十速 TM57M5610/15 DATA SHEET Rev 0.93

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. **tenx** does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. **tenx** products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses tenx products for any such unintended or unauthorized application, Buyer shall indemnify and hold tenx and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that tenx was negligent regarding the design or manufacture of the part.

AMENDMENT HISTORY

Version	Date	Description
0.90	May, 2018	New Release.
0.91	May, 2018	1. P7, 18, 43, 46, 48: Modify the SPEC of POR/LVR, update characteristics graph
0.92	Nov, 2018	 P7, 19, 47, 49: Modify the SPEC of POR/LVR, Update characteristics graph P10: Update programming pins P9, 52, 54: Add TSSOP20 package type P49, 51: Update FRC/SRC characteristics graph
0.93	May, 2020	1. P10, P26, P28, P39, P45: Remove PB3~0 Open-drain function

CONTENTS

AMENDMENT HISTORY2
CONTENTS
FAMILY OVERVIEW
FEATURES
BLOCK DIAGRAM8
APPLICATION CIRCUIT
PIN ASSIGNMENT9
PIN DESCRIPTIONS
FUNCTIONAL DESCRIPTION11
1. CPU Core
1.1Clock Scheme and Instruction Cycle111.2ALU and Working (W) Register111.3Programming Counter (PC) and Stack121.4STATUS Register (F-Plane 03H)14
2. Program ROM (MTP)
3. Data Memory (RAM and SFR)16
4. Power Management
5. Reset
6. Clock Circuitry and Operation Mode20
7. Interrupt
8. I/O Port
9. Timers
9.1 Timer0
10. PWM
11. Resistance to Frequency Converter (RFC)
12. LCD Driver
MEMORY MAP40
INSTRUCTION SET
ELECTRICAL CHARACTERISTICS
1. Absolute Maximum Ratings47
2. DC Characteristics

3. Clock Timing	
4. BandGap Reference Voltage	
5. Characteristic Graphs	48
PACKAGING INFORMATION	51

FAMILY OVERVIEW

P/N	Typ. V _{BAT}	ROM	RAM bytes	I/O (max.)	RFC	Timers	8-bit PWM	LCD S x C (max.)	LCD Bias	Time- piece current	Others
TM57M5610	3.0V	1Kx14	96	12	3-ch	8-bit x1	x1	12 x 3	1/2	1uA	LVR LBD
TM57M5615	1.5V	MTP	90	12 .	5-011	21-bit x1	лі	11 x 4	1/2	1.5uA	WDT
TM57M5620	3.0V	2Kx14	176	16	4-ch	8-bit x2	x2	31 x 4	1/3	2.5uA	LVR LBD
TM57M5625	1.5V	MTP	170	16	4-CI1	21-bit x1	A.2	29 x 4	1/2, 1/3	2.8uA	WDT
TM57M5640	3.0V	4Kx14	226	20	4 ab	8-bit x2	x2	45 x 4	1/3	2.5uA	LVR
TM57M5645	1.5V	MTP	336	20	4-ch	21-bit x1	t x1 x2	43 x 4	1/2, 1/3	2.8uA	LBD WDT

Note: No matter V_{BAT} =3V or V_{BAT} =1.5V, the typical LCD bias voltage is: 1/2 bias: VL1=1.5V, V_{LCD} =3V 1/3 bias: VL1=1.0V, VL2=2.0V, V_{LCD} =3V

FEATURES

- 1. Operating Voltage :
 - $V_{BAT} = LVR \sim 3.6V (M5610)$
 - $V_{BAT} = LVR \sim 1.8V (M5615)$
- 2. Timepiece Current (CPU Off, LCD On, 32K crystal oscillating) :
 - M5610: 5uA @ V_{DD} =3V, V_{BAT} =3V, without power saving
 - M5610: 1uA @ V_{DD} =1.5V, V_{BAT} =3V, with power saving
 - M5615: 1.5uA @V_{DD}=1.5V, V_{BAT}=1.5V
- 3. Program ROM: 1K x 14 bits MTP (Multi Time Programmable ROM)
- 4. RAM: 96 x 8 bits
- 5. STACK: 5 Levels
- 6. I/O ports: Maximum 12 programmable I/O pins
 - Open-Drain Output
 - CMOS Push-Pull Output
 - Schmitt Trigger Input with pull-up resistor option

7. System Oscillation Sources (Fsys) :

- Fast-clock
 - FIRC (Fast Internal RC) : 3.8MHz @V_{DD}=3V; 1.3MHz @V_{DD}=1.5V
- Slow-clock
 - SIRC (Slow Internal RC) : 80KHz @V_{DD}=3V; 40KHz @V_{DD}=1.5V
 - SXT (Slow Crystal) : 32768 Hz
- System Oscillation Sources can be divided by 1/2/4/8 as System Clock (Fsys)
- Dual System Clock Switching between Fast-clock and Slow-clock
 - FIRC + SIRC
 - FIRC + SXT

8. Power Saving Operation Mode

- FAST Mode: CPU running at Fast-clock
- SLOW Mode: Fast-clock stop, CPU running at Slow-clock
- IDLE Mode: Fast-clock and CPU stop; Slow-clock, Timer2 and LCD keep running
- STOP Mode: All clocks stop
- 9. Resistance to Frequency Converter (RFC)

10. Two Independent Timers

- Timer0 (TM0)
 - 8-bit timer with divided by 1~256 pre-scale option, reload/interrupt/stop function
 - Clock sources: Fsys or Slow-clock /16 (SIRC/SXT)

- Timer2 (T2)
 - 21-bit timer with 4 interrupt time period options (60s/1s/0.5s/0.125s)
 - Clock sources: Fsys /128 or Slow-clock (SIRC/SXT)
 - IDLE mode wake-up, if clock source is Slow-clock

11. Interrupts

- Three External Interrupt pins (INT0~INT2)
 - Rising or falling edge triggered interrupt
 - Wake-up CPU from IDLE/STOP mode
- Timer0/Timer2 Interrupts
- RFC overflow Interrupt

12. LCD Controller / Driver

- 1/3 or 1/4 Duty
- 4 COM x 11 SEG or 3 COM x 12 SEG
- 1/2 LCD Bias voltage, typical VL1=1.5V and V_{LCD} =3V

13. Watchdog Timer (WDT)

- Clocked by built-in RC oscillator with 2 adjustable reset times
 - $0.8s/0.4s @V_{DD}=3V$
 - 1.6s/0.8s @V_{DD}=1.5V
- Watchdog timer is disabled in IDLE/STOP mode

14. 8-bit PWM for Buzzer / IR application

- Adjustable Period & Clock Pre-scale
- Clock source: Fast-clock or Slow-clock

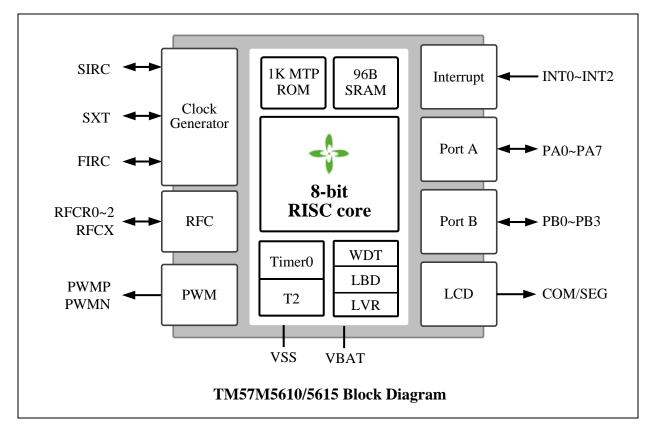
15. Four types Reset

- Power On Reset :M5610 (2V@25°C, 2.4V@-40°C), M5615 (1.29V@25°C, 1.40V@0°C)
- Watchdog Reset
- Low Voltage Reset: M5610=1.7V, M5615=1.25V (M5615 is recommended to disable LVR function by LVROFF after power on)
- External Pin Reset

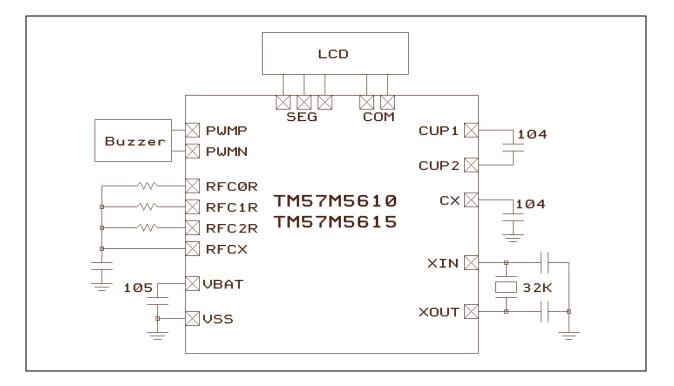
16. Low Battery Detector (LBD) by BandGap Voltage Reference

- M5610: Detect V_{BAT} from 2.4V to 3.1V
- M5615: Detect V_{BAT} from 1.2V to 1.6V

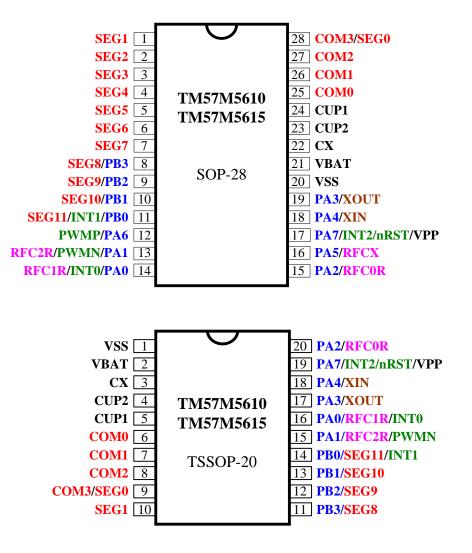
17. Operating Temperature Range :


• M5610: 40° C to + 85°C M5615: 0° C to + 85°C

18. Package Type : SSOP28/ TSSOP20 / dice-form


19. EV Board: EV8222

BLOCK DIAGRAM



APPLICATION CIRCUIT

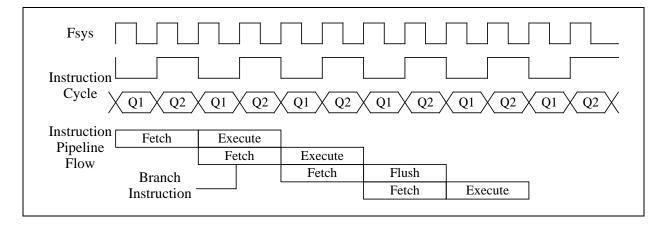
PIN ASSIGNMENT

PIN DESCRIPTIONS

Name	In/Out	Pin Description
PA0-PA6	I/O	Bit-programmable I/O port for Schmitt-trigger input, "CMOS push-pull" output or "Open-Drain" output. Pull-up Resistors are assignable by software.
PB0-PB3	I/O	Bit-programmable I/O port for Schmitt-trigger input without pull-up, "CMOS push-pull"output
PA7	I/O	Bit-programmable I/O port for Schmitt-trigger input, or "Open-Drain" output. Pull-up resistors are assignable by software.
nRST	Ι	External active low reset with internal pull-high
INT0-INT2	Ι	External interrupt input
RFC0R~RFC2R	0	RFC resistor connection pin
RFCX	Ι	RFC clock input pin
COM0~COM3	0	LCD common output
SEG0~SEG11	0	LCD segment output
PWMP, PWMN	0	8-bit PWM0 output
CX, CUP1, CUP2	-	LCD bias capacitor connection pin
XIN, XOUT	-	Crystal / Resonator oscillator connection for system clock.
VPP	Ι	MTP programming high voltage input
VBAT, VSS	Р	Power Voltage input pin and ground

Note: Programming pins are list below. It is better to remove the PCB components connected to these pins during In-Circuit-Programming.

9 wire mode (M5615): VCC/VSS/PA0/PA1/PA2/PA3/PA4/PA7 (VPP)/CX 6 wire mode (M5615): VCC/VSS/PA0/PA1/PA7 (VPP) /CX 8 wire mode (M5610): VCC/VSS/PA0/PA1/PA2/PA3/PA4/PA7 (VPP) 5 wire mode (M5610): VCC/VSS/PA0/PA1/PA7 (VPP)



FUNCTIONAL DESCRIPTION

1. CPU Core

1.1 Clock Scheme and Instruction Cycle

The system clock is internally divided by two to generate Q1 state and Q2 state for each instruction cycle. The Programming Counter (PC) is updated at Q1 and the instruction is fetched from program ROM and latched into the instruction register in Q2. It is then decoded and executed during the following Q1-Q2 cycle. Branch instructions take two cycles since the fetch instruction is 'flushed' from the pipeline, while the new instruction is being fetched and then executed.

1.2 ALU and Working (W) Register

The ALU is 8-bit wide and capable of addition, subtraction, shift and logical operations. In two-operand instructions, typically one operand is the W register, which is an 8-bit non-addressable register used for ALU operations. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either W register or a file register. Depending on the instruction executed, the ALU may affect the values of Carry (C), Digit Carry (DC), and Zero (Z) Flags in the STATUS register. The C and DC flags operate as a /Borrow and /Digit Borrow, respectively, in subtraction.

Note: /Borrow represents inverted of Borrow register.

/Digit Borrow represents inverted of Digit Borrow register.

1.3 Programming Counter (PC) and Stack

The Programming Counter is 10-bit wide capable of addressing a 1K x 14 MTP ROM. As a program instruction is executed, the PC will contain the address of the next program instruction to be executed. The PC value is normally increased by one except the followings. The Reset Vector (000h) and the Interrupt Vector (001h) are provided for PC initialization and Interrupt. For CALL / GOTO instructions, PC loads 10 bits address from instruction word. For RET / RETI / RETLW instructions, PC retrieves its content from the top level STACK. For the other instructions updating PC [7:0], the PC [9:8] keeps unchanged. Therefore, the data of a lookup table must be located with the same PC [9:8].

The STACK is 10-bit wide and 5-level in depth. The CALL instruction and hardware interrupt will push STACK level in order. While the RET / RETL/ RETLW instructions pop the STACK level in order.

For table lookup, the device offers the powerful table read instructions TABRL, TABRH to return the 14-bit ROM data into W register by setting the DPTR = {DPH, DPL} registers in F-Plane.

START:	ORG GOTO	000H START	; Reset Vector ; Goto user program address
LOOP:	MOVLW MOVWF	00H INDEX	; Set lookup table's address (INDEX)
LOOI.	MOVFW CALL	INDEX TABLE	; Move INDEX value to W register ; To Lookup data (W = 55H when INDEX = 00H)
	 INCF	INDEX, 1	; Increment the INDEX for next address
	 GOTO	LOOP	; Goto LOOP label
TABLE:	ORG	X00H	; X = 1, 2, 3
TIDEE.	ADDWF	PCL, 1	; (Addr = X00H) Add the W with PCL, the result ; back in PCL
	RETLW RETLW RETLW	55H 56H 58H	; W = 55H when return ; W = 56H when return ; W = 58H when return

♦ Example: To look up the MTP data located "TABLE"

Note: The chip defines 256 ROM addresses as one page, so that ROM has four pages, 000H~0FFH, 100H~1FFH, 200H~2FFH, and 300H~3FFH. On the other words, PC[9:8] can be defined as page. A lookup table must be located at the same page to avoid getting wrong data. Thus, the lookup table has maximum 255 data for above example with starting a lookup table at X00H (X = 1, 2, 3). If a lookup table has fewer data, it needs not setting the starting address at X00H, but only confirms all lookup table data are located at the same page.

Example: To look up the MTP data located "TABLE" by TABRL and TABRH instructions

START:	ORG GOTO	000H START	; Reset Vector ; Goto user program address
	MOVLW MOVWF MOVLW MOVWF	(TABLE >>8) & 0xff DPH (TABLE) & 0xff DPL	; Get high byte address of TABLE label ; DPH (F17.1~0) = 02H ; Get low byte address of TABLE label ; DPL (F04.7~0) = 80H
LOOP:	TABRL TABRH		; W = 86H when DTPR = {DPH, DPL} = 0280H ; W = 19H when DTPR = {DPH, DPL} = 0280H
	 INCF	DPL, 1	; Increment the DPL for next address
	GOTO	LOOP	; Goto LOOP label
TABLE:	ORG	280H	
IADLE.	DT DT	0x1986 0x3719	; 14-bit ROM data ; 14-bit ROM data

F02	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
PCL	PCL											
R/W												
Reset	0	0	0	0	0	0	0	0				

F02.7~0 PCL: Low-byte of Program Counter (PC[7:0])

F0A	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
РСН	-	-	-	_	_	-	PCH	
R/W	_	_	_	_	_	-	R	R
Reset	I	-	-	-	—	_	0	0

F0A.1~0 PCH: 2 MSBs of Program Counter (PC[9:8])

F1D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
DPL		DPL											
R/W													
Reset	0	0	0	0	0	0	0	0					

F1D.7~0 **DPL:** Table read low address, data ROM pointer (DPTR[7:0])

F1E	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DPH	-	_	-	-	_	_	Dł	РΗ
R/W	-	-	_	_	_	_	R/W	R/W
Reset	-	_	-	-	_	_	0	0

F1E.1~0 **DPH:** 2 MSBs of Table read high address, data ROM pointer (DPTR[9:8])

1.4 STATUS Register (F-Plane 03H)

This register contains the arithmetic status of ALU and the reset status. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. It is recommended, therefore, that only BCF, BSF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect those bits.

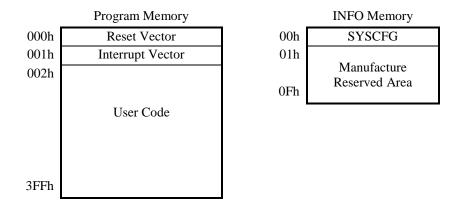
F03	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
STATUS	GB2	GB1	GB0	ТО	PD	Z	DC	С					
Reset	0	0	0	0	0	0	0	0					
R/W	R/W	R/W R/W R/W R R R/W R/W											
Bit		Description											
7	GB2: Gene	GB2: General Purpose Bit 2											
6	GB1: Gene	GB1: General Purpose Bit 1											
5	GB0: Gene	eral Purpose	Bit 0										
4	TO: Time Out Flag 0: after Power On Reset, LVR Reset, or CLRWDT/SLEEP instruction 1: WDT time out occurs												
3	0: after Po	Down Flag ower On Res LEEP instruc	set, LVR Res	set, or CLRV	VDT instruct	tion							
2		ilt of a logic	operation is operation is										
	1		ig or Decima		ag								
		ADD in	struction			SUB ins	struction						
1	0: no carry 1: a carry fr occurs	rom the low	nibble bits c	of the result	0: a borrow result oc 1: no borro		w nibble bits	s of the					
	C: Carry Fl	ag or/Borro	w Flag										
0		ADD in	struction			SUB ins	struction						
	0: no carry 1: a carry o	ccurs from t	he MSB		0: a borrow 1: no borro	v occurs from w	n the MSB						

♦ Example: Write immediate data into STATUS register

MOVLW	00H	
MOVWF	STATUS	; Clear STATUS register

♦ Example: Bit addressing set and clear STATUS register

BSF	STATUS, 0	; Set C = 1
BCF	STATUS, 0	; Clear $C = 0$


♦ Example: Determine the C flag by BTFSS instruction

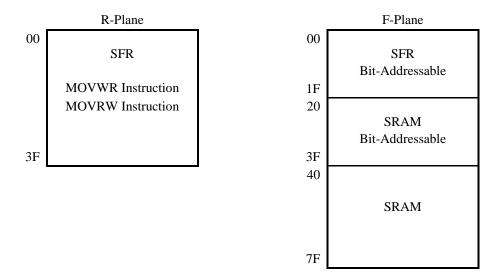
BTFSS	STATUS, 0	; Check the C flag
GOTO	LABEL_1	; If $C = 0$, goto LABEL_1 label
GOTO	LABEL_2	; If $C = 1$, goto LABEL_2 label

2. Program ROM (MTP)

The MTP Program ROM of this device is 1K words, with an extra INFO area to store the SYSCFG and manufacture data. The MTP ROM can be written multi-times and can be read as long as the PROTECT bit of SYSCFG is not set. The SYSCFG can be read no matter PROTECT is set or cleared, but can be written only when PROTECT is cleared or MTP ROM is blank. That is, unprotect the PROTECT bit can be done only if the Program ROM area is blank. The tenx certified writer can do the above actions with the sophisticated software.

The System Configuration Register (SYSCFG) is located at MTP INFO area. The SYSCFG determines the option for initial condition of MCU. It is written by MTP Writer only. User can select chip operation mode by SYSCFG register.

Bit		Description				
	PROTECT	: Code protection selection				
13	1	Enable				
	0	Disable				
	XRSTE: Ex	xternal Pin (PA7) Reset Enable				
12	1	Enable				
	0	Disable (PA7 as input I/O pin)				
11~10	LVR: Low	Voltage Reset				
	WDTE: WI	DT Reset Enable				
9	1	Enable				
	0	Disable				
8~0	Tenx Reserv	/ed				



3. Data Memory (RAM and SFR)

There are two Data Memory Planes in the chip, F-Plane and R-Plane.

The lower locations of F-Plane are reserved for Special-Function-Register (SFR). Above the SFR is General Purpose Data Memory, implemented as static RAM. F-Plane can be addressed directly or indirectly. Indirect Addressing is made by INDF register. The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a pointer). The first half of F-Plane is bit-addressable, while the second half of F-Plane is not bit-addressable.

R-Plane can also be addressed directly or indirectly. Indirect Addressing is made by INDR register. The INDR register is not a physical register. Addressing INDR actually addresses the register whose address is contained in the RSR register (RSR is a pointer). The R-Plane is not bit-addressable and only supports the MOVWR, MOVRW byte operating instructions.

F-Plane	8/0	9/1	A/2	B/3	C/4	D/5	E/6	F/7
00h	INDF	TM0	PCL	STATUS	FSR	PAD	PBD	
08h	INTIE	INTIF	PCH	CLKCTL	MF0C	PWMDTY	LBDCTL	RFCTL
10h	LCDCTL	RFCNTH	RFCNTL					
18h					RSR	DPL	DPH	

R-Plane	8/0	9/1	A/2	B/3	C/4	D/5	E/6	F/7
00h	INDR	TM0RLD	TM0CTL	PWRDN	WDTCLR	PAMODH	PAMODL	PBMODL
08h	PWMCTL	PWMPRD	LVROFF					
20h								

♦ Example: Write immediate data into R-Plane register

MOVLW	AAH	; Move immediate AAH into W register
MOVWR	05H	; Move W value into R-Plane location 05H

♦ Example: Move R-Plane location 20H data into W register

MOVRW 20H

; To get a content of R-Plane location 20H to W

♦ Example: Clear R-Plane by indirectly addressing mode

LOOP:	MOVLW MOVWF	20H RSR	; W = 20H ; Set R-Plane address to RSR register
LOOI	MOVLW MOVWR	00H INDR	; Clear R-Plane 20H
⊘Example: C	lear F-Plane R	AM data by indirectl	y addressing mode
	MOVLW MOVWF	20H FSR	; W = 20H (SRAM start address) ; Set start address of user SRAM into FSR register
LOOP:			
	MOVLW MOVWF INCF MOVLW XORWF BTFSS GOTO	00H INDF FSR, 1 80H FSR, 0 STATUS, Z LOOP	 ; Clear user SRAM data ; Increment the FSR for next address ; W = 80H (SRAM end address) ; Check the FSR is end address of user SRAM? ; Check the Z flag ; If Z = 0, goto LOOP label ; If Z = 1, exit LOOP

F00	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
INDF		INDF								
R/W										
Reset	-	_	-	_	-	-	-	_		

F00.7~0 **INDF:** Not a physical register, addressing INDF actually point to the F-Plane register whose address is contained in the FSR register

F04	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FSR	GB3				FSR			
R/W								
Reset	0	0	0	0	0	0	0	0

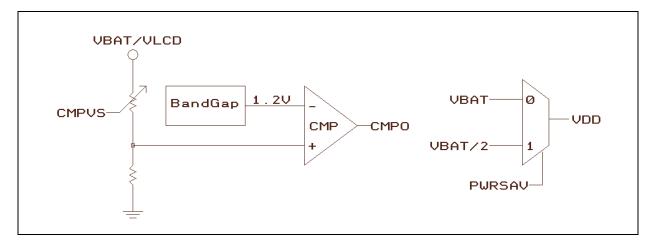
F04.7 **GB3:** General purpose bit

F04.6~0 FSR: F-Plane file select register, indirect address mode pointer

F1C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
RSR		RSR								
R/W										
Reset	0	0	0	0	0	0	0	0		

F1C.7~0 **RSR:** R-Plane file select register, indirect address mode pointer

R00	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
INDR		INDR								
R/W										
Reset	-	-	-	-	-	_	_	_		


R00.7~0 **INDR:** Not a physical register, addressing INDR actually point to the R-Plane register whose address is contained in the RSR register

4. Power Management

 V_{BAT} is the power supply for this chip. The typical condition is $V_{BAT}=3V$ for M5610 and $V_{BAT}=1.5V$ for M5615. V_{DD} is the internal voltage level for chip operation. User must keep $1.3V < V_{DD} < 3.6V$ for the device's proper operation. The "PWRSAV" control bit can set $V_{DD}=V_{BAT}/2$ for M5610, but it's not valid for M5615.

The internal 1.2V BandGap module provides accuracy voltage reference for the Low Battery Detection (LBD) function. The V_{BAT} (M5610) or V_{LCD} (M5615) is divided by resistors to a certain level then compare to the BandGap voltage. Since M5615 compare V_{LCD} for LBD ($V_{LCD}=V_{BAT}*2$), user must turn on LCD and wait V_{LCD} stable before using this function. The BandGap and Comparator consume unneglect current, so user should not use them too often. Because V_{BAT} voltage level changes very slowly, user can detect it once an hour or once a day to reduce current consumption.

F0E	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LBDCTL	CMPO	CMPVS			-	PWRSAV	PUMPCKS	_
R/W	R	R/W	R/W	R/W		R/W	R/W	_
Reset	I	0	0	0	-	0	0	_

F0E.7 **CMPO:** Compare result of BandGap voltage and V_{BAT}/V_{LCD} voltage divider. CMPO=1 means the V_{BAT}/V_{LCD} divider voltage is higher. *Note:* M5615 must turn on LCD for this function.

F0E.2 **PWRSAV:** Power saving control for M5610. *Note:* M5615 must keep PWRSAV=0

- 0: Disable, $V_{DD} = V_{BAT}$
- 1: Enable, $V_{DD} = V_{BAT}/2$

F0E.6~4 **CMPVS:** Select V_{BAT}/V_{LCD} resistor divider for Comparator input to compare with the 1.2V Bandgap reference voltage.

^{000:} Comparator and Bandgap Disable

^{001:} detect if M5610's V_{BAT} >2.4V; detect if M5615's V_{BAT} >1.20V

^{010:} detect if M5610's V_{BAT} >2.5V; detect if M5615's V_{BAT} >1.25V

^{011:} detect if M5610's V_{BAT} >2.6V; detect if M5615's V_{BAT} >1.30V

^{100:} detect if M5610's V_{BAT} >2.7V; detect if M5615's V_{BAT} >1.35V

^{101:} detect if M5610's V_{BAT} >2.8V; detect if M5615's V_{BAT} >1.40V

^{110:} detect if M5610's V_{BAT} >2.9V; detect if M5615's V_{BAT} >1.45V

^{111:} detect if M5610's V_{BAT} >3.0V; detect if M5615's V_{BAT} >1.50V

5. Reset

This device can be reset in four ways. The TO and PD flags at status register (STATUS) can indicate system reset status. The SYSCFG controls the Reset functionality.

- Power-On-Reset (POR)
 - M5610 (2V@25°C, 2.4V@-40°C)
 - M5615 (1.29V@25°C , 1.4V@0°C)
- Low Voltage Reset (LVR)

M5610: 1.7V; M5615: 1.25V (Default enable, can be disable by FW setting) (M5615 is recommended to disable LVR function by LVROFF after power on)

- External Pin Reset (PA7)
- Watchdog Reset (WDT)

Clocked by built-in RC oscillator

0.8 second or 0.4 second @ V_{DD} =3V; 1.6 second or 0.8 second @ V_{DD} =1.5V

Runs in Fast/Slow mode, stops in IDLE/STOP mode

F03	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STATUS	GB2	GB1	GB0	ТО	PD	Z	DC	С
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W
Reset	0	0	0	Ι	-	0	0	0

F03.4 **TO:** WDT Time Out Flag

0: after Power On Reset, LVR Reset, or CLRWDT / SLEEP instructions 1: WDT time out occurs

F03.3 **PD:** Power Down Flag 0: after Power On Reset, LVR Reset, or CLRWDT instruction 1: after SLEEP instruction

R04	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
WDTCLR	WDTCLR									
R/W		W								
Reset		-	-			-	—	-		

R04.7~0 WDTCLR: Write this register to clear WDT (=CLRWDT instruction)

R0A	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
LVROFF	LVROFF									
R/W		W								
Reset	I	_	-	-	-		-	-		

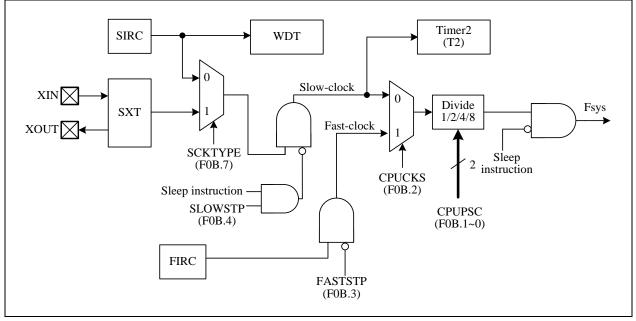
R0A.7~0 **LVROFF:** Write this register with 0x37 to force LVR disable (We proposed M5615 to disable LVR after power on)

R08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCTL	PWMCKS	T2F	PSC		PWMPSC	PWMNOE	WDTPSC	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	0	0	0	0	0	0	0

R08.1~0 WDTPSC: WDT timeout select

0: 0.8 second $@V_{DD}=3V$, 1.6 second $@V_{DD}=1.5V$

1: 0.4 second @ V_{DD} =3V, 0.8 second @ V_{DD} =1.5V



6. Clock Circuitry and Operation Mode

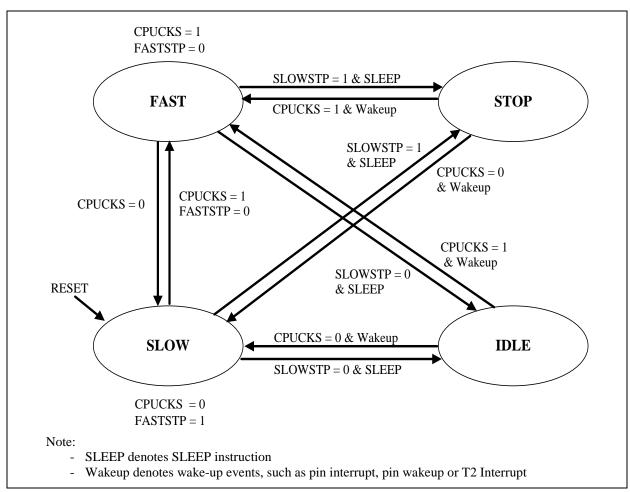
There are three kinds of system clock source.

- **SIRC** (Slow Internal RC, 80KHz $@V_{DD}=3V$, 40KHz $@V_{DD}=1.5V$)
- **SXT** (Slow Crystal, 32KHz)
- **FIRC** (Fast Internal RC, 3.8MHz $@V_{DD}=3V$, 1.3MHz $@V_{DD}=1.5V$)

The device is designed with dual-clock system. During runtime, user can directly switch the System clock between Fast-clock (FIRC) and Slow-clock (SIRC or SXT). It also can directly select a clock divider of 1, 2, 4, or 8. The CLKCTL (F0B) SFR controls the System clock operating. H/W automatically blocks the S/W abnormally setting for this register. S/W can only change the Slow-clock type in Fast mode. Never to write both FASTSTP=1 & CPUCKS=1. It is recommended to write this SFR bit by bit.

Clock Scheme Block Diagram

There are four operation modes for this device.


SLOW Mode: After power-on or reset, device enters SLOW mode. In this mode, the Fast-clock should be stopped (by FASTSTP=1, for power saving) and Slow-clock is enabled. The default Slow-clock is SIRC.

FAST Mode: In this mode, the program is executed using Fast-clock as CPU clock.

IDLE Mode: If Slow-clock is enabled (SLOWSTP=0) and T2CKS=0 before executing the SLEEP instruction, the CPU enters the IDLE mode. In this mode, the Slow-clock source keeps T2 block running. CPU stop fetching code and all blocks are stop except T2 related circuits. Idle mode is terminated by Reset or enabled Interrupts wake up.

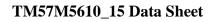
STOP Mode: If Slow-clock is disabled before executing the SLEEP instruction, every block is turned off and the device enters the STOP mode after executing the SLEEP instruction. Stop Mode can be terminated by Reset or pin wake up.

CPU Operation Block Diagram

 \bigcirc Example: Switch operating mode from SLOW mode to FAST mode

BCF	FASTSTP	; Enable Fast-clock
BSF	CPUCKS	; Switch system clock source to Fast-clock

 \bigcirc Example: Switch operating mode from FAST mode to SLOW mode


BCF	SLOWSTP	; Enable Slow-clock
BCF	CPUCKS	; Switch system clock source to Slow-clock
BSF	FASTSTP	; Stop Fast-clock

 \bigcirc Example: Switch operating mode to IDLE mode

BCF	SLOWSTP	; Enable Slow-clock
SLEEP		; Enter IDLE mode

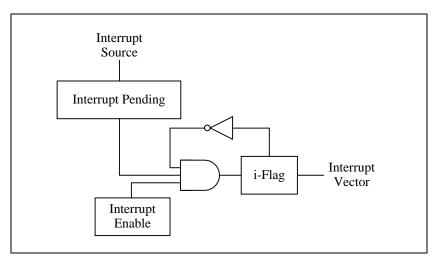
 \bigcirc Example: Switch operating mode to STOP mode

BSF	SLOWSTP	; Stop Slow-clock
SLEEP		; Enter STOP mode

F0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
CLKCTL	SCKTYPE		GAIN	SLOWSTP	FASTSTP	CPUCKS		PSC			
R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W			
Reset	0	1	1	0	1	0	1	1			
F0B.7	 B.7 SCKTYPE: Slow-clock type, this bit can be changed only in Fast mode (SELFCK=1). 0: SIRC 1: SXT, also set PA3 and PA4 as crystal oscillator pins. <i>Note:</i> In SXT mode, user should set the PA3 and PA4 pins as Input with Pull-up (Mode 0). 										
F0B.6~5											
F0B.4	SLOWSTP: Slow-clock Stop control 0: Slow-clock run 1: Slow-clock stop										
F0B.3	FASTSTP: 1 0: Fast-cloc 1: Fast-cloc	k run	op control, T	his bit can be	changed onl	y when CPU	CKS=0				
F0B.2	CPUCKS: S 0: Slow-clo 1: Fast-cloc	ck	(Fsys) select	ion, This bit o	can be change	ed only when	FASTSTP=	0			
F0B.1~0	CPUPSC: S 00: divided 01: divided 10: divided 11: divided	by 8 by 4 by 2	source presca	ıler.							
R03	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			

R03	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWRDN	PWRDN									
R/W		W								
Reset	I	_	-	—	-	—	_	-		

R03.7~0 **PWRDN:** Write this register (=SLEEP instruction) to enter IDLE or STOP Mode



7. Interrupt

This device has 1 level, 1 vector and 6 interrupt sources. Each interrupt source has its own enable control bit. An interrupt event will set its individual pending flag, no matter its enable control bit is 0 or 1.

If the corresponding interrupt enable bit has been set (INTIE), it would trigger CPU to service the interrupt. CPU accepts interrupt in the end of current executed instruction cycle. In the mean while, a "CALL 001" instruction is inserted to CPU, and i-flag is set to prevent recursive interrupt nesting.

The i-flag is cleared in the instruction after the "RETI" instruction. That is, at least one instruction in main program is executed before service the pending interrupt. The interrupt event is level triggered. F/W must clear the interrupt event register while serving the interrupt routine.

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	_	—	RFCIE	TM0IE	T2IE	INT2IE	INT1IE	INT0IE
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

F08.5	RFCIE: RFC interrupt enable
	0: disable
	1: enable
F08.4	TM0IE: Timer0 interrupt enable
	0: disable
	1: enable
F08.3	T2IE: Timer2 interrupt enable
	0: disable
	1: enable
F08.2	INT2IE: INT2 (PA7) interrupt enable
	0: disable
	1: enable
F08.1	INT1IE: INT1 (PB0) interrupt enable
	0: disable
	1: enable
F08.0	INTOIE: INTO (PA0) interrupt enable
	0: disable
	1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
INTIF	_	-	RFCIF	TM0IF	T2IF	INT2IF	INT1IF	INT0IF			
R/W	—	_	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	—	-	0	0	0	0	0	0			
F09.5 RFCIF: RFC counter overflow interrupt event pending flag Set by H/W while RFC counter overflow, clear by S/W writing 0xDF to INTIF											
F09.4	609.4 TM0IF: Timer0 interrupt event pending flag Set by H/W while Timer0 overflows, clear by S/W writing 0xEF to INTIF										
F09.3	F09.3 T2IF: Timer2 interrupt event pending flag Set by H/W while Timer2 overflows, clear by S/W writing 0xF7 to INTIF										
F09.2	INT2IF: INT2 (PA7) pin interrupt pending flag Set by H/W at INT2 pin's falling/rising edge, clear by S/W writing 0xFB to INTIF										
F09.1	INT1IF: INT Set by H/W				r by S/W wri	ting 0xFD to	INTIF				
F09.0	INTOIF: IN Set by H/W				r by S/W wri	ting 0xFE to	INTIF				
F0C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
MF0C	T2CLR	T2CKS	TM0STP	_	_	INT2EDG	INT1EDG	INT0EDG			
R/W	R/W	R/W	R/W	_	_	R/W	R/W	R/W			
Reset	0	0	0	—	—	0	0	0			
F0C.2 INT2EDG: INT2 pin (PA7) interrupt trigger edge select 0: falling edge to trigger 1: rising edge to trigger											

1: rising edge to trigger INT1EDG: INT1 pin (PB0) interrupt trigger edge select F0C.1 0: falling edge to trigger 1: rising edge to trigger

F0C.0 INT0EDG: INT0 pin (PA0) interrupt trigger edge select

0: falling edge to trigger

1: rising edge to trigger

8. I/O Port

I/O pins can be used as Schmitt-trigger input, CMOS push-pull output, or Open-drain output. The pull-up resistor is assignable to PA0~7 by S/W setting. To use the pin in Schmitt-trigger input mode, S/W needs to set the I/O pin to Mode0 or Mode1 and the corresponding port data PxD=1. Reading the pin data (PxD) has different meaning. In "Read-Modify-Write" instruction, CPU actually reads the output data register. In the others instructions, CPU reads the pin state. The so-called "Read-Modify-Write" instruction includes BSF, BCF and all instructions using F-Plane as destination.

The operations of four pin modes are listed as below. PA0~PA6 supports all 4 pin modes, PB0~PB3 supports Mode 1 (only Input without Pull-up, not include Open Drain function) and Mode2~3, PA7 only supports Mode 0~1.

Pin Mode	Pin function	PxD SFR data	Pin State	Resistor Pull-up	Digital Input
Mode 0	Open Drain Output Low	0	Drive Low	Ν	Ν
Mode 0	Input with Pull-up	1	Pull-High	Y	Y
Mode 1	Open Drain Output Low	0	Drive Low	Ν	Ν
Nioue 1	Input without Pull-up	1	Hi-Z	Ν	Y
Modo 2	CMOS Push-Pull Output	0	Drive Low	Ν	Ν
Mode 2	CMOS Fusil-Full Output	1	Drive High	Ν	Ν
Mode 3	Alternative function, such as LCD, PWM and RFC	1	_	Ν	Ν

I/O Pin Function Table


Beside general purposed I/O port function, each pin may have one or more alternative functions.

Pin Name	Interrupt	LCD	RFC	Others	Mode3
PA0	INT0		RFC1R		RFC1R
PA1			RFC2R	PWMN	RFC2R
PA2			RFC0R		RFC0R
PA3				XOUT	
PA4				XIN	
PA5			RFCX		RFCX
PA6				PWMP	PWMP
PA7	INT2			nRST	
PB0	INT1	SEG11			SEG11
PB1		SEG10			SEG10
PB2		SEG9			SEG9
PB3		SEG8			SEG8

I/O Pin multi-function Table

Note: In SXT mode, user should set the PA3 and PA4 pins as Input with Pull-up (Mode 0).

I/O Port Structure

F05	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PAD		PAD							
R/W									
Reset	1	1	1	1	1	1	1	1	

F05.7~0 **PAD:** PA7~PA0 data

R05	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PAMODH	-	PA7MOD	PA6MOD		PA5MOD		PA4MOD			
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset		0	0	1	0	1	0	1		
D05 (

R05.6 **PA7MOD:** PA7 pin mode 0: Mode0, open-drain I/O with internal pull-up 1: Mode1, open-drain I/O without internal pull-up

- R05.5~4 PA6MOD: PA6 pin mode 00: Mode0, open-drain I/O with internal pull-up 01: Mode1, open-drain I/O without internal pull-up 10: Mode2, port data CMOS push-pull output 11: Mode3, PWMP CMOS push pull output
 R05.3~2 PA5MOD: PA5 pin mode 00: Mode0, open-drain I/O with internal pull-up
 - 01: Model, open-drain I/O without internal pull-up
 - 10: Mode2, port data CMOS push-pull output
 - 11: Mode3, RFCX input

R05.1~0 **PA4MOD:** PA4 pin mode

- 00: Mode0, open-drain I/O with internal pull-up
 - 01: Mode1, open-drain I/O without internal pull-up
 - 10: Mode2, port data CMOS push-pull output

R06	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PAMODL	PA31	MOD	PA2N	MOD	PA11	MOD	PA0MOD				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	1	0	1	0	1	0	1			
R06.7~6	PA3MOD: PA3 pin mode 00: Mode0, open-drain I/O with internal pull-up 01: Mode1, open-drain I/O without internal pull-up 10: Mode2, port data CMOS push-pull output										
R06.5~4											
R06.3~2	PA1MOD: PA1 pin mode 00: Mode0, open-drain I/O with internal pull-up 01: Mode1, open-drain I/O without internal pull-up 10: Mode2, port data CMOS push-pull output										
R06.1~0	 11: Mode3, RFC2R output PA0MOD: PA0 pin mode 00: Mode0, open-drain I/O with internal pull-up 01: Mode1, open-drain I/O without internal pull-up 10: Mode2, port data CMOS push-pull output 11: Mode3, RFC1R output 										

F06	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBD	_	-	-	_	PBD			
R/W	_	—	-	_	R/W	R/W	R/W	R/W
Reset	_	_	-	_	1	1	1	1

F06.3~0 **PBD:** PB3~PB0 data

R07	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBMODL	PB31	MOD	PB2MOD		PB1MOD		PB0MOD	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	1	0	1	0	1	0	1

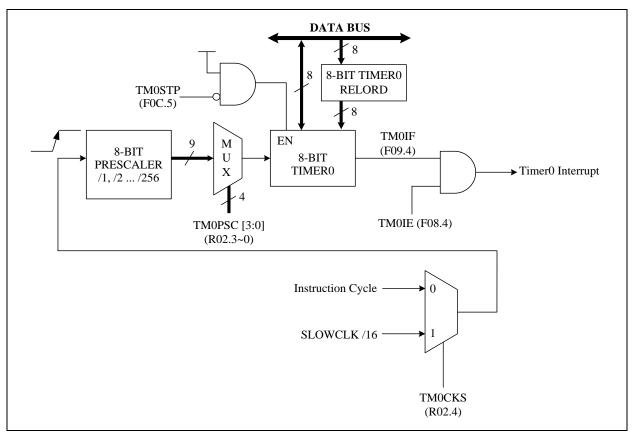
R07.7~6 **PB3MOD:** PB3 pin mode

0x: Mode1, input without internal pull-up

10: Mode2, port data CMOS push-pull output

11: Mode3, LCD SEG8 output

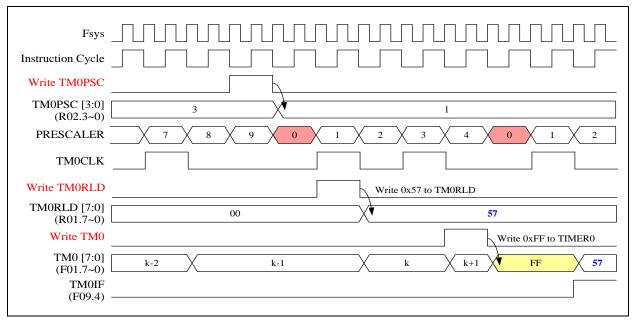
R07.5~4 **PB2MOD:** PB2 pin mode 0x: Mode1, input without internal pull-up 10: Mode2, port data CMOS push-pull output 11: Mode3, LCD SEG9 output


- R07.3~2 **PB1MOD:** PB1 pin mode 0x: Mode1, input without internal pull-up 10: Mode2, port data CMOS push-pull output
 - 11: Mode3, LCD SEG10 output
- R07.1~0 **PB0MOD:** PB0 pin mode 0x: Mode1, input without internal pull-up 10: Mode2, port data CMOS push-pull output 11: Mode3, LCD SEG11 output

9. Timers

9.1 Timer0

The Timer0 is an 8-bit wide register of F-Plane 01h (TM0). It can be read or written the same way as any other register of F-Plane. Besides, Timer0 increases itself according to the pre-scaled clock source, which comes from the instruction cycle or Slow-clock divided by 16. The Timer0 increase rate is determined by "Timer0 Pre-Scale" (TM0PSC). The Timer0 sets TM0IF flag and reloads itself with TM0RLD when Timer0's count overflows. It generates Timer0 Interrupt if (TM0IE) is set. Timer0 can be stopped counting if the TM0STP bit is set.



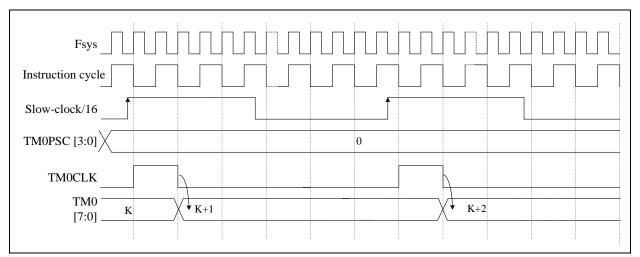
Timer0 Block Diagram

The following timing diagram describes the Timer0 works in pure Timer mode.

When the Timer0 prescaler (TM0PSC) is written, the internal 8-bit prescaler will be cleared to 0 to make the counting period correct at the first Timer0 count. TM0CLK is the internal signal that causes the Timer0 to increase by 1 at the end of TM0CLK. TM0WR is also the internal signal that indicates the Timer0 is directly written by instruction; meanwhile, the internal 8-bit prescaler will be cleared. When Timer0 counts from FFh to TM0RLD, TM0IF (Timer0 Interrupt Flag) will be set to 1 and generate interrupt if TM0IE (Timer0 Interrupt Enable) is set.

Timer0 works in Timer mode (TM0CKS=0)

The equation of TM0 interrupt time value is as following:


TM0 interrupt interval cycle time=Instruction cycle time/TM0PSC/ (256-TM0)

 \bigcirc Example: Setup TM0 work in Timer mode

; Setup TM0 clock sour	ce and divider	
MOVLW	0000 <u>0101</u> B	; R02.4 = 0, Setup TM0 clock=Instruction cycle
MOVWR	R02	; R02.3~0=5 (TM0PSC)
		; TM0 clock prescaler=Instruction cycle divided by 32
; Set TM0 timer.		
BSF	TM0STP	; Disable TM0 counting (Default "0").
MOVLW	156	
MOVWF	TM0	; Write 156 into TM0 register of F-Plane. (F01)
MOVLW	124	
MOVWR	TMORLD	; Write 124 into TM0RLD register of R-Plane. (R01)
; Enable TM0 timer and		
MOVLW	111 <u>0</u> 1111B	; Clear TM0 request interrupt flag by byte operation
MOVWF	INTIF	; F-Plane 09H
MOVLW	000 <u>1</u> 0000B	; Enable TM0 interrupt function
MOVWR	INTIE	; F-Plane 08H
BCF	TM0STP	; Enable TM0 counting (Default "0").

If TM0CKS=1, Timer0's clock source is switched to "Slow-clock divided by 16", which is synchronized by instruction cycle. That means the Fsys must be faster than Slow-clock/4 for proper operation.

TM0CKS=1, Timer0 clock source is Slow-clock/16

F01	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0		TMO						
R/W								
Reset	0	0	0	0	0	0	0	0

F01 **TM0:** Timer0 data

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	_	-	RFCIE	TM0IE	T2IE	INT2IE	INT1IE	INTOIE
R/W	_	-	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

F08.4 **TM0IE:** Timer0 interrupt enable 0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	_	-	RFCIF	TM0IF	T2IF	INT2IF	INT1IF	INTOIF
R/W	—		R/W	R/W	R/W	R/W	R/W	R/W
Reset	—	_	0	0	0	0	0	0

F09.4 **TM0IF:** Timer0 interrupt event pending flag Set by H/W while Timer0 overflows, clear by S/W writing 0xEF to INTIF

F0C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF0C	T2CLR	T2CKS	TM0STP	-	—	INT2EDG	INT1EDG	INT0EDG
R/W	R/W	R/W	R/W	_	_	R/W	R/W	R/W
Reset	0	0	0	_	_	0	0	0

F0C.5 **TM0STP:** Timer0 counter stop

0: Timer0 is counting

1: Timer0 stop counting

R01	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0RLD			-	TM0	RLD	-		-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

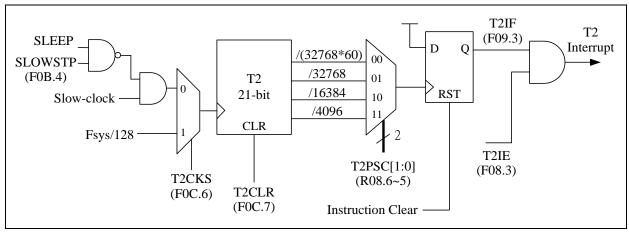
R01 TM0RLD: Timer0 Overflow Reload Data

R02	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0CTL	I	_	_	TM0CKS		TM0	PSC	
R/W	_	_	-	R/W	R/W	R/W	R/W	R/W
Reset		_	_	0	0	0	0	0

R02.4 **TM0CKS:** Timer0 clock source 0: Instruction cycle

1: Slow-clock /16

R02.3~0 TM0PSC: Timer0 prescaler, clock source divided by


0000: /1 0001: /2 0010: /4 0011: /8 0100: /16 0101: /32 0110: /64 0111: /128

1xxx: /256

9.2 Timer2

Timer2 (T2) is a 21-bit timer and the clock sources are from either Fsys/128 or Slow-clock. The clock source is used to generate time base interrupt and T2 module clock. It is selected by T2CKS (F0C.6). The T2's 21-bit content cannot be read by instructions. It generates interrupt flag T2IF (F09.3) with the clock divided by 32768*60, 32768, 16384, or 4096 depends on the T2PSC[1:0] (R08.6~5) bits. The following figure shows the block diagram of T2.

T2 Block Diagram

♦ Example: CPU is running at FAST mode, Fsys=Fast-clock=FIRC, Slow-clock source is SXT ; Setup T2 clock source and divider

BCF T2CKS MOVLW 0<u>01</u>00000B MOVWR R08 BSF T2CLR

; T2CKS=0, T2 clock source is Slow-clock

; T2PSC=01b, divided by 32768 ; T2CLR=1, clear T2 counter

; Enable T2 interrupt	function
MOVLŴ	1111 <u>0</u> 111B
MOVWF	INTIF
BSF	T2IE

; Clear T2 request interrupt flag ; Enable T2 interrupt function

T2 clock source is Slow-clock = 32 KHz, T2 divided by 32768 T2 interrupt period =1 second

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	-	_	RFCIE	TM0IE	T2IE	INT2IE	INT1IE	INTOIE
R/W	I	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	-	_	0	0	0	0	0	0

F08.3 **T2IE:** Timer2 interrupt enable

0: disable

1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	-	-	RFCIF	TM0IF	T2IF	INT2IF	INT1IF	INTOIF
R/W	-		R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	-	0	0	0	0	0	0

F09.3 **T2IF:** Timer2 interrupt event pending flag

Set by H/W while Timer2 overflows, clear by S/W writing 0xF7 to INTIF

F0C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF0C	T2CLR	T2CKS	TM0STP	-	-	INT2EDG	INT1EDG	INT0EDG
R/W	R/W	R/W	R/W	-		R/W	R/W	R/W
Reset	0	0	0	_	_	0	0	0

F0C.7 **T2CLR**: T2 counter clear

0: T2 is counting

1: T2 is cleared and TM2TGL=1, this bit is auto cleared by H/W

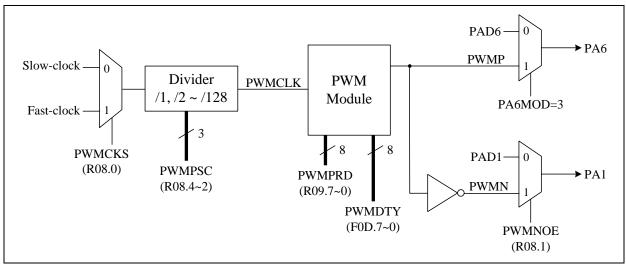
F0C.6 **T2CKS:** T2 clock source selection 0: Slow-clock 1: Fsys/128

R08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCTL	PWMCKS	T2H	PSC		PWMPSC		PWMNOE	WDTPSC
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	0	0	0	0	0	0	0

R08.6~5 T2PSC: T2 prescaler. T2 interrupt is T2 clock divided by

00: /(32768*60)

01:/32768


10: /16384

11:/4096

10. PWM

The PWM can select Fast-clock or Slow-clock as its clock source, with divided by 1~128 prescaler. The PWM period is adjustable by PWMPRD and its 256 step duty cycle is controlled by PWMDTY. The PWMP and PWMN are positive and negative CMOS output pairs to pins.

PWM Block Diagram

 \bigcirc Example: Slow-clock = SXT 32768Hz

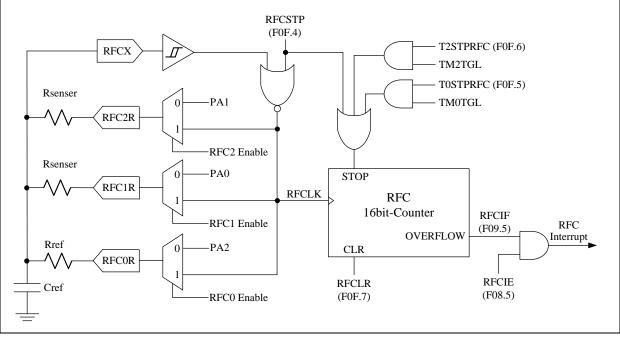
; Setup PWMP a 512Hz, 50% duty cycle output

MOVLW	<u>0</u> 00 <u>111</u> 00B	; PWMCKS=0, PWMPSC=111
MOVWR	PWMCTL	; PWMCLK=Slow-clock/1=32768Hz
MOVLW MOVWR	63 PWMPRD	; Set PWM period = 63 + 1 = 64
MOVLW MOVWF	32 PWMDTY	; Set PWM duty = 32
MOVLW	00 <u>11</u> 0000B	; PA6MOD=3
MOVWR	PAMODH	; PWMP output to PA6 pin

PWM clock frequency = Slow-clock / PWMPSC = 32768Hz / 1 = 32768HzPWM output frequency = PWMCLK / (PWMPRD + 1) = 32768Hz / (63 + 1) = 512 HzPWM duty cycle = PWMDTY / (PWMPRD + 1) = 32 / (63 + 1) = 50%

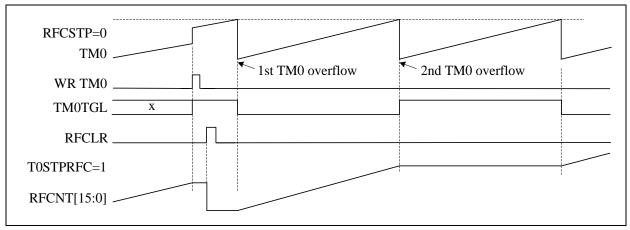
R08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCTL	PWMCKS	T2F		DII 4	PWMPSC	DIL 2	PWMNOE	WDTPSC
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	K/ W	0 K/ W	K/ W	K/ W	0 K/W	K/W	6 K/ W	0 K/ W
Reset	1	0	0	0	0	0	0	0
R08.7	PWMCKS: 0: Slow-clo 1: Fast-cloc	ock	source select					
R08.4~2 R08.1	001: PWM 010: PWM 011: PWM 100: PWM 101: PWM 110: PWM	clock is Slov clock is Slov	v/Fast clock of v/Fast clock of	livided by 64 livided by 32 livided by 16 livided by 8 livided by 4 livided by 2 livided by 1	2			
100.1	0: disable 1: enable	r wivin outp		1				
F0D	0: disable	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
F0D	0: disable 1: enable		-			Bit 2	Bit 1	Bit 0
F0D	0: disable 1: enable		-	Bit 4	IDTY	Bit 2	Bit 1	Bit 0
F0D PWMDTY	0: disable 1: enable		-	Bit 4 PWM	IDTY	Bit 2	Bit 1	Bit 0 0
F0D PWMDTY R/W Reset	0: disable 1: enable Bit 7	Bit 6	Bit 5	Bit 4 PWM R/ 0	IDTY W 0	0	0	
F0D PWMDTY R/W Reset	0: disable 1: enable Bit 7	Bit 6	Bit 5	Bit 4 PWM R/ 0 K, 80h=128 Bit 4	IDTY W 0 PWMCLK, F Bit 3	0	0	
F0D PWMDTY R/W Reset F0D.7~0 R09 PWMPRD	0: disable 1: enable Bit 7 1 PWMDTY:	Bit 6 0 PWM duty, (Bit 5 0)=0 PWMCL	Bit 4 PWM R/ 0 K, 80h=128 Bit 4 PWM	IDTY W 0 PWMCLK, F Bit 3 IPRD	0 FFh=255 PW	0 /MCLK	0
F0D PWMDTY R/W Reset F0D.7~0 R09 PWMPRD R/W	0: disable 1: enable Bit 7 1 PWMDTY: Bit 7	Bit 6 0 PWM duty, (Bit 6	Bit 5 0 0=0 PWMCL Bit 5	Bit 4 PWM R/ 0 K, 80h=128 Bit 4 PWM R/	IDTY W 0 PWMCLK, F Bit 3 IPRD W	0 FFh=255 PW Bit 2	0 /MCLK Bit 1	0 Bit 0
F0D PWMDTY R/W Reset F0D.7~0 R09 PWMPRD	0: disable 1: enable Bit 7 1 PWMDTY:	Bit 6 0 PWM duty, (Bit 5 0)=0 PWMCL	Bit 4 PWM R/ 0 K, 80h=128 Bit 4 PWM	IDTY W 0 PWMCLK, F Bit 3 IPRD	0 FFh=255 PW	0 /MCLK	0
F0D PWMDTY R/W Reset F0D.7~0 R09 PWMPRD R/W Reset	0: disable 1: enable Bit 7 1 PWMDTY: Bit 7	Bit 6 0 PWM duty, (Bit 6	Bit 5 0 0=0 PWMCL Bit 5 1	Bit 4 PWM R/ 0 K, 80h=128 Bit 4 PWM R/ 1	IDTY W 0 PWMCLK, F Bit 3 IPRD W 1	0 FFh=255 PW Bit 2 1	0 /MCLK Bit 1	0 Bit 0
F0D PWMDTY R/W Reset F0D.7~0 R09 PWMPRD R/W Reset	0: disable 1: enable Bit 7 1 PWMDTY: Bit 7 1 1	Bit 6 0 PWM duty, (Bit 6	Bit 5 0 0=0 PWMCL Bit 5 1	Bit 4 PWM R/ 0 K, 80h=128 Bit 4 PWM R/ 1	IDTY W 0 PWMCLK, F Bit 3 IPRD W 1	0 FFh=255 PW Bit 2 1	0 /MCLK Bit 1	0 Bit 0
F0D PWMDTY R/W Reset F0D.7~0 R09 PWMPRD R/W Reset R09.7~0	0: disable 1: enable Bit 7 1 PWMDTY: Bit 7 1 PWMPRD:	Bit 6 0 PWM duty, (Bit 6 1 PWM period	Bit 5 0)=0 PWMCL Bit 5 1 , FFh=256 P ¹	Bit 4 PWM R/ 0 K, 80h=128 Bit 4 PWM R/ 1 WMCLK, 7F Bit 4	IDTY W 0 PWMCLK, F Bit 3 IPRD W 1 h=128 PWM	0 FFh=255 PW Bit 2 1 CLK Bit 2	0 /MCLK Bit 1 1	0 Bit 0 1 Bit 0
F0D PWMDTY R/W Reset F0D.7~0 R09 PWMPRD R/W Reset R09.7~0 R05	0: disable 1: enable Bit 7 1 PWMDTY: Bit 7 1 PWMPRD:	Bit 6 0 PWM duty, 0 Bit 6 1 PWM period Bit 6	Bit 5 0 0=0 PWMCL Bit 5 1 , FFh=256 P Bit 5	Bit 4 PWM R/ 0 K, 80h=128 Bit 4 PWM R/ 1 WMCLK, 7F Bit 4	IDTY W 0 PWMCLK, F Bit 3 IPRD W 1 h=128 PWM Bit 3	0 FFh=255 PW Bit 2 1 CLK Bit 2	0 /MCLK Bit 1 1 Bit 1	0 Bit 0 1 Bit 0

R05.5~4 **PA6MOD:** PA6 pin mode


00: Mode0, open-drain I/O with internal pull-up 01: Mode1, open-drain I/O without internal pull-up

10: Mode2, port data CMOS push-pull output 11: Mode3, PWMP CMOS push pull output

11. Resistance to Frequency Converter (RFC)


The RFC module contains RC oscillator and RFC counter. The RFC-clock comes from the oscillation circuitry built by RFCX pin and RFC0R, RFC1R or RFC2R pins.

RFC Block Diagram

The 16-bit RFC counter can stop by Timer0 or Timer2's overflow control. This function helps the RFC counter to count the RFC clock with more accuracy by H/W automatically start and stop. The steps of this usage are described below.

- 1. RFCSTP=0, T0STPRFC=1, T2STPRFC=0
- 2. Write Timer0 to setup a suitable overflow. Meanwhile, HW auto set TM0TGL=1 and RFCNT stops.
- 3. Clear RFCNT[15:0] by RFCLR=1
- 4. After the 1st Timer0 overflow, TM0TGL=0 and RFCNT start counting
- 5. Wait for the 2nd Timer0 overflow, TM0TGL=1 and RFCNT stops again, then read RFCNT data.

TM0 control RFC

F0F	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
RFCTL	RFCLR	T2STPRFC	T0STPRFC	RFCSTP	_	_	RFC	CHS			
R/W	R/W	R/W	R/W	R/W	_	-	R/W	R/W			
Reset	1	0	0	1	-	_	0	0			
F0F.7	F.7 RFCLR: clear RFC counter 0: RFC counter run 1: RFC counter clear										
F0F.6	T2STPRFC 0: disable 1: enable										
F0F.5	T0STPRFC 0: disable 1: enable	: Timer0 ove	rflow toggle	signal (TM0	ΓGL) to stop	RFC counter					
F0F.4	0: RFC cou	RFCSTP: S/W stop RFC counter and oscillator 0: RFC counter and oscillator run 1: RFC counter and oscillator stop									
F0F.1~0	RFCHS: select RFC oscillator channel 00: RFC0R (PA2) 01: RFC1R (PA0) 10: RFC2R (PA1)										
F11	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			

F11	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RFCNTH				RFC	NTH	-		-
R/W	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

F11.7~0 **RFCNTH:** RFC counter high byte, RFCNT[15:8]

F12	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RFCNTL			-	RFC	NTL	-	-	-
R/W	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

F12.7~0 **RFCNTL:** RFC counter low byte, RFCNT[7:0]

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE		-	RFCIE	TM0IE	T2IE	INT2IE	INT1IE	INTOIE
R/W	-	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	I	-	0	0	0	0	0	0

F08.5 **RFCIE:** RFC interrupt enable

0: disable

1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	I	-	RFCIF	TM0IF	T2IF	INT2IF	INT1IF	INTOIF
R/W	-	—	R/W	R/W	R/W	R/W	R/W	R/W
Reset	I	_	0	0	0	0	0	0

F09.5

RFCIF: RFC counter overflow interrupt event pending flag Set by H/W while RFC counter overflow, clear by S/W writing 0xDF to INTIF

12. LCD Driver

The 1/2 Bias LCD Driver is capable of driving LCD panel with 4 COM x 11 SEG or 3 COM x 12 SEG. The typical LCD bias voltage is VL1=1.5V and V_{LCD} =3V, generated by chip internal pump circuit and CUP1, CUP2 and CX pins. For M5610, V_{LCD} = V_{BAT} . For M5615, V_{LCD} = $2*V_{BAT}$. The LCD clock source is Slow-clock. There are 4 LCD frame rate can be selected by SFR.

F10	Bit 7	Bit 6	Bit 6 Bit 5		Bit 3	Bit 2	Bit 1	Bit 0
LCDCTL	LCDON	LCD	FRM	LCDUTY	_	_	-	-
R/W	R/W	R/W	R/W R/W		_	_	_	—
Reset	0	1	0	1	_	_	-	—

F10.7 **LCDON:** LCD driver enable 0: disable

1: enable

- F10.6~5 LCDFRM: LCD frame rate, calculated by Slow-clock=32768Hz 00: 64Hz for 1/4 duty, 85Hz for 1/3 duty 01: 32Hz for 1/4 duty, 43Hz for 1/3 duty 10: 16Hz for 1/4 duty, 21Hz for 1/3 duty
 F10.4 LCDUTY: LCD duty
- F10.4 **LCDUTY:** LCD duty 0: 1/3 duty 1: 1/4 duty

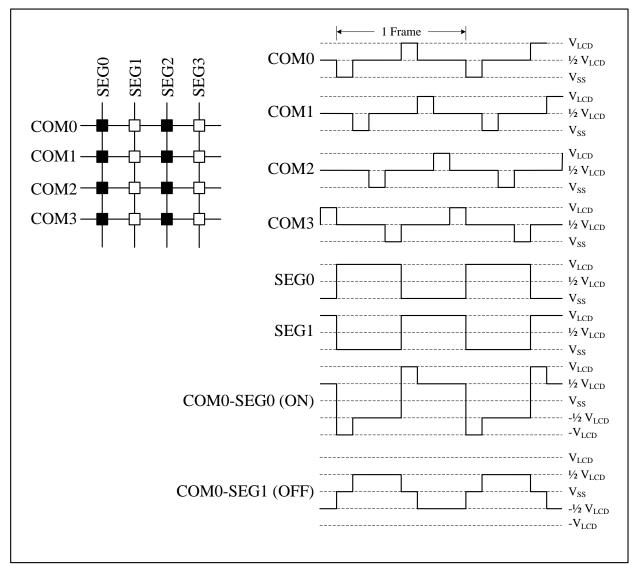
R07	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBMODL	PB31	MOD	PB2MOD		PB1MOD		PB0MOD	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	1	0	1	0	1	0	1

- R07.7~6 PB3MOD: PB3 pin mode
 0x: Mode1, input without internal pull-up
 10: Mode2, port data CMOS push-pull output
 11: Mode3, LCD SEG8 output
- R07.5~4 **PB2MOD:** PB2 pin mode 0x: Mode1, input without internal pull-up 10: Mode2, port data CMOS push-pull output 11: Mode3, LCD SEG9 output
- R07.3~2 **PB1MOD:** PB1 pin mode 0x: Mode1, input without internal pull-up 10: Mode2, port data CMOS push-pull output 11: Mode3, LCD SEG10 output

R07.1~0 **PB0MOD:** PB0 pin mode 0x: Mode1, input without internal pull-up 10: Mode2, port data CMOS push-pull output 11: Mode3, LCD SEG11 output

F0E	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LBDCTL	CMPO		CMPVS		_	PWRSAV	PUMPCKS	_
R/W	R	R/W	R/W	R/W	-	R/W	R/W	_
Reset	I	0	0	0	_	0	0	_

F0E.1 **PUMPCKS:** LCD pump clock select


0: Slow-clock / 4

1: Slow-clock / 8

	COM3	COM2	COM1	COM0	COM3	COM2	COM1	COM0
R-Plane	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
R20	SEG1	SEG1	SEG1	SEG1	SEG0	SEG0	SEG0	SEG0
R21	SEG3	SEG3	SEG3	SEG3	SEG2	SEG2	SEG2	SEG2
R22	SEG5	SEG5	SEG5	SEG5	SEG4	SEG4	SEG4	SEG4
R23	SEG7	SEG7	SEG7	SEG7	SEG6	SEG6	SEG6	SEG6
R24	SEG9	SEG9	SEG9	SEG9	SEG8	SEG8	SEG8	SEG8
R25	SEG11	SEG11	SEG11	SEG11	SEG10	SEG10	SEG10	SEG10

LCDRAM mapping

1/4 Duty, 1/2 Bias LCD driver

MEMORY MAP

F-Plane

Name	Address	R/W	Rst	Description
(F00) INDF	• •			Function related to: F-Plane R/W
INDF	00.7~0	R/W	_	Not a physical register, addressing INDF actually point to the F-Plane register whose address is contained in the FSR register
(F01) TM0				Function related to: Timer0
TM0	01.7~0	R/W	0	Timer0 data
(F02) PCL				Function related to: Program Counter
PCL	02.7~0	R/W	0	Low-byte of Program Counter (PC[7~0])
(F03) STATUS				Function related to: STATUS
GB2	03.7	R/W	0	General purpose bit
GB1	03.6	R/W	0	General purpose bit
GB0	03.5	R/W	0	General purpose bit
ТО	03.4	R	0	WDT timeout flag, set by WDT timeout; cleared by POR, LVR, 'SLEEP' or 'CLRWDT' instruction
PD	03.3	R	0	Power down flag, set by 'SLEEP' instruction; cleared by POR, LVR or 'CLRWDT' instruction
Z	03.2	R/W	0	Zero flag
DC	03.1	R/W	0	Decimal Carry flag
С	03.0	R/W	0	Carry flag
(F04) FSR				Function related to: F-Plane R/W
GB3	04.7	R/W	0	General purpose bit
FSR	04.6~0	R/W	0	F-Plane File Select Register, indirect address mode pointer
(F05) PAD				Function related to: Port A
PAD	05.7~0	R	FF	Port A pin or "data register" state
PAD	03.7~0	W	ГГ	Port A output data register
(F06) PBD				Function related to: Port B
DDD	06.2.0	R	Б	Port B pin or "data register" state
PBD	06.3~0	W	F	Port B output data register
(F08) INTIE				Function related to: Interrupt Enable
RFCIE	08.5	R/W	0	RFC interrupt enable 0: disable 1: enable
TM0IE	08.4	R/W	0	Timer0 interrupt enable 0: disable 1: enable
T2IE	08.3	R/W	0	Timer2 interrupt enable 0: disable 1: enable
INT2IE	08.2	R/W	0	INT2 pin (PA7) interrupt enable 0: disable 1: enable
INT1IE	08.1	R/W	0	INT1 pin (PB0) interrupt enable 1: enable 0: disable
INTOIE	08.0	R/W	0	INT0 pin (PA0) interrupt enable 0: disable 1: enable

Name	Address	R/W	Rst	Description
(F09) INTIF				Function related to: Interrupt Flag
RFCIF	09.5	R	0	RFC counter overflow interrupt event pending flag, Set by H/W while RFC counter overflows
		W		writing 0xDF to INTIF to clear this flag
TM0IF	09.4	R	0	Timer0 interrupt event pending flag, set by H/W while Timer0 overflows
		W		writing 0xEF to INTIF to clear this flag
TOUT	00.2	R	0	Timer2 interrupt event pending flag, set by H/W while WKT time out
T2IF	09.3	W	0	writing 0xF7 to INTIF to clear this flag
INT2IF	09.2	R	0	INT2 (PA7) interrupt event pending flag, set by H/W at INT2 pin's rising/falling edge
		W		writing 0xFB to INTIF to clear this flag
INT1IF	09.1	R	0	INT1 (PB0) interrupt event pending flag, set by H/W at INT1 pin's rising/falling edge
		W		writing 0xFD to INTIF to clear this flag
INTOIF	09.0	R	0	INT0 (PA0) interrupt event pending flag, set by H/W at INT0 pin's rising/falling edge
		W		writing 0xFE to INTIF to clear this flag
(F0A) PCH				Function related to: PROGRAM COUNT
РСН	0A.1~0	R	0	2 MSBs of Program Counter (PC[9:8])
(F0B) CLKCT	L			Function related to: system clock (Fsys)
SCKTYPE	0B.7	R/W	0	Slow-clock Type 0: SIRC 1: SXT
SXTGAIN	0B.6~5	R/W	11	32768 SXT oscillator gain 0: lowest gain 3: highest gain
SLOWSTP	0B.4	R/W	0	Slow-clock Stop control 0: Slow-clock run 1: Slow-clock stop
FASTSTP	0B.3	R/W	1	Fast-clock Stop control 0: Fast-clock run 1: Fast-clock stop
CPUCKS	0B.2	R/W	0	System clock (Fsys) source selection 0: Slow-clock 1: Fast-clock
CPUPSC	0B.1~0	R/W	11	System clock source prescaler. Clock source is divided by 00: /8 01: /4 10: /2 11: /1
(F0C) MF0C	r			Function related to: TM0/T2/Interrupt
T2CLR	0C.7	R/W	0	T2 counter clear 0: T2 is counting 1: T2 is cleared and TM2TGL=1, this bit is auto cleared by H/W
T2CKS	0C.6	R/W	0	T2 clock source selection 0: Slow-clock 1: Fsys/128
TM0STP	0C.5	R/W	0	Timer0 counter stop 0: Timer0 running 1: Timer0 stop
INT2EDG	0C.2	R/W	0	INT2 pin (PA7) interrupt trigger edge select 0: falling edge 1: rising edge
INT1EDG	0C.1	R/W	0	INT1 pin (PB0) interrupt trigger edge select 0: falling edge 1: rising edge
INT0EDG	0C.0	R/W	0	INT0 pin (PA0) interrupt trigger edge select 0: falling edge 1: rising edge

Name	Address	R/W	Rst	Description
(F0D) PWMD	ГҮ			Function related to: PWM
PWMDTY	0D.7~0	R/W	80	PWM duty, 0=0 PWMCLK, 80h=128 PWMCLK, FFh=255 PWMCLK
(F0E) LBDCT	Ĺ			Function related to: LBD/LCD
СМРО	0E.7	R	_	Compare result of BandGap voltage and V_{BAT}/V_{LCD} voltage divider.
CMPVS	0E.6~4	R/W	0	000: Comparator and Bandgap Disable 001: detect if M5610's V_{BAT} >2.4V; detect if M5615's V_{BAT} >1.20V 010: detect if M5610's V_{BAT} >2.5V; detect if M5615's V_{BAT} >1.25V 011: detect if M5610's V_{BAT} >2.6V; detect if M5615's V_{BAT} >1.30V 100: detect if M5610's V_{BAT} >2.7V; detect if M5615's V_{BAT} >1.35V 101: detect if M5610's V_{BAT} >2.8V; detect if M5615's V_{BAT} >1.40V 110: detect if M5610's V_{BAT} >2.9V; detect if M5615's V_{BAT} >1.45V 111: detect if M5610's V_{BAT} >3.0V; detect if M5615's V_{BAT} >1.50V
PWRSAV	0E.2	R/W	0	Power saving control for M5610. 0: Disable, $V_{DD}=V_{BAT}$ 1: Enable, $V_{DD}=V_{BAT}/2$
PUMPCKS	0E.1	R/W	0	LCD pump clock select 0: Slow-clock / 4 1: Slow-clock / 8
(F0F) RFCTL				Function related to: RFC
RFCLR	0F.7	R/W	1	Clear RFC counter 0: RFC run 1: RFC clear
T2STPRFC	0F.6	R/W	0	Timer2 overflow toggle signal (TM2TGL) to stop RFC counter0: disable1: enable
T0STPRFC	0F.5	R/W	0	Timer0 overflow toggle signal (TM0TGL) to stop RFC counter 0: disable 1: enable
RFCSTP	0F.4	R/W	1	S/W stop RFC counter and oscillator 0: RFC run 1: RFC stop
RFCHS	0F.1~0	R/W	0	Select RFC oscillator channel00: RFC0R (PA2)01: RFC1R (PA0)10: RFC2R (PA1)
(F10) LCDCT	L			Function related to: LCD
LCDON	10.7	R/W	0	LCD driver enable 0: disable 1: enable
LCDFRM	10.6~5	R/W	10	LCD frame rate, calculated by Slow-clock=32768Hz 00: 64Hz for 1/4 duty, 85Hz for 1/3 duty 01: 32Hz for 1/4 duty, 43Hz for 1/3 duty 10: 16Hz for 1/4 duty, 21Hz for 1/3 duty
LCDUTY	10.4	R/W	1	LCD duty 0: 1/3 duty 1: 1/4 duty
(F11) RFCNT	I			Function related to: RFC
RFCNTH	11.7~0	R	0	RFC counter high byte, RFCNT[15:8]
(F12) RFCNT				Function related to: RFC
RFCNTL	12.7~0	R	0	RFC counter low byte, RFCNT[7:0]
(F1C) RSR				Function related to: R-Plane R/W
RSR	1C.7~0	R/W	0	R-Plane file select register, indirect address mode pointer
(F1D) DPL				Function related to: Table Read
DPL	1D.7~0	R/W	0	Table read low address, data ROM pointer (DPTR[7:0])
(F1E) DPH				Function related to: Table Read
DPH	1E.1~0	R/W	0	Table read high address, data ROM pointer (DPTR[9:8])
User Data RAN	M			
FRAM	20~7F	R/W	_	F-Plane RAM area (96 Bytes)

R-Plane

Name	Address	R/W	Rst	Description			
(R00) INDR				Function related to: R-Plane R/W			
INDR	00.7~0	R/W	_	Not a physical register, addressing INDR actually point to the R-Plane register whose address is contained in the RSR register			
(R01) TM0R	1) TM0RLD Function related to: TM0						
TM0RLD	01.7~0	R/W	0	Timer0 reload Data			
(R02) TM0CTL Function related to: TM0							
TM0CKS	02.4	R/W	0	Timer0 clock source 0: Instruction cycle 1: Slow-clock /16			
TM0PSC	02.3~0	R/W	0	Timer0 clock source prescaler. Clock source is divided by 0000: /1 0101: /32 0001: /2 0110: /64 0010: /4 0111: /128 0011: /8 1xxx: /256 0100: /16 1			
(R03) PWRD	N			Function related to: Power Down			
PWRDN	03	W	_	Write this register (=SLEEP instruction) to enter IDLE or STOP Mode			
(R04) WDTC	LR			Function related to: WDT			
WDTCLR	04	W	_	Write this register to clear WDT (=CLRWDT instruction)			
(R05) PAMO	DH			Function related to: Port A			
PA7MOD	05.6	R/W	0	0: Mode0, PA7 is open-drain I/O with internal pull-up 1: Mode1, PA7 is open-drain I/O without internal pull-up			
PA6MOD	05.5~4	R/W	01	 00: Mode0, PA6 is open-drain I/O with internal pull-up 01: Mode1, PA6 is open-drain I/O without internal pull-up 10: Mode2, PA6 is CMOS push-pull output 11: Mode3, PA6 is PWMP CMOS push pull output 			
PA5MOD	05.3~2	R/W	01	00: Mode0, PA5 is open-drain I/O with internal pull-up 01: Mode1, PA5 is open-drain I/O without internal pull-up 10: Mode2, PA5 is CMOS push-pull output 11: Mode3, PA5 is RFCX input			
PA4MOD	05.1~0	R/W	01	00: Mode0, PA4 is open-drain I/O with internal pull-up 01: Mode1, PA4 is open-drain I/O without internal pull-up 10: Mode2, PA4 is CMOS push-pull output			
(R06) PAMO	DL			Function related to: Port A			
PA3MOD	06.7~6	R/W	01	00: Mode0, PA3 is open-drain I/O with internal pull-up 01: Mode1, PA3 is open-drain I/O without internal pull-up 10: Mode2, PA3 is CMOS push-pull output			
PA2MOD	06.5~4	R/W	01	00: Mode0, PA2 is open-drain I/O with internal pull-up 01: Mode1, PA2 is open-drain I/O without internal pull-up 10: Mode2, PA2 is CMOS push-pull output 11: Mode3, PA2 is RFC0R output			
PA1MOD	06.3~2	R/W	01	00: Mode0, PA1 is open-drain I/O with internal pull-up 01: Mode1, PA1 is open-drain I/O without internal pull-up 10: Mode2, PA1 is CMOS push-pull output 11: Mode3, PA1 is RFC2R output			
PA0MOD	06.1~0	R/W	01	00: Mode0, PA0 is open-drain I/O with internal pull-up 01: Mode1, PA0 is open-drain I/O without internal pull-up 10: Mode2, PA0 is CMOS push-pull output 11: Mode3, PA0 is RFC1R output			

Name	Address	R/W	Rst	Description		
(R07) PBMODL Function related to: Port B						
PB3MOD	07.7~6	R/W	01	0x: Mode1, PB3 is input without internal pull-up 10: Mode2, PB3 is CMOS push-pull output 11: Mode3, PB3 is LCD SEG8 output		
PB2MOD	07.5~4	R/W		0x: Mode1, PB2 is input without internal pull-up 10: Mode2, PB2 is CMOS push-pull output 11: Mode3, PB2 is LCD SEG9 output		
PB1MOD	07.3~2	R/W		0x: Mode1, PB1 is input without internal pull-up 10: Mode2, PB1 is CMOS push-pull output 11: Mode3, PB1 is LCD SEG10 output		
PB0MOD	07.1~0	R/W	01	0x: Mode1, PB0 is input without internal pull-up 10: Mode2, PB0 is CMOS push-pull output 11: Mode3, PB0 is LCD SEG11 output		
(R08) PWMC	TL			Function related to: PWM/T2/WDT		
PWMCKS	08.7	R/W	1	PWM clock source select 0: Slow-clock 1: Fast-clock		
T2PSC	08.6~5	R/W	0	T2 prescaler. T2 interrupt is T2 clock divided by 00: /(32768*60) 01: /32768 10: /16384 11: /4096		
PWMPSC	08.4~2	R/W	0	PWM clock prescaler 000: PWM clock is Slow/Fast clock divided by 128 001: PWM clock is Slow/Fast clock divided by 64 010: PWM clock is Slow/Fast clock divided by 32 011: PWM clock is Slow/Fast clock divided by 16 100: PWM clock is Slow/Fast clock divided by 8 101: PWM clock is Slow/Fast clock divided by 4 110: PWM clock is Slow/Fast clock divided by 2 111: PWM clock is Slow/Fast clock divided by 1		
PWMNOE	08.1	R/W	0	PWMN output to PA1 pin 0: disable 1: enable		
WDTPSC	08.0	R/W	0	WDT timeout select 0: 0.8 second @V _{DD} =3V, 1.6 second @V _{DD} =1.5V 1: 0.4 second @V _{DD} =3V, 0.8 second @V _{DD} =1.5V		
(R09) PWMP	R09) PWMPRD Function related to: PWM					
PWMPRD	09.7~0	R/W	FF	PWM period, FFh=256 PWMCLK, 7Fh=128 PWMCLK		
(R0A) LVRO	FF			Function related to: LVR		
LVROFF	0A.7~0	W	_	Write this register with 0x37 to force LVR disable (Suggestion : M5615 disable LVR after power on)		
(R0A) LCDR	(R0A) LCDRAM Function related to: LCD					
LCDRAM	20~25	R/W	_	LCD RAM		

INSTRUCTION SET

Each instruction is a 14-bit word divided into an Op Code, which specifies the instruction type, and one or more operands, which further specify the operation of the instruction. The instructions can be categorized as byte-oriented, bit-oriented and literal operations list in the following table.

For byte-oriented instructions, "f" or "r" represents the address designator and "d" represents the destination designator. The address designator is used to specify which address in Program memory is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If "d" is "0", the result is placed in the W register. If "d" is "1", the result is placed in the address specified in the instruction.

For bit-oriented instructions, "b" represents a bit field designator, which selects the number of the bit affected by the operation, while "f" represents the address designator. For literal operations, "k" represents the literal or constant value.

Field/Legend	Description
f	F-Plane Register File Address
r	R-Plane Register File Address
b	Bit address
k	Literal. Constant data or label
d	Destination selection field, 0: Working register, 1: Register file
W	Working Register
Z	Zero Flag
C	Carry Flag or/Borrow Flag
DC	Decimal Carry Flag or Decimal/Borrow Flag
PC	Program Counter
TOS	Top Of Stack
GIE	Global Interrupt Enable Flag (i-Flag)
[]	Option Field
()	Contents
	Bit Field
В	Before
А	After
←	Assign direction

Mnemonic		Op Code	Cycle	Flag Affect	Description
		Byte-Oriente	d File Reg	ister Instructio	n
ADDWF	f, d	00 0111 dfff ffff	1	C, DC, Z	Add W and "f"
ANDWF	f, d	00 0101 dfff ffff	1	Z	AND W with "f"
CLRF	F	00 0001 1fff ffff	1	Z	Clear "f"
CLRW		00 0001 0100 0000	1	Z	Clear W
COMF	f, d	00 1001 dfff ffff	1	Z	Complement "f"
DECF	f, d	00 0011 dfff ffff	1	Z	Decrement "f"
DECFSZ	f, d	00 1011 dfff ffff	1 or 2	-	Decrement "f", skip if zero
INCF	f, d	00 1010 dfff ffff	1	Z	Increment "f"
INCFSZ	f, d	00 1111 dfff ffff	1 or 2	-	Increment "f", skip if zero
IORWF	f, d	00 0100 dfff ffff	1	Z	OR W with "f"
MOVFW	f	00 1000 Offf ffff	1	-	Move "f" to W
MOVWF	f	00 0000 1fff ffff	1	-	Move W to "f"
MOVWR	r	01 1110 00rr rrrr	1	-	Move W to "r"
MOVRW	r	01 1111 00rr rrrr	1	-	Move "r" to W
RLF	f, d	00 1101 dfff ffff	1	С	Rotate left "f" through carry
RRF	f, d	00 1100 dfff ffff	1	С	Rotate right "f" through carry
SUBWF	f, d	00 0010 dfff ffff	1	C, DC, Z	Subtract W from "f"
SWAPF	f, d	00 1110 dfff ffff	1	-	Swap nibbles in "f"
TESTZ	f	00 1000 1fff ffff	1	Z	Test if "f" is zero
XORWF	f, d	00 0110 dfff ffff	1	Z	XOR W with "f"
		Bit-Oriented	l File Regi	ster Instruction	
BCF	f, b	01 000b bbff ffff	1	-	Clear "b" bit of "f"
BSF	f, b	01 001b bbff ffff	1	-	Set "b" bit of "f"
BTFSC	f, b	01 010b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if clear
BTFSS	f, b	01 011b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if set
		Literal a	nd Contro	l Instruction	
ADDLW	k	01 1100 kkkk kkkk	1	C, DC, Z	Add Literal "k" and W
ANDLW	k	01 1011 kkkk kkkk	1	Z	AND Literal "k" with W
CALL	k	10 kkkk kkkk kkkk	2	-	Call subroutine "k"
CLRWDT		01 1110 0000 0100	1	TO, PD	Clear Watch Dog Timer
GOTO	k	11 kkkk kkkk kkkk	2	-	Jump to branch "k"
IORLW	k	01 1010 kkkk kkkk	1	Z	OR Literal "k" with W
MOVLW	k	01 1001 kkkk kkkK	1	-	Move Literal "k" to W
NOP		00 0000 0000 0000	1	-	No operation
RET		00 0000 0100 0000	2	-	Return from subroutine
RETI		00 0000 0110 0000	2	-	Return from interrupt
RETLW	k	01 1000 kkkk kkkK	2	-	Return with Literal in W
SLEEP		01 1110 0000 0011	1	TO, PD	Go into Power-down mode, Clock oscillation stops
TABRH		00 0000 0101 1000	2	-	Lookup ROM high data to W
TABRL		00 0000 0101 0000	2	-	Lookup ROM low data to W
XORLW	k	01 1101 kkkk kkkk	1	Z	XOR Literal "k" with W

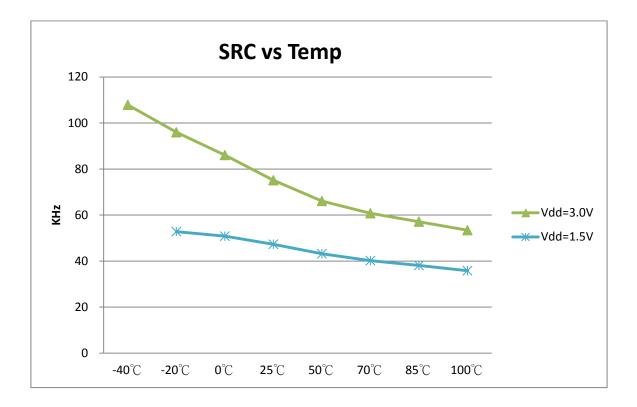
ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

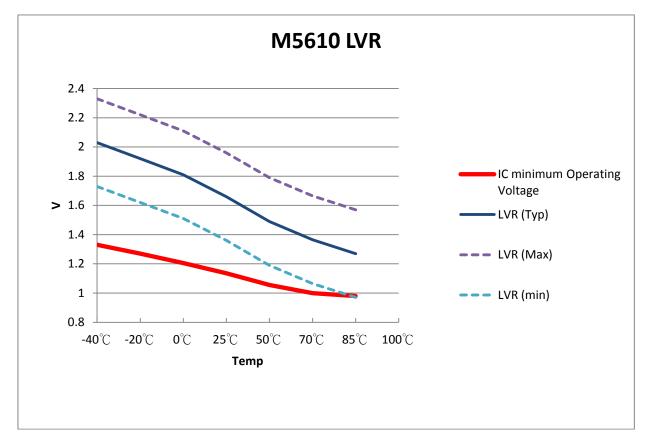
Parameter		Rating		
Supply voltage		V_{SS} -0.3 to V_{SS} +3.6		
Input voltage	v	$V_{\rm SS}$ -0.3 to $V_{\rm BAT}$ +0.3	V	
Output voltage	v	$V_{\rm SS}$ -0.3 to $V_{\rm BAT}$ +0.3		
Output current high per 1 pin / all pins		-20 / -50	mA	
Output current low per 1 pin / all pins		+30 / +100		
Maximum operating voltage		3.6		
Operating temperature	M5610	-40 to +85		
operating temperature	M5615	0 to +85	°C	
Storage temperature		-65 to +150		
	M5610	2V @25°C 2.4V @-40°C		
Minimum power on voltage	M5615	1.29V @25°C 1.4V @0°C	- V	

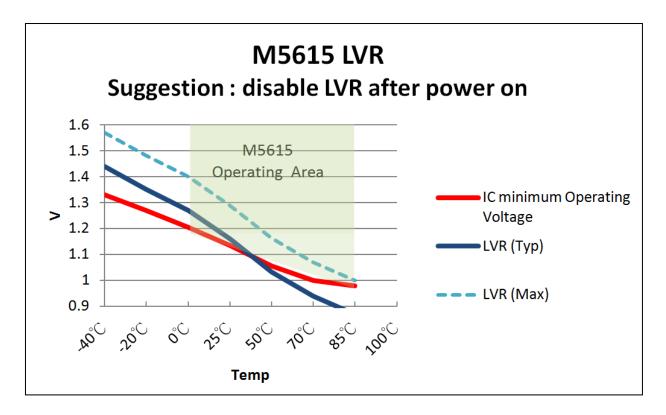
2. DC Characteristics $(T_A = 25^{\circ}C)$

Parameter	Sym	Condit	tions	Min	Тур	Max	Unit
Input High Voltage	V _{IH}	M5610: V	_{BAT} =3V	$0.7 V_{BAT}$	_	_	v
Input Low Voltage	V _{IL}	M5615: V _E	$_{AT}=1.5V$	_	_	$0.2 V_{BAT}$	v
I/O Source/Sink Current	I _{OH}	V _{OH} =2.7V	M5610	_	5	-	
1/O Source/Shik Current	I _{OL}	$V_{OL}=0.3V$	$V_{BAT}=3V$	-	15	—	
I/O Source/Sink Current	I _{OH}	V _{OH} =1.3V	M5615	-	1.2	-	mA
1/O Source/Shik Current	I _{OL}	$V_{OL}=0.2V$	$V_{BAT}=1.5V$	-	4.5	_	
Input leakage current (pin high)	I _{ILH}	all Input	$V_{IN} = V_{BAT}$	-	_	1	
Input leakage current (pin low)	I _{ILL}	all Input	Vin=0V	-	_	-1	uA
		FRC, 3.8MHz	$ \begin{array}{c cccc} z & V_{BAT} = 3V \\ z & V_{DD} = 3V \\ \hline z & M5610 \\ z & V_{BAT} = 3V \\ \hline v_{BAT} = 3V \\ \hline \end{array} $	-	360	_	uA
		SRC, 80KHz		-	13	_	
		SXT, 32KHz			12		
		FRC, 1.3MHz		-	45	_	
Power Supply Current	I _{BAT}	SRC, 40KHz		-	3	_	
		SXT, 32KHz		_	3	_	
		FRC, 1.3MHz		-	60	_	
		SRC, 40KHz	M5615 V _{BAT} =1.5V	_	3	_	
		SXT, 32KHz	• BAT-1.5 •	_	3	_	
Timepiece Current		M5610, V _{BAT} =	$3V, V_{DD}=3V$		5		
CPU Off, LCD On,	$\mathbf{I}_{\mathbf{BAT}}$	M5610, V _{BAT} =3V, V _{DD} =1.5V		_	1	_	uA
32K Crystal oscillating		M5615, V _B	M5615, V _{BAT} =1.5V		1.5	_	
Dull Un Desiston	р	M5610, V	_{BAT} =3V	_	50	_	VO
Pull-Up Resistor	R_{PU}	M5615, V _B	_{AT} =1.5V	_	190	_	KΩ

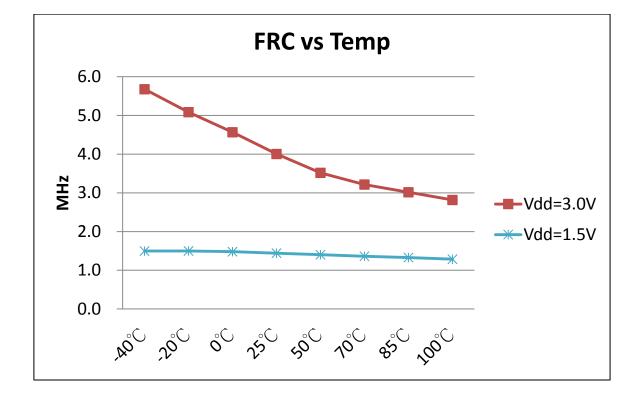

3. Clock Timing $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Sym	Conditions	Min	Тур	Max	Unit
	F _{FRC}	V _{DD} =3V	_	3.8	_	MIL
FRC Clock Frequency		$V_{DD}=1.5V$	-	1.3	-	MHz
SDC Cleal: Erequency	Б	V _{DD} =3V	-	80	-	VII-
SRC Clock Frequency	F _{SRC}	V _{DD} =1.5V		40	I	KHz

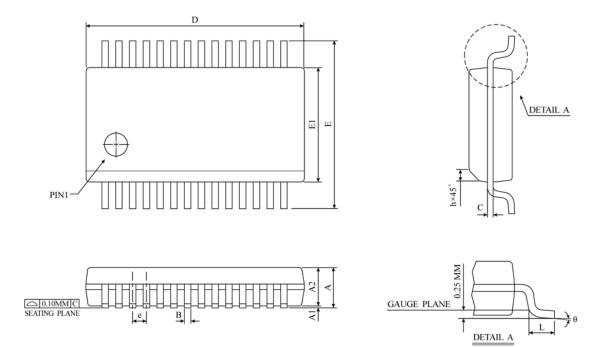

4. BandGap Reference Voltage


Parameter	Sym	Conditions	Min	Тур	Max	Unit
DandCan Valtara	V	V _{BAT} =3V, 25°C	1.14	1.2	1.26	V
BandGap Voltage	V BG	V _{BAT} =3V, -40°C~85°C	1.12	1.2	1.28	v

5. Characteristic Graphs

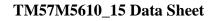


PACKAGING INFORMATION

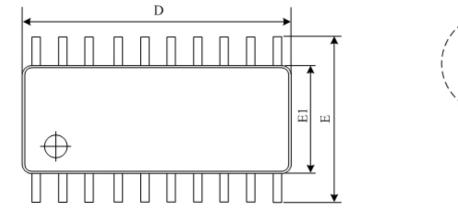

Please note that the package information provided is for reference only. Since this information is frequently updated, users can contact Sales to consult the latest package information and stocks.

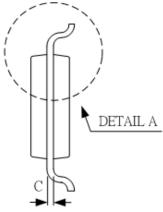
The ordering information:

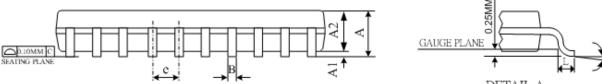
Ordering number	Package
TM57M5610-MTP	Wafer/Dice blank chip
TM57M5610-COD	Wafer/Dice with code
TM57M5610-MTP-29	SSOP 28-pin (150 mil)
TM57M5610-MTP-46	TSSOP 20-pin (173 mil)
TM57M5615-MTP	Wafer/Dice blank chip
TM57M5615-COD	Wafer/Dice with code
TM57M5615-MTP-29	SSOP 28-pin (150 mil)
TM57M5615-MTP-46	TSSOP 20-pin (173 mil)

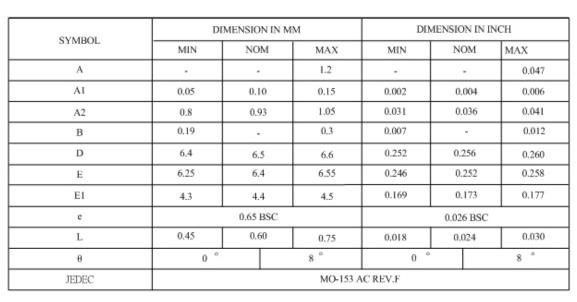


SSOP-28 (150mil) Package Dimension


	DIN	IENSION IN	MM	DIMENSION IN INCH				
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX		
A	1.50	1.65	1.80	0.06	0.06	0.07		
A1	0.102	0.176	0.249	0.004	0.007	0.010		
A2	1.40	1.475	1.55	0.06	0.06	0.06		
В	0.20	0.25	0.30	0.01	0.01	0.01		
С		0.2TYP		0.008TYP				
е		0.635TYP		0.025TYP				
D	9.804	9.881	9.957	0.386	0.389	0.392		
E	5.842	6.020	6.198	0.230	0.237	0.244		
E1	3.86	3.929	3.998	0.152	0.155	0.157		
L	0.406	0.648	0.889	0.016	0.026	0.035		
θ	0°	4 °	8°	0°	4 °	8 °		
JEDEC	M0-137(AF)							


▲ *NOTES : DIMENSION "D" DOES NOT INCLUDE MOLD PROTRUSIONS OR GATE BURRS. MOLD PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.006 INCH PER SIDE.




TSSOP-20 (173mil) Package Dimension

Notes :

1.DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. 2.DIMENSION "E1" DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR

2.DIMENSION ET DOES NOT INCLUDE INTERLEAD FLASH OR FROTRUSION RATIONALE DE FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE. 3.DIMENSION "B" DOES NOT INCLUDE DAMBAR PROTRUSION.ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08MM TOTAL IN EXCESS OF THE "B" DIMENSION AT MAXIMUM METERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. MINIMUM SPACE BETWEEN DROUGH AND A DIACENT LEAD IS 0.07MM PROTRUSION AND ADJACENT LEAD IS 0.07MM.