

TICE89_USB介面

硬體使用手冊

Rev 1.2

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. **tenx** does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. **tenx** products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses tenx products for any such unintended or unauthorized application, Buyer shall indemnify and hold tenx and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that tenx was negligent regarding the design or manufacture of the part.

修改記錄

版本	日期	说明
V1.0	Oct, 2007	New release. (本文編號原為 UM-TM89ICE_C)
V1.1	Oct, 2011	 主要修改是將原本的 Printer Port 控制介面改成 USB 介面。 增加可以模擬 TM89ML56 的功能, 有穩壓低, 電壓偵測, 多 IOF~IOI 等。
V1.2	May, 2016	P6、P11~P13 增加說明如何利用 TM89ICE 仿真 TM87XX IC 功能。

目录

修改	記錄	.2
- 、	可支援的 MCU 型號	.4
ニ、	安裝步驟	.4
三、	面板使用說明	.5
四、	TM87XX 系列 IC 在 TM89ICE 硬體的使用說明與注意事項	11

一、 可支援的 MCU 型號

TM89 系列, TM87 系列。

二、安裝步驟

- 1. 將 USB port cable 兩端分別連接到電腦及 ICE 上
- 2. 如需要利用 ICE 去驅動消耗大電流的負載,才需要將 ICE 接上 DC Adaptor,並打開電源加強電源的供應與穩定,大負載例如 EL Plant,Buzzer...等,在一般的使用狀態下USB 所提供的電源是足夠的。

三、 面板使用說明

1. <u>JP8 、 JP9 、 JP10 、 JP14</u> :

連接至外部測試板或 LCD panel signal,另外 JP10,JP14 中的 rVL 接腳的使用是當 LCD 的趨動電壓選擇由外部穩壓做供給時或是使用 ICE 內部穩壓功能時的電源接腳,圖中任 何一 rVL 接腳都可使用。

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	JP9 COM1 COM3 COM5 COM7 GND GND GND COM9 GND COM9 GND COM19 COM19 COM10 COM10 COM11 COM11 GND COM15 GND GND GND GND GND COM15 GND GND GND GND GND GND GND GND GND GND	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	JP14 IOF2 IOF1 1 2 IOF4 GND 3 4 GND IOG1 7 8 IOG2 IOG3 7 8 IOG4 GND 5 6 OND IOG1 7 8 IOG4 GND 13 14 OH2 IOH1 13 14 OH2 IOH2 15 16 OH4 GND 21 22 OH4 GND 21 22 OH4 GND 21 22 OH4 GND 23 24 PRCX2 GND 27 28 PRCX2 GND 27 28 PREC0 VDDC 33 34 PREC0 VDDC 35 36 PREC3 GND 39 0 GND GND 44 OVD GND GND 45
HEADER 25X2	HEADER 25X2	HEADER 25X2	HEADER 25X2

2. Fast Clock Source:

連接 Fast R or Crystal,此頻率來源如由接外部元件做供給時只作用於 Free Run mode 的 選項下,無法用於 ICE mode 下的 Free Run 選項(*請參考軟體使用手冊*)。

3. <u>Slow Clock Source</u>:

連接 Slow RC or Crystal,此頻率來源如由接外部元件做供給時只作用於 Free Run mode 的選項下,無法用於 ICE mode 下的 Free Run 選項(*請參考軟體使用手冊*)。

4. <u>LED 燈號</u>:

- ECSF: Fast/Slow Clock status (亮: Fast; 不亮: Slow)
- EBCF : BCF/PSF (BCF Flag)
- ESTOP:停止信號(亮: in Stop statues)
- EHALT: 暫停信號 (亮: in Halt status)
- ERST2: Reset 信號

5. <u>RFC Connector</u>:

JP1		JP2		2222228e	
	RFC5	-0 14 13 0-	RFC5	22222222	1
	RFC3	+0 <mark>12 11</mark> 0-	RFC3	0000000	
	RFC2	-010 90-	RFC2		JP1
	RFC1		RFC1	0000000	CX2
	RFC0	+0430-	RFC0	0000000	
c_{X2} c_{Z2} c_{Z2} c_{Z2} c_{Z2} c_{Z2} c_{Z2}	CXI	+0 <mark>2 1</mark> 0-	1		JP2
HEADER 7X2		HEADER 7X2		0000000	CX1
	· · · · · · · · · · · · · · · · · · ·				

6. <u>Power Connector</u>:

- JP12 VDDO Output Mode: ICE 模擬電壓
- JP13 GND

7. <u>Switch Set UP</u>:

當開關往上調至 ON 的位置時為"1",反之則為"0"。

• Switch S1:設定希望模擬的 IC 電源模式 (VDDO)

	Bit1	Bit2	Bit3
Ext (5V)	0	0	1
Li (3V)	0	1	0
Ag (1.5V)	1	0	0
RVL	0	0	0

RVL:該條件的使用是當要仿真使用 MTP IC 內部穩壓功能,或是 LCD 的驅動電壓單 獨由外部供電給 ICE。

Note:修改電源模式前請先歸零後再設定,避免電源燒毀。

	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7	Bit8
Ext/Li 1/2	1	1	1	VL2	0	VDDO	VL1	0
Ext/Li 1/3	1	1	0	VL2	0	VDDO	VL1	0
Ext/Li 1/4	1	0	0	VL2	0	VDDO	VL1	0
Ext/Li 1/5	0	0	0	VL2	0	VDDO	VL1	0
Ext/Li_DC	1	1	1	0	1	1	0	0
Ag 1/2	1	1	1	0	0	0	VL1	VDDO
Ag 1/3	1	1	0	0	0	0	VL1	VDDO
Ag 1/4	1	0	0	0	0	0	VL1	VDDO
Ag 1/5	0	0	0	0	0	0	VL1	VDDO
Ag DC	1	1	1	0	1	0	0	1

• Switch S2: LCD Bias 電壓來源是 VDDO 或外部穩壓的設定表:

VL1 => 0: LCD Bias 電壓來源 = VDDO。

1: LCD Bias 電壓來源 = 由外部穩壓獨立供電給 VL1。

VL2 => 0: LCD Bias 電壓來源 = VDDO。

1:LCD Bias 電壓來源 = 由外部穩壓獨立供電給 VL2。

Note: 如 LCD 驅動電壓需要單獨供電時,請將供給 LCD 的電源接到 rVL PIN 上。

GND	0	41	42	0	GND
rVL	Ч	41	42	2	rVL
(1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-0	43	44	\cup	(1) A 100

Switch S2:LCD Bias 電壓來源 IC 內部穩壓供給設定表:

	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7	Bit8
Ext/Li 1/2	1	1	1	0	0	0	0	0
Ext/Li 1/3	1	1	0	0	0	0	0	0
Ext/Li 1/4	1	0	0	0	0	0	0	0
Ext/Li 1/5	0	0	0	0	0	0	0	0
Ag 1/2	1	1	1	0	0	0	0	0
Ag 1/3	1	1	0	0	0	0	0	0
Ag 1/4	1	0	0	0	0	0	0	0
Ag 1/5	0	0	0	0	0	0	0	0

Note:如使用仿真 MTP IC 內部穩壓功能,或是單獨 LCD 的驅動電壓由外部供給等功能時候, 都需外接獨力電源供電到 VDDO PIN (JP12),電壓值可以依照實際產品量產時候的電壓 值。

VDDO => 0: LCD Bias 電壓來源 = 由外部穩壓獨立供電給 VL1 或 VL1。 **1: LCD** Bias 電壓來源 = VDDO。

• Switch S3:設定 CUP 相關腳位的使用模式 (請參閱 OPT 檔中 Bias 選項設定)

Mask Option file --> LCD --> Bias

	Bit1	Bit2	Bit3	Bit4	Bit5
CUP1-2	1	*	0	0	*
CUP0-2	*	1	0	0	*
CUP0-1	*	*	0	0	*
CUP1-N	*	*	0	0	*
CUP0-N	*	*	0	0	1

• Switch S4 : VDDT • VDD • VDDR

	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6
VDDR = BAK	1	0	*	0	*	*
VDDR = VDD0	0	1	*	0	*	*
BAK = VDDO	*	*	1	0	*	*
BAK = 0.1 uF	*	*	0	0	*	*
VDDT = VDDO	*	*	*	0	1	0
VDDT = VDD5	*	*	*	0	0	1

- VDDR: RFC pad 所使用的電壓 Normal: "VDDR = VDDO"
- BAK: 省電模式下所使用的電壓 Mask Option file --> Power --> Power Source: "VBAT for BCF = 0" => "BAK = VDDO" "VL1 for BCF = 0" => "BAK = 0.1 uF"
- VDDT: COM、SEG、IO、RFC、EL、Alarm Pad 所使用的最高準位電壓。 當 VDDO > VDD5 時請設定為"VDDT = VDDO" 當 VDDO < VDD5 時請設定為"VDDT = VDD5"
- VDD5: LCD 驅動電路所使用的最高準位電壓
 範例: 假設 LCD 驅動電路為 1/4 Bias 並且 VL1 = 1.5V
 VDD5 = VL1 * 4 = 1.5 * 4 = 6 V

8. <u>INT • RESET</u>:

INT、RESET 為模擬接腳。

INT C、RESET C: ICE 會根據 mask option 的選項將 INT 以及 RESET 腳位上的信號轉 換 MCU 內部所需的信號。

9. 狀態訊號 PIN:

VDDC F	24	VDDC				P4
SIN STEP ETCK2 EBCF EHRX EHALT FRST2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OU ECSF EINTX ESTOP EOFF	1		1.1	14
F	13 14 Teader 7X2	2 =	2	18	10	13

- PIN_1 , PIN_2 : VDDC
- PIN_3, PIN_5:程式執行
- PIN_4 : Stack Over/Underflow (H: Over/Underflow ; L: Normal)
- PIN_6 : Fast/Slow Clock status (H: Fast ; L: Slow)
- PIN_7 : BCF/PSF (BCF Flag)
- PIN_8 : 中斷信號發生 (Interrupt Flag)
- PIN_9 :解除暫停信號 (Halt Release Flag)
- PIN_10 :停止信號 (H: in Stop statues)
- PIN_11 :暫停信號 (H: in Halt status)
- PIN_12 : LCD OFF
- PIN_13 :Reset 信號
- PIN_14 : GND

四、 TM87XX 系列 IC 在 TM89ICE 硬體的使用說明與注意事項

1. <u>SW1, SW2, SW3的設定説明</u>:

• SWITCH S1: 設定 ICE 要執行的電壓值 (VDDO)。

	Bit1	Bit2	Bit3
Ext (5V)	0	0	1
Li (3V)	0	1	0
Ag (1.5V)	1	0	0

● SWITCH S2:設定 LCD Bias 模式與電壓來源。

	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7	Bit8
Ext/Li 1/2	1	1	1	1	0	1	0	0
Ext/Li 1/3	1	1	0	0	0	1	0	0
Ext/Li 1/4	1	0	0	0	0	1	0	0
Ext/Li 1/5	0	0	0	0	0	1	0	0
Ext/Li_DC	1	1	1	0	1	1	0	0
Ag 1/2	1	1	1	0	0	0	0	1
Ag 1/3	1	1	0	0	0	0	0	1
Ag 1/4	1	0	0	0	0	0	0	1
Ag 1/5	0	0	0	0	0	0	0	1
Ag DC	1	1	1	0	1	0	0	1

• SWITCH S3:設定 CUP 相關腳位的使用模式 (請參閱 OPT 檔中 Bias 選項設定)。

Mask Option file --> LCD --> Bias

	Bit1	Bit2	Bit3	Bit4	Bit5
CUP1-2	1	*	0	0	*
CUP0-2	*	1	0	0	*
CUP0-1	*	*	0	0	*
CUP1-N	*	*	0	0	*
CUP0-N	*	*	0	0	1

• SWITCH S4 :

Bit1	Bit2	Bit3	Bit4	Bit5	Bit6
0	1	0	0	0	1

2. <u>COM, SEG, I/O, RFC, BZ/BZB, ELC, ELP, KI 等的使用說明</u>:

TM89ICE 設計上所有的功能腳, COM, SEG, I/O, RFC, BZ/BZB, ELC, ELP, KI 等功能腳都是獨立並沒有共用,所以 TM87ICE 硬體在仿真 TM87XX IC 時請直接參考 TM89ICE 硬體的腳為分佈圖。

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccc} \hline COM1 & COM2 \\ \hline COM3 & C & 2 \\ \hline COM5 & C & 6 \\ \hline COM5 & C & 5 \\ \hline COM7 & C & 5 \\ \hline COM7 & C & 5 \\ \hline COM9 & 7 & 8 \\ \hline COM9 & 11 \\ \hline COM10 & 11 \\ \hline COM11 & 0 \\ \hline COM11 & 0 \\ \hline COM11 & 11 \\ \hline COM11 & 12 \\ \hline COM11 & 0 \\ \hline COM12 & 0 \\ \hline SEG1 &$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IOF1 IOF2 IOF2 IOF3 3 4 OF4 GND 5 6 IOG2 IOG3 7 8 IOG2 IOG3 9 10 IOG2 IOG3 9 10 IOG2 IOG4 7 8 IOG2 IOH1 11 12 OH4 IOH3 13 14 IOH4 IOH3 15 16 OH4 IOH1 19 20 IO14 GND 23 24 JPCX GND 29 30 JPRFC0 GND 33 34 JPRFC1 VDDC 35 36 JPRFC3 GND 39 40 GND GND GND 41 42 OVD VDDC GND 39 40 GND GND GND 41 42 OVD VDDC GND <
--	---	--	--

● RFC 功能對應硬體位置。

- 3. TM89ICE 與 TM8999EV BOARD 仿真 87 功能的注意事項:
 - 為降低實際量產時的問題發生,建議程式開發完成後使用 TM8999 EV-BOARD 驗證 相關程式功能。
 - TM89ICE-EV 無法仿真 TM87XX 系列的看門狗功能(Watch-Dog),可以利用 TM8793 (OTP) 來驗證該功能。
 - TM87ML25 (MTP)低電壓偵測 (LVD)與低電壓 RESET (LVR)等功能,目前在 TM89ICE 仿真上目前無法提供,如需驗證可以直接利用 TM87ML25 (MTP) 做驗證。
 - 當使用間接定/尋址 RAM 的地址時候 (Index Address Register),如使用地址值小於 100H,如 TM8722, TM8723, TM8724, TM8721, TM8720 等,請務必用 ACC 給 0 於 @HL 的 Bit8~11,否則在仿真上會有問題。

