

TM57M5610

TM57M5615

TM57ME15B

TM57ME15CG

TM57MA45

TM57MA46

TM57MA33

TM57M5541

TM57M5551

Support Retlw introduction IC:All

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 78 Rev 1.4, 2022/06/30

7. Mix of C and Assembly Code in C Project

Basic Concept

Generally, there have two conditions which will call assembly function in a C application program.

(1) Some special instruction operations of the single chip, which cannot be described using

the standard C language syntax.

(2) To implement single chip system that emphasizes immediate controllability, assembly

code must be referred when it is necessary to implement portion of the code to improve

the efficiency of the program execution.

In this way, there will be C and assembly hybrid programming condition occurs in one C project. In this

section, we will discuss the basic way of each hybrid programming and experience sharing, and please

refer to “Appendix” section for the example to learn more about the actual application.

In TM57 C Compiler, the mixed mechanism between C code and assembly code is done in intuitive way.

The descriptions are divided into three parts as shown below:

1. Embed inline assembly instruction directly in C program (please refer to “asm

Declarators” section)

2. Call assembly function in C program

 The C code in *.c file uses function prototype to declare the function which is

exported from an assembly code. The exceptional condition is when no parameter is

needed in assembly function, user can optionally not declare assembly function

prototype in C program.

 Function which are exported using keyword export in assembly code in *.asm file

include two types:

 (1) Export label

 (2) Assembly function which is defined using .proc / .endproc keywords

3. Call C function in assembly code:

 Declare and define function of C code in *.c file

 Call C function in *.asm file using call _FunctionName assembly code

If assembly function returns value, the return value will be stored in register op2.

After C and assembly code are compiled, the related C code, assembly program file and related program

library must be added into project manager tree, for project compiling. The function call between C code

and assembly code is divided into with passing parameter or without passing parameter, which will be

described in Appendix orderly with the example.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 79 Rev 1.4, 2022/06/30

C Program Calls Assembly Function without Passing Parameter

If no parameters need to be passed between C and Assembly programming call, please refer to Example

2.

C Program Calls Assembly Function with Passing Parameter

When C program calls assembly function with passing parameter, the order of the passing parameter in

assembly function is “from right to left” order, and the addressing order of the local variable declaration

in assembly function is “from bottom to top” order. Parameter and variable addressing in assembly

language is relative. Please refer to below example for the description:

C program caller:

int Sum (int, int*);

main()

{

int a=255,b=20,c=0;

c= Sum (a,&b);

}

Assembly function callee:

.autoimport on

.debuginfo on

.export _Sum

.declfunc Sum(2,3)

.CODE

.proc _Sum

MOVFW Sum_PARAM+1

MOVWF Sum_LOCAL

MOVFW Sum _PARAM+2

MOVWF Sum_LOCAL +1

MOVFW Sum_PARAM+0

MOVWF FSR

MOVFW $00

ADDWF Sum_LOCAL,1

BTFSC STATUS,0

INCF Sum_LOCAL +1,1

INCF FSR,1

MOVFW $00

ADDWF Sum_LOCAL +1,1

MOVFW Sum_LOCAL

MOVWF op2

MOVFW Sum_LOCAL +1

MOVWF op2+1

RET

.endproc

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 80 Rev 1.4, 2022/06/30

In .declfunc Sum (2,3), the first parameter is the memory size occupied by local variable; while the

second parameter is the size of the passing parameter (in byte unit). From above example, according to

the data type of passing parameter, calculate the memory size as 3 = 2 (int) + 1(char*). Local variable is

used to store temporarily the input value of int, the memory size is 2 (please refer to Section Declarations

for data type size).

Local variable naming rule in assembly function

FunctionName_LOCAL

Assembly

Sum_LOCAL + 0

Parameter setting order is “from left to right” order; therefore, the starting address of the corresponding

assembly function is as following table

FunctionName_PARAM

C Code Assembly Code

b Sum_PARAM + 0

a Sum_PARAM + 1

Please refer to Appendix Example 3 .

Assembly Code Calls C Function

Pure assembly file (*.asm) may also calls function declared in C code, please refer to Appendix Example

4.

a 1

b 0

Input parameter direction Parameter addressing order

Concept

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 81 Rev 1.4, 2022/06/30

C and Assembly Language Hybrid Programming Experiences

In C project, mixed C and assembly language programming can improve the operating efficiency of the

single chip applications, and get the best fit between software and hardware. Hereby, share some

experiences in practical application

(1) Using assembly instructions carefully

Relative to assembly language, C language programming has below advantages: improve the

development efficiency, using natural language way to edit the commands and statements. The

modulation is easy to manage and maintain and the program is portable in different platform. Therefore,

it is strongly suggested in C language programming avoid embedded inline asm or using all assembly

language commands to write the module program.

Viewpoint of the data storage space utilization, TM57 C compiler is certainly more efficient than

manually setting variables and parameters address. This can also reduce repetitive addressing problem

which cause hidden and identified errors. At the same time, C language provides complete function

library, various and intuitive control and computing functions. Therefore, except some single chips

which greatly emphasize timeliness or when C language cannot support the operation, user can consider

using assembly instruction to implement, the other condition is still suggested should be written in C

language.

(2) Try to use embedded inline asm to replace

This is not contradicted with the statement “using assembly instructions carefully” mentioned above. In

practical application, relative to the C language implementation, but using assembly language to realize

part of the programming code, can indeed improve the operational efficiency. Of course, it is

recommended to use embedded inline asm statement for implementation. However, we strongly

recommend to avoid writing “pure assembly language file” (*.asm file).

Programming code which is similar to pure assembly file may still be implemented in C language by

using C standard syntax to define all variables and functions name (include formal parameter and local

variables which need to be passed) and the parameter statement which needs to be returned, however the

content of the instruction of the function is written with embedded inline asm instruction. In other words,

using function syntax to wrap inline asm. In this way, the operation efficiency of the function will be

almost the same with the pure assembly language coding; the different is each format of parameter

passed is unified by the C language standard syntax. So, it can improve management and ease of

maintenance.

(3) Avoid using .org xx command while compiling C/ASM hybrid programming

Addressing mode in assembly program is set to reallocate address mode as default. Therefore, common

pure assembly program adds .org xx command in front of the program, to switch to absolute address

mode, for example

.org

goto start

start:

 …..

But while compiling C/ASM hybrid programming, it is strongly suggested not to use asm(“.org xx”), to

avoid unpredicted error.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 82 Rev 1.4, 2022/06/30

8. Create Function Library

Function Library

Different from executable file, function library is not an independent program code, but the code which

provides service to other programs. Function library is composed by many relocatable object modules,

the file extension is *.lib. The function of a series of related operations can be gathered up and created to

be a function library, which can be called by other program, or can directly import another library

function provided by TM57 C. In this way, it benefits to achieve code reusable, and reduce the burden of

repetitive coding.

Use Function Library

If the implementation is a simple and small application, it is not suggested to refer to function library,

because during compiling and linking process, the content of function library will be integrated into the

executable file. This will spend more system resources and consume more time in loading to internal

memory.

When large scale of application is developed using function library mechanism will provide below

advantages:

 Gather up the related operation modules into a single function file; let the program

management and maintenance easier.

 Reduce function repetitive development time, and more organized in the description of

the document.

 Achieve program sharing purpose, efficient development system and shorten the

development time.

Methods to Create the Library

C language or assembly language can also create function library through the tool provided by TICE99

IDE. There are two methods to create libarary and the concept shown as below figure:

Method 1: The same as creating new project, while creating a library, user can follow below steps

1. Select File|New|Library, in New Library window put in library information, includes ic

type, C/assembly language, defined or created library list, etc…

2. After creating library, the same as common project, decide optionally c/asm file or

object file (*.o) added to library.

3. After editing the related files, user can directly compile the files to create *.lib file.

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 83 Rev 1.4, 2022/06/30

Method 2: Using “Making Library” tool to create library and the step is divided into two sections:

1. Create object file, single C language or assembly programming file which contain

many function module is compiled and assembled to create an object file (*.o).

2. Create function library, using tool provided by TICE99 IDE: library maker, decide

selectively which object files to be gathered up to create a single function library (*.lib)

1. Select File | New|Library

2. Select chip for library

3. Select a library type, C or ASM coding

4. Specified library name

5. Specified library location

6. Add an empty file to library

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 84 Rev 1.4, 2022/06/30

Concept:

1. Select toolbar Build | Make Library

Single Assembly

Program File

Single C

Program File

Object File

(*.o)

Compiler/Assembler

Single Assembly

Program File

Single C

Program File

Library Maker

Library File

(*.lib)

2. Selectively add the object files (can be

many files)

3. Selectively delete the object files

4. Browse the library name you want to

create

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 85 Rev 1.4, 2022/06/30

How to Use Function Library

When C or assembly file in the same project refer to some function modules in function library, please

follow below steps to import function library:

6. Function library file name imported, appears in

Project Manager

1. Select the library file item in Project Manager

2. Right click, select the current saved file from the open window

5. Cancel the selecting by

pressing “Cancel” button

4. Complete the selecting, press

the “Open” button

3. Select the function library file

imported

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 86 Rev 1.4, 2022/06/30

9. Memory Map

In this section, we will show the memory address which are used during C compiler is in operation or

when interrupt is triggered and needs to store and restore data. The detail memory map of each single

chip, please refer to each single chip’s data sheet.

 Register address may be used during operation process: FSR, RSR, OP1~OP4, tmp1 and stkptr.

Below figure shows the maximum possible usage:

0 1 2 3 4 5 6 7 8 9 A b c d E f

0 FSR RSR

10

20 OP1 OP2 OP3 OP4

30 tmp1 stkptr

…

Note:

1. When R-Plane in the operating MCU uses MOVWR and MOVRW commands to do memory

access, it will save RSR register content.

2. The address range to store OP1~OP4, tmp1 and stkptr is changeable, it is positively correlated

with program operation complexity, detail description please refer to Fplane / Rplane Declarations.

 Register address needed when an interrupt is triggered and needed to store and restore data is shown

below (as shown in red color block):

R-Plane F-Plane Bank0 F-Plane Bank1

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 87 Rev 1.4, 2022/06/30

10. Appendix

Example 1

 Calculate the string length

int strlen(char *tar)

{

 // Clear op2;

 asm("clrf op2");

 asm("clrf op2+1");

 asm("_strlen_LOOP:");

 // Read from source

 asm("movfw %o", tar);

// Read value of tar address

 asm("call runtime_Ind_Read");

 asm("movwf op3");

 // Check end

 asm("testz op3");

 asm("btfsc STATUS, ZERO_FLAG");

 asm("ret");

 // Next

 asm("incf %o,1", tar);

 asm("incf op2,1");

 asm("goto _strlen_LOOP");

}

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 88 Rev 1.4, 2022/06/30

 Copy the source string (string pointed by pointer src) to destination string (string pointed by pointer

tar)

char *strcpy(char *tar,char *src)

{

 // Return tar value from op2 (0x24)

 asm("movfw %o",tar);

 // return tar pointer in op2 address (0x24)

 asm("movwf op2");

 asm("_strcpy_LOOP:"); // generate label name

 // Read from source

 asm("movfw %o",src); // Set offset of LOCAL name src

 asm("call runtime_Ind_Read"); // call indirect read

 asm("movwf op3"); // op3 to write to target

 // Save to target

 // Set offset of LOCAL name tar (strcpy_LOCAL+1)

 asm("movfw %o",tar);

 asm("call runtime_Ind_Write"); // call indirect write

 // Check end

 asm("testz op3");

 asm("btfsc STATUS, ZERO_FLAG");

 asm("ret");

 // Next

 asm("incf %o,1",src);

 asm("incf %o,1",tar);

 asm("goto _strcpy_LOOP");

}

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 89 Rev 1.4, 2022/06/30

 Compare whether two strings are the same

int *strcmp(char *tar,char *src) // Compare whether two strings are the same

{

 asm("_strcmp_LOOP:"); // generate label name

 // Get tar value from op3 (0x28)

 asm("movfw %o",tar);

 asm("call runtime_Ind_Read"); // call indirect read

 asm("movwf op1");

 // Set offset of LOCAL name src

 asm("movfw %o",src);

 asm("call runtime_Ind_Read");

 asm("testz op1");

 asm("btfsc STATUS,2");

 asm("ret");

 asm("subwf op1,0");

 asm("btfsc STATUS,2");

 asm("goto LZ1");

 asm("goto LZ0");

 // When ZF is Zero

 asm("LZ0:");

 asm("movlw $FF");

 asm("btfsc STATUS,0");

 asm("xorlw $FE");

 asm("movwf op2");

 asm("btfss op2,7");

 asm("movlw $00");

 asm("movwf op2+1");

 asm("ret");

 // When ZF is one

 asm("LZ1:");

 asm("btfsc STATUS,0");

 asm("movlw $01");

 asm("xorlw $01");

 asm("movwf op2");

 asm("clrf op2+1");

 asm("incf %o,1",src);

 asm("incf %o,1",tar);

 asm("movfw %o",tar);

 asm("call runtime_Ind_Read");

 asm("movwf op1");

 asm("testz op1");

 asm("btfsc STATUS,2");

 asm("ret");

 asm("goto _strcmp_LOOP");

}

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 90 Rev 1.4, 2022/06/30

 Concatenate original string (string pointed by pointer src) to the end of the destination string (string

pointed by pointer tar).

// Concatenate src string to the end of tar string

char *strcat(char *tar,char *src)

{

 // Return tar value from op2 (0x24)

 asm("movfw %o",tar);

 asm("movwf op2");

 // Check the char of tar string is '\0'

 asm("START:");

 asm("movfw %o",tar);

 asm("call runtime_Ind_Read");

 asm("movwf op1");

 asm("testz op1");

 asm("btfss STATUS,2");

 asm("goto tarnext_LOOP");

 asm("_strcat_LOOP:");

 asm("movfw %o", src); // Set offset of LOCAL name src

 asm("call runtime_Ind_Read"); // call indirect read

 asm("movwf op3"); // op3 to write to target

 asm("testz op3");

 asm("btfsc STATUS, ZERO_FLAG");

 asm("goto add_null");

 asm("movfw %o", tar);

 asm("call runtime_Ind_Write"); // call indirect write

 asm("testz op3");

 asm("goto Next_LOOP");

 asm("Next_LOOP:");

 asm("incf %o", tar);

 asm("incf %o", src);

 asm("goto _strcat_LOOP");

 asm("tarnext_LOOP:");

 asm("incf %o", tar);

 asm("goto START");

 asm("add_null:");

 asm("movlw $00");

 asm("movwf op3");

 asm("movfw %o", tar);

 asm("call runtime_Ind_Write");

 asm("ret");

}

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 91 Rev 1.4, 2022/06/30

Example 2

C program calls assembly function WRKeyData1Bytes which does not need to pass parameter and return

value.

C code: call assembly function directly

There is no passing parameter and return value needed during call process, therefore user can decide

whether to declare assembly function prototype, and call the function directly.

main()

{

 WRKeyData1Bytes();

}

Assembly language function:

;WRKeyData1Bytes

 .autoimport on

 .debuginfo on

 .export _WRKeyData1Bytes ; leader char is _ (at prefix)

 ; use ".declfunc" directive to allocate the size of local and parameter.

 ; format: .declfunc funname(local_size,param_size)

 .declfunc WRKeyData1Bytes(0,0)

.CODE

.proc _WRKeyData1Bytes

movlw 40h

addwf 79h,0

movwf FSR

bsf 03h,5 ;STATUS,RAMBANK

movfw 7Fh

movwf 00h ;INDF

bcf 03h,5 ;STATUS,RAMBANK

movlw .1

addwf 79h,1

ret

.endproc

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 92 Rev 1.4, 2022/06/30

Example 3

C code: declare function prototype, and call strcpy() which is exported from assembly code

C program calls strcpy function which is declared and defined by assembly language, this function needs

two character pointers as input to do string copy, but without return value.

void strcpy(char*,char*); // Function Prototype for asm function

main()

{

 char String1[12] = "I like TM57";

 char String2[12] = "I like TM89";

 strcpy(String1, String2); // call asm function

}

Assembly language strcpy() function

Before function is defined, the keyword export in .export _strcpy is used to export function _strcpy, and

the keyword declfunc is used to declare local variable and input parameter memory size (BYTE unit) of

the function strcpy, the declaration expression is: .declfunc strcpy(0,2).

; string copy function by asm code

;**

; char* strcpy (char* dest, char* src)

;***

 .autoimport on

 .debuginfo on

 .export _strcpy ; leader char is _ (at prefix)

 ; use ".declfunc" directive to allocate the size of local and parameter.

 ; format: .declfunc funname(local_size,param_size)

 ; parameter count= source(0)+target(2) = 2

 ; declared 2 bytes space to parameter

 .declfunc strcpy(0,2)

.CODE

.proc _strcpy ;*** parameter address stack counter is from right to left

 movfw strcpy_PARAM+1 ; target

 movwf op2 ; return tar pointer in op2 address (0x24)

LOOP:

 ;*** Read from source

 movfw strcpy_PARAM+0 ; Set offset of LOCAL name src

 call runtime_Ind_Read ; call indirect read (call runtime library function)

 movwf op3 ; op3 to write to target

 ;*** Save to target

 movfw strcpy_PARAM+1 ; Set offset of LOCAL name tar

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 93 Rev 1.4, 2022/06/30

 call runtime_Ind_Write ; call indirect write (call runtime library function)

 ;*** Check end ?

 testz op3

 btfsc STATUS, ZERO_FLAG

 ret

 ;*** Next

 incf strcpy_PARAM+0,1

 incf strcpy_PARAM+1,1

 goto LOOP

.endproc

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 94 Rev 1.4, 2022/06/30

Example 4

In this example, assembly program calls C language strcpy() function, to do string copy.

C code: define strcpy() function to be used by assembly code

void strcpy(char* des,char* source)

{

 int i=0;

 for (i=0;source[i] != '\0'; ++i)

 {

 des[i] = source[i];

 }

 return;

}

Assembly code: Call C language strcpy() function

After the compiling of C Compiler, the original C function name will be added by prefix ‘_’ (that means,

_strcpy). Therefore, in this example, the syntax of assembly code to call C function strcpy becomes call

_strcpy.

In below program code, set original string variable to src_str, destination string variable to tar_str, and set

these two variable addresses to strcpy_PARAM+0 and strcpy_PARAM+1 respectively, for C function

strcpy computation. User can read variable tar_str to check the computation result (i.e. result value of

tar_str is “ABCD”).

;*************************************** **

;*** call strcpy function from asm code

;*************************************** **

 .autoimport on

 src_str = 40h

 tar_str = 45h

 movlw 'A'

 movwf src_str

 movlw 'B'

 movwf src_str+1

 movlw 'C'

 movwf src_str+2

 movlw 'D'

 movwf src_str+3

 movlw 0

 movwf src_str+4

 ;***

 ;*** pass parameter from right to left

TM57 C Compiler User Manual

US- TM57XX_C_Compiler _E 95 Rev 1.4, 2022/06/30

 ;*** pointer size is 1 byte

 ;***

 movlw src_str

 movwf strcpy_PARAM+0 ; store source address to PARAM+0

 movlw tar_str

 movwf strcpy_PARAM+1 ; store target address to PARAM+1

 call _strcpy

loop:

 nop

 goto loop

	AMENDMENT HISTORY
	CONTENTS
	1. An Overview of TM57 C
	TM57 Series C Compiler Special Features
	Compiling C programs
	Lexical Conventions
	Source Program Character Set
	Comments
	Identifiers
	Keywords
	Constants
	Numeric Constants
	Character Constants
	Enumeration Constants
	Global Constants
	String Literals
	Operators
	Punctuators

	2. Meaning of Identifiers
	Disambiguating names
	Scope
	Block Scope
	Function Scope
	Function Prototype Scope
	File Scope (Global Scope)
	Name Spaces of Identifiers
	Linkage of Identifiers
	Storage Duration

	3. Declarations
	Storage Class Specifiers
	Type Specifiers
	Fplane / Rplane Declarations
	Structure and Union Declarations
	Declaring and Using Bit Fields in Structures and Union
	Bit Data Type
	Bitwise Operator
	Enumeration Declarations
	Type Qualifiers
	Declarators
	Pointer Declarators
	Array Declarators
	Function Declarators and Prototypes
	asm Declarators
	Restrictions on Declarators
	Typedef
	Initialization
	Initialization of Aggregates

	4. Expressions and Operators
	Operator Precedence and Associativity Rules in C
	Primary Expressions
	Postifix Expressions
	Array Subscripting Operator
	Structure and Union References
	Indirect structure and Union References
	Postfix ++ and Postfix –
	Unary Operators
	Address-of and Indirection Operators
	Unary + and Unary – Operators
	Logical Negation ! and Bitwise Negation ~ Operators
	Prefix ++ and Prefix -- Operators
	Sizeof Unary Operator
	Multiplicative Operators
	Additive Operators
	Shift Operators
	Relational Operators (< > <= >=)
	Equality Operators (== !=)
	Logical AND Operators (&&), Logical OR Operators (||)
	Conditional Operator

	5. Statements
	Expression Statements
	Block Statement
	Selection Statements
	if Statement
	switch Statement
	Iteration Statements
	while Statement
	do Statement
	for Statement
	Jump Statements
	goto Statement
	continue Statement
	break Statement
	return Statement
	Labeled Statement
	Interrupt
	(1) R-Plane
	(2) F-Plane Bank 0
	(3) F-Plane Bank 1

	ISR_SaveData, ISR_RestoreData
	ISR_SaveData_5, ISR_RestoreData_5, ISR_SaveData_10, ISR_RestoreData_10

	6. Preprocessors
	Macro Definition
	Non-parameter Macro Definition
	Definition of Macro with Parameters
	Files Include
	Conditional Compilation
	Pragma Directive (#pragma)

	7. Mix of C and Assembly Code in C Project
	Basic Concept
	C Program Calls Assembly Function without Passing Parameter
	C Program Calls Assembly Function with Passing Parameter
	Assembly Code Calls C Function
	C and Assembly Language Hybrid Programming Experiences
	(1) Using assembly instructions carefully
	(2) Try to use embedded inline asm to replace
	(3) Avoid using .org xx command while compiling C/ASM hybrid programming

	8. Create Function Library
	Function Library
	Use Function Library
	Methods to Create the Library
	How to Use Function Library

	9. Memory Map
	10. Appendix
	Example 1
	Example 2
	Example 3
	Example 4

