

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. tenx does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. tenx products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses tenx products for any such unintended or unauthorized application, Buyer shall indemnify and hold tenx and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that tenx was negligent regarding the design or manufacture of the part.

AMENDMENT HISTORY

Version	Date	Description			
V0.90	Jan, 2017	New release.			

DS-TM57MA17_18_E 2 Rev 0.90, 2017/01/09

CONTENTS

AMI	ENDMENT HISTORY	2
CON	NTENTS	3
	ATURES	
BLO	OCK DIAGRAM	8
	ASSIGNMENT	
	DESCRIPTIONS	
	SUMMARY	
	NCTIONAL DESCRIPTION	
1.	CPU Core	12
	1.1 Clock Scheme and Instruction Cycle	12
	1.2 Program ROM (PROM)	
	1.3 Programming Counter (PC) and Stack	
	1.4 ALU and Working (W) Register	
	1.5 RAM Addressing Mode	
	1.6 STATUS Register (F-Plane 03H)	
	1.7 Interrupt	
2.	Chip Operation Mode	22
	2.1 Reset (000H)	22
	2.2 System Configuration Register (SYSCFG)	23
	2.3 Power-Down Mode	
	2.4 Dual System Clock	
	2.5 Dual System Clock Modes Transition	
	2.6 Power	
3.	Peripheral Functional Block	32
	3.1 Watchdog (WDT) /Wakeup (WKT) Timer	32
	3.2 Timer0	35
	3.3 Timer1	
	3.4 T2:15-bit Timer	
	3.5 PWM0: (8+2) bits PWM	
	3.6 PWM1 / PWM2 / PWM3	
	3.7 Analog-to-Digital Converter3.7 OPA: Operational Amplifier	
	3.8 DPDMV	
	3.9 System Clock Oscillator	
4	I/O Port	
•		
	4.1 PA0-6, PB0-4	
	T.∠ 111/	,

MEMORY MAP	71
F-Plane	71
R-Plane	77
INSTRUCTION SET	80
ELECTRICAL CHARACTERISTICS	93
1. Absolute Maximum Ratings	93
2. DC Characteristics	93
3. Clock Timing	94
4. Reset Timing Characteristics	95
5. LVR Circuit Characteristics	95
6. ADC Electrical Characteristics	95
7. LDO Characteristics (LDO25SEL = 0)	95
8. OPA Circuit Characteristics	96
9. DPDMV Circuit Characteristics	96
10. Characteristic Graphs	97
PACKAGING INFORMATION	102
16-DIP Package Dimension	103
16-SOP Package Dimension	

FEATURES

- 1. ROM: 1K x 14 bits MTP (Multi Time Programmable ROM)
- 2. RAM: 96 x 8 bits
- 3. STACK: 6 Levels
- 4. System Oscillation Sources (Fsys)
 - Fast-clock
 - FIRC (Fast Internal RC): 8MHz (can be trimmed)
 - Slow-clock
 - SIRC (Slow Internal RC): 128 KHz @VCC=3V

5. System Clock Prescaler

• System Oscillation Sources can be divided by 16/4/2/1 as System Clock (Fsys)

6. Dual System Clock

• FIRC+SIRC

7. Power Saving Operation Mode

- FAST Mode: Slow-clock can be disabled or enabled, Fast-clock keeps CPU running
- SLOW Mode: Fast-clock can be disabled or enabled, Slow-clock keeps CPU running
- IDLE Mode: Fast-clock and CPU stop. Slow-clock, T2, or Wake-up Timer keep running
- STOP Mode: All Clocks stop, T2 and Wake-up Timer stop

8. 3 Independent Timers

- Timer0
 - 8-bit timer with divided by 1~256 pre-scale option/auto-reload/counter/interrupt/stop function
- Timer1
 - 8-bit timer with divided by 1~256 pre-scale option/auto-reload/interrupt/stop function
- T2
 - 15-bit timer with 4 interrupt interval time options
 - IDLE mode wake-up timer or used as one simple 15-bit time base
 - Clock source: Slow-clock (SIRC), Fsys/128

9. Interrupt

- Three External Interrupt pins
 - 1 pin is falling edge wake-up triggered & interrupts
 - 2 pins are rising or falling edge wake-up triggered & interrupt
- Timer0/Timer1/T2/WKT (wake-up) Interrupts

DS-TM57MA17_18_E 5 Rev 0.90, 2017/01/09

10. Wake-up Timer (WKT)

Clocked by built-in RC oscillator with 4 adjustable interrupt times
 16 ms/32 ms/64 ms/128 ms @VCC=3V, 15 ms/30 ms/60 ms/120 ms @VCC=5V

11. Watchdog Timer (WDT)

Clocked by built-in RC oscillator with 4 adjustable reset times
 130ms/260ms/1040ms/2080ms @VCC=3V, 120ms/240ms/960ms/1920ms @VCC=5V

12. 4 Independent PWMs

- PWM0:
 - 8+2 bits, duty-adjustable, period-adjustable controlled PWM
 - PWM0 clock source: System Clock, FIRC/3 or FIRC*2, with 1/2/4/64 pre-scale option
 - With differential output pair
 - Non-overlap durations adjustable
 - PWM0P and PWM0N are high drive/sink pins
- PWM1:
 - 8-bit PWM1 with pre-scale/period-adjustment/clear and hold function
- PWM2:
 - 8-bit PWM2 with pre-scale/period-adjustment/clear and hold function
- PWM3:
 - 8-bit PWM3 with pre-scale/period-adjustment/clear and hold function

13. 12-bit ADC Converter with 8 input channels and 1 internal reference voltage

- ADC reference voltage=Internal reference voltage LDO ±2% @25°C, VCC=3V~5V
- 2 levels LDO 2.5V or 1.25V can be selected

14. Operational Amplifier (OPA)

- offset voltage $\leq 2mV$ @Vo=1.5V, $T_A=25$ °C, VCC=5V, VSS=0V
- with offset calibration

15. DP1/DM1, DP2/DM2 for USB charging control application

- 5 levels voltage output: 3.3V/2.7V/2.0V/1.2V/0.6V @VCC=5V
- DP/DM with short option
- DM with pull-low resistor option

16. Reset Sources

- Power On Reset
- Watchdog Rese
- Low Voltage Reset
- External Pin Reset

- 17. 3-Level Low Voltage Reset: 2.9V/2.3V/2.0V (can be disable in IDLE/STOP mode)
- 18. Operating Voltage: Low Voltage Reset Level to 5.5V
- 19. Operating Temperature Range: -40°C to +85°C
- 20. Table Read Instruction: 14-bit ROM data lookup table.
- 21. Instruction set: 39 Instructions
- 22. Instruction Execution Time
 - 2 oscillation clocks per instruction except branch
- 23. I/O ports: Maximum 13 programmable I/O pins
 - Open-Drain Output
 - CMOS Push-Pull Output
 - Schmitt Trigger Input with pull-up resistor option
- 24. High-Sink and High-Drive I/O: PA0, PB3
- 25. Programming connectivity support 5-wire (ISP) or 8-wire program.
- 26. Package Types:
 - SOP-16/DIP-16
- 27. Supported EV board on ICE

EV board: EV8215

BLOCK DIAGRAM

DS-TM57MA17_18_E 8 Rev 0.90, 2017/01/09

PIN ASSIGNMENT

F		7
VCC 1		16 VSS
OPN / PA4 2		15 PA6 / ADC0 / DP1 / INT0
OPP / PA3 3	TM57MA17	14 PA5 / ADC1 / DM1
VPP / nRESET / INT2 / PA7 4	INISTNIAIT	13 PA2 / ADC2 / DP2 / TM0CKI
PWM1 / OPO / PB2 5	DIP-16	12 PB1 / ADC3 / PWM3
PWM2 / PWM0N / PB3 6	SOP-16	11 LDOC / AVREF
PWM0P / ADC7 / PA0 7	501 10	10 PA1 / ADC4 / DM2 / INT1
DWA(1 / A D.C) / DDA		9 PB4 / ADC5 / TCOUT
PWM1 / ADC6 / PB0 8		
PWMI/ADC6/PBU 8		_
PWM1/ADC6/PB0 [8]		_
PWM1/ADC6/PB0 8		-
AVREF/VCC 1		16 VSS
		16 VSS 15 PA6 / ADC0 / DP1 / INT0
AVREF / VCC 1	TM57M \ 18	
AVREF / VCC 1 OPN / PA4 2	TM57MA18	15 PA6 / ADC0 / DP1 / INT0
AVREF / VCC 1 OPN / PA4 2 OPP / PA3 3		15 PA6 / ADC0 / DP1 / INT0 14 PA5 / ADC1 / DM1
AVREF / VCC 1 OPN / PA4 2 OPP / PA3 3 VPP / nRESET / INT2 / PA7 4	DIP-16	15 PA6 / ADC0 / DP1 / INT0 14 PA5 / ADC1 / DM1 13 PA2 / ADC2 / DP2 / TM0CKI
AVREF / VCC 1 OPN / PA4 2 OPP / PA3 3 VPP / nRESET / INT2 / PA7 4 PWM1 / OPO / PB2 5		15 PA6 / ADC0 / DP1 / INT0 14 PA5 / ADC1 / DM1 13 PA2 / ADC2 / DP2 / TM0CKI 12 PB1 / ADC3 / PWM3
AVREF / VCC 1 OPN / PA4 2 OPP / PA3 3 VPP / nRESET / INT2 / PA7 4 PWM1 / OPO / PB2 5 PWM2 / PWM0N / PB3 6	DIP-16	15 PA6 / ADC0 / DP1 / INT0 14 PA5 / ADC1 / DM1 13 PA2 / ADC2 / DP2 / TM0CKI 12 PB1 / ADC3 / PWM3 11 LDOC

DS-TM57MA17_18_E 9 Rev 0.90, 2017/01/09

PIN DESCRIPTIONS

Name	In/Out	Pin Description
PA0-PA6	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or open-drain output. Pull-up resistors are assignable by software.
PA7	I	Bit-programmable I/O port for Schmitt-trigger input or open-drain output. Pull-up resistor is always assignable.
PB0–PB4	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or open-drain output. Pull-up resistors are assignable by software.
nRESET	I	External active low reset, internal pull-high
VCC, VSS	P	Power Voltage input pin and ground
VPP	I	PROM programming high voltage input
INT0-INT2	I	External interrupt input
TM0CKI	I	Timer0's input in counter mode
PWM0P	О	(8+2) bit PWM0 positive output
PWM0N	О	(8+2) bit PWM0 negative output
PWM1	О	PWM1 output
PWM2	О	PWM2 output
PWM3	О	PWM3 output
ADC7-ADC0	I	ADC channels input
AVREF	I	ADC reference voltage
OPP, OPN	I	OPA positive/negative input
OPO	О	OPA output
DP1, DM1	О	USB positive/negative data-channel 1 to external USB device.
DP2, DM2	0	USB positive/negative data-channel 2 to external USB device.
LDOC	О	Internal reference voltage 2.5V or 1.25V output (at least 1uF to ground)
TCOUT	0	Instruction Cycle (Fsys/2) output

Programming pins:

Normal mode: VCC/VSS/PA0/PA1/PA2/PA3/PA4/PA7 (VPP)

ISP mode: VCC/VSS/PA0/PA1/PA7 (VPP) -When using ISP (In-system Program) mode, the PCB needs to remove all components of PA0, PA1 and PA7.

DS-TM57MA17_18_E 10 Rev 0.90, 2017/01/09

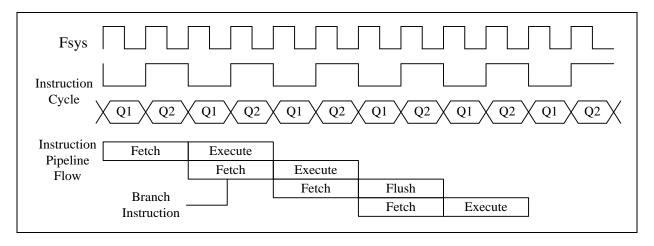
PIN SUMMARY

MA17/18				GP	OI			Alternate Function				
			In	put	Out	tput	Reset					
16-SOP/DIP	Pin Name	Туре	Weak Pull-up	Ext. Interrupt	O.D	P.P	Function After Reset	\mathbf{MM}	OPA	ADC	USB	MISC
1	VCC (TM57MA17) VCC/AVREF (TM57MA18)	P										
2	OPN/PA4	I/O	0		0	0	PA4		0			
3	OPP/PA3	I/O	0		0	0	PA3		0			
4	VPP/nRESET/INT2/PA7	I/O	0	0	0		SYS					nRESET
5	PWM1/OPO/PB2	I/O	0		0	0	PB2	0	0			
6	PWM2/PWM0N/PB3	I/O	0		0	0	PB3	0				
7	PWM0P/ADC7/PA0	I/O	0		0	0	PA0	0		0		
8	ADC6/PB0	I/O	0		0	0	PB0			0		
9	PB4/ADC5/TCOUT	I/O	0		0	0	PB4			0		TCOUT
10	PA1/ADC4/DM2/INT1	I/O	0	0	0	0	PA1			0	0	
11	LDOC/AVREF (TM57MA17) LDOC (TM57MA18)	О										
12	PB1/ADC3/PWM3	I/O	0		0	0	PB1	0		0		
13	PA2/ADC2/DP2/TM0CKI	I/O	0		0	0	PA2			0	0	TM0CKI
14	PA5/ADC1/DM1	I/O	0		0	0	PA5			0	0	
15	PA6/ADC0/DP1/INT0	I/O	0	0	0	0	PA6			0	0	
16	VSS	P										

Symbol: P.P. = CMOS Push-Pull Output

O.D. = Open Drain Output SYS = by SYSCFG bit

DS-TM57MA17_18_E 11 Rev 0.90, 2017/01/09



FUNCTIONAL DESCRIPTION

1. CPU Core

1.1 Clock Scheme and Instruction Cycle

The system clock is internally divided by two to generate Q1 state and Q2 state for each instruction cycle. The Programming Counter (PC) is updated at Q1 and the instruction is fetched from program ROM and latched into the instruction register in Q2. It is then decoded and executed during the following Q1-Q2 cycle. Branch instructions take two cycles since the fetch instruction is 'flushed' from the pipeline, while the new instruction is being fetched and then executed.

Terminology definitions:

(1) **Fsys**: System clock. The main clock that drive the core logic and most peripherals. The clock source can be either Fast-clock or Slow-clock which can be set by registers.

(2) **Instruction Cycle**=Fsys/2

FIRC: Fast Internal RC oscillator SIRC: Slow Internal RC oscillator

DS-TM57MA17_18_E 12 Rev 0.90, 2017/01/09

1.2 Program ROM (PROM)

The MTP Program ROM of this device is 1K words, with an extra INFO area to store the SYSCFG. The ROM can be written multi-times and can be read as long as the PROTECT bit of SYSCFG is not set. The SYSCFG can be read no matter PROTECT is set or cleared, but can be written only when PROTECT is not set or ROM is erased. That is, unprotect the PROTECT bit needs the erased ROM.

000	Reset Vector
001	Interrupt Vector
	User Code
3FF	SYSCFG (INFO area)

DS-TM57MA17_18_E 13 Rev 0.90, 2017/01/09

1.3 Programming Counter (PC) and Stack

The Programming Counter is 10-bit wide capable of addressing a 1Kx14 MTP ROM. As a program instruction is executed, the PC will contain the address of the next program instruction to be executed. The PC value is normally increased by one except the followings. The Reset Vector (000h) and the Interrupt Vector (001h) are provided for PC initialization and Interrupt. For CALL/GOTO instructions, PC loads 10 bits address from instruction word. For RET/RETI/RETLW instructions, PC retrieves its content from the top level STACK. For the other instructions updating PC [7:0], the PC [9:8] keeps unchanged. The STACK is 10-bit wide and 6-level in depth. The CALL instruction and hardware interrupt will push STACK level in order. While the RET/RETI/RETLW instruction pops the STACK level in order.

For table lookup, the device offer the powerful table read instructions TABRL, TABRH to return the 14-bit ROM data into W by setting the DPTR={DPH, DPL} F-Plane registers.

♦ Example: To look up the PROM data located "TABLE" & "TABLE2".

ORG 000H ; Reset Vector

GOTO START

START:

MOVLW 00H MOVWF INDEX ; Set lookup table's address.

LOOP:

MOVFW INDEX ; Move index value to W register.

CALL TABLE ; To lookup data, W=55H.

INCF INDEX, 1 ; Increment the index address for next address

. . . .

GOTO LOOP ; Go to LOOP label.

. . . .

MOVLW

MOVLW (TABLE2>>8)&0xff

MOVWF DPH ; DPH register (F1E.1~0)

MOVWF DPL ; DPL register (F1D.7~0)

TABRL ; W=86H TABRH ; W=19H

(TABLE2)&0xff

.

TABLE:

ADDWF PCL, 1; Add the W with PCL, the result back in PCL.

RETLW 55H ; W=55h when return RETLW 56H ; W=56H when return RETLW 58H ; W=58H when return

ORG 368H

TABLE2:

.DT 0x1986, 0x3719, 0x2983... ; 14-bit ROM data

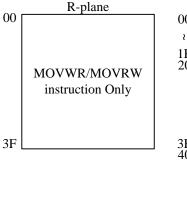
1.4 ALU and Working (W) Register

The ALU is 8-bit wide and capable of addition, subtraction, shift and logical operations. In two-operand instructions, typically one operand is the W register, which is an 8-bit non-addressable register used for ALU operations. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either W register or a file register. Depending on the instruction executed, the ALU may affect the values of Carry (C), Digit Carry (DC), and Zero (Z) Flags in the STATUS register. The C and DC flags operate as a/Borrow and/Digit Borrow, respectively, in subtraction.

Note: /Borrow represents inverted of Borrow register.

/Digit Borrow represents inverted of Digit Borrow register.

DS-TM57MA17_18_E 15 Rev 0.90, 2017/01/09



1.5 RAM Addressing Mode

There are two Data Memory Planes in CPU, R-Plane and F-Plane. The F-Plane supports rich instructions operation, such as ADDWF, INCF, MOVWF,..., while the R-Plane only supports MOVWR and MOVRW instructions to exchange data between R-Plane and W-Register.

The R-Plane can be indirect accessed via RSR register (F1C.7~0) and INDR (R00). The INDR register is not a physical register. Addressing INDR actually addresses the register whose address is contained in the RSR register (RSR is a pointer).

The lower locations of F-Plane are reserved for the SFR. Above the SFR is General Purpose Data Memory, implemented as static RAM. F-Plane can be addressed directly or indirectly. Indirect Addressing is made by INDF register. The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a pointer). The first half of F-Plane is bit-addressable, while the second half of F-Plane is not bit-addressable.

	F-plane
00	SFR
≀ 1F	Bit Addressable
20	
	SRAM
	Bit Addressable
25	
3F 40	
	SRAM
	SKAW
7F	

♦ Example: Write immediate data into R-Plane register.

MOVLW AAH ; Move immediate AAH into W register.

MOVWR 05H; Move W value into R-Plane location 05H data register.

Example: Move the immediate data 55H to W register and F-Plane location 20H.

MOVLW 55H; Move immediate 55H into W register.

MOVWF 20H; To get a content of W and save in F-Plane location 20H.

♦ Example: Move R-Plane location 0BH SFR data into W register.

MOVRW 0BH ; To get a content of R-Plane location 0BH and save in W.

♦ Example: Move F-Plane location 20H data into W register.

MOVFW 20H; To get a content of F-Plane location 20H and save in W.

DS-TM57MA17_18_E 16 Rev 0.90, 2017/01/09

MOVLW

55H

♦ Example: Indirectly addressing mode with FSR/INDF register. (F-Plane 04H/00H)

MOVLW 20H MOVWF FSR ; Move immediate 20H into FSR register.

MOVWF INDF ; Use data pointer FSR write a data into F-Plane location

; 20H. 55H into F-plane 20H.

INCF FSR, 1; Increment the index address for next address.

MOVFW INDF ; Use data pointer FSR read a data from F-Plane location

; 21H. W data from F-Plane 21H

DS-TM57MA17_18_E 17 Rev 0.90, 2017/01/09

1.6 STATUS Register (F-Plane 03H)

This register contains the arithmetic status of ALU and the reset status. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. It is recommended, therefore, that only BCF, BSF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect those bits.

STATUS	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Reset Value	0	0	_	0	0	0	0	0	
R/W	R/W	R/W	_	R	R	R/W	R/W	R/W	
Bit				Desci	iption				
7	GB1: Gene	eral Purpose	Bit 1						
6	GB0: Gene	eral Purpose	Bit 0						
5	Reserved								
4			set, LVR Res urs	set, or CLRV	VDT/SLEEP	instruction			
3	0: after Po	PD: Power Down Flag 0: after Power On Reset, LVR Reset, or CLRWDT instruction 1: after SLEEP instruction							
2		ult of a logic	operation is operation is						
	DC: Decim	nal Carry Fla	ng or Decima	l/Borrow Fl	ag				
		ADD in	struction			SUB ins	struction		
1	0: no carry				0: a borrow from the low nibble bits of the				
	1: a carry f	rom the low	nibble bits o	the result	result oc 1: no borro				
		lag or /Borro	w Flag		1. 110 00110	W			
	C. Carry I'		struction		CLID instruction				
0	0: no carry 1: a carry o	occurs from			SUB instruction 0: a borrow occurs from the MSB 1: no borrow				

♦ Example: Write immediate data into STATUS register.

MOVLW 00H

MOVWF STATUS ; Clear STATUS register.

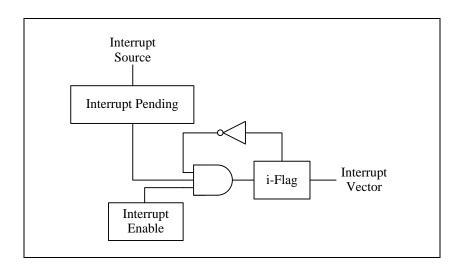
♦ Example: Bit addressing set and clear STATUS register.

BSF STATUS, 0 ; Set C=1. BCF STATUS, 0 ; Clear C=0.

♦ Example: Determine the C flag by BTFSS instruction.

BTFSS STATUS, 0 ; Check the carry flag GOTO LABEL_1 ; If C=0, goto label_1 GOTO LABEL_2 ; If C=1, goto label_2

DS-TM57MA17_18_E 18 Rev 0.90, 2017/01/09



1.7 Interrupt

This device has 1 level, 1 vector and 7 interrupt sources. Each interrupt source has its own enable control bit. An interrupt event will set its individual pending flag; no matter its interrupt enable control bit is 0 or 1. Because device has only 1 vector, there is not an interrupt priority register. The interrupt priority is determined by F/W.

If the corresponding interrupt enable bit has been set (INTIE), it would trigger CPU to service the interrupt. CPU accepts interrupt in the end of current executed instruction cycle. In the mean while, a "CALL 001" instruction is inserted to CPU, and i-flag is set to prevent recursive interrupt nesting.

The i-flag is cleared in the instruction after the "RETI" instruction. That is, at least one instruction in main program is executed before service the pending interrupt. The interrupt event is level triggered. F/W must clear the interrupt event register while serving the interrupt routine.

♦ Example: Setup INT1 (PA1) interrupt request and rising edge trigger.

ORG 000H ; Reset vector.

GOTO START ; Goto user program address.

ORG 01H ; All interrupt vector.

GOTO INT_SUBROUTINE ; If INT1 (PA1) input occurred rising edge.

ORG 02H

START:

MOVLW xxxx<u>00</u>xxB ; Select INT1 (PA1) pin mode as Mode0 MOVWR PAMODL ; Open drain output low or input with Pull-up

, open drain output low of input with a drain

BSF PAD, 1; Release INT1, set PA1 as input with Pull-up resistor

MOVLW <u>**1**</u>0001111B

MOVWR R0B ; Set INT1 interrupt trigger as rising edge.

MOVLW 1111111<u>0</u>1B

MOVWF INTIF ; Clear INT1 interrupt request flag

MOVLW x00000<u>1</u>0B

MOVWR INTIE ; Enable INT1 interrupt.

MAIN:

. . .

GOTO MAIN

INT_SUBROUTINE:

MOVWF GPRO ; Push routine to Save W and STATUS data to buffers.

MOVFW STATUS ; F-Plane 03H

MOVWF GPR1

BTFSS INT1IF ; Check INT1IF bit.

GOTO EXIT_INT ; INT1IF=0, exit interrupt vector.

; INT1 interrupt service routine.

MOVLW 1111111<u>0</u>1B

MOVWF INTIF ; Clear INT1 interrupt request flag

GOTO EXIT_INT

EXIT_INT:

MOVFW GPR1; POP Routine W and STATUS data from buffers.

MOVWF STATUS MOVFW GPR0

RETI

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	-	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	-	0	0	0	0	0	0	0

F08.6 **T2IE:** T2 interrupt enable

0: disable 1: enable

F08.5 **TM1IE:** Timer1 interrupt enable

0: disable 1: enable

F08.4 **TM0IE:** Timer0 interrupt enable

0: disable 1: enable

F08.3 **WKTIE:** Wakeup Timer interrupt enable

0: disable 1: enable

F08.2 **INT2IE:** INT2 (PA7) interrupt enable

0: disable 1: enable

F08.1 **INT1IE:** INT1 (PA1) interrupt enable

0: disable 1: enable

F08.0 **INT0IE:** INT0 (PA6) interrupt enable

0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	_	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	0	0	0	0	0	0	0

F09.6 **T2IF:** T2 interrupt event pending flag

This bit is set by H/W while T2 overflows, write 0 to this bit will clear this flag

F09.5 **TM1IF:** Timer1 interrupt event pending flag

This bit is set by H/W while Timer1 overflows, write 0 to this bit will clear this flag

F09.4 **TM0IF:** Timer0 interrupt event pending flag

This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

F09.3 **WKTIF:** Wakeup Timer interrupt event pending flag

This bit is set by H/W while Wakeup Timer is timeout, write 0 to this bit will clear this flag

F09.2 **INT2IF:** INT2 (PA7) pin falling interrupt pending flag

This bit is set by H/W at INT2 pin's falling edge, write 0 to this bit will clear this flag

F09.1 **INT1IF:** INT1 (PA1) pin falling interrupt pending flag

This bit is set by H/W at INT1 pin's falling edge, write 0 to this bit will clear this flag

F09.0 **INT0IF:** INT0 (PA6) pin falling/rising interrupt pending flag

This bit is set by H/W at INTO pin's falling/rising edge, write 0 to this bit will clear this flag

R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	INT1EDG	INT0EDG	T2PSC		WDTPSC		WKTPSC	
R/W	R/W	R/W	R/W		R/W		R/W	
Reset	0	0	0	0	1	1	1	1

R0B.7 **INT1EDG:** INT1 (PA1) trigger edge select

0: INT1 (PA1) pin falling edge to trigger interrupt event

1: INT1 (PA1) pin rising edge to trigger interrupt event

R0B.6 **INT0EDG:** INT0 (PA6) trigger edge select

0: INT0 (PA6) pin falling edge to trigger interrupt event 1: INT0 (PA6) pin rising edge to trigger interrupt event

DS-TM57MA17_18_E 21 Rev 0.90, 2017/01/09

2. Chip Operation Mode

2.1 Reset (000H)

This device can be RESET in four ways.

- Power-On-Reset
- Low Voltage Reset (LVR)
- External Pin Reset (PA7)
- Watchdog Reset (WDT)

After Power-On-Reset, all system and peripheral control registers are then set to their default hardware Reset values. The LVR level is selected by the SYSCFG register value. The Low Voltage Reset features static reset when supply voltage is below a threshold level. There are three threshold levels can be selected. The LVR's operation mode is defined by the SYSCFG register. See the following LVR Selection Table; user must also consider the lowest operating voltage of operating frequency.

LVR Selection Table:

LVR Level	Consider the operating voltage to choose LVR
LVR2.9	5.5V>V _{CC} >3.6V
LVR2.3	5.5V>V _{CC} >3.0V
LVR2.0	V _{CC} is wide voltage range

The External Pin Reset and Watchdog Reset can be disabled or enabled by the SYSCFG register. These two resets also set all the control registers to their default reset value. The TO/PD flags are not affected by these resets.

ORG 000H GOTO START

; Jump to user program address.

ORG 010H

START:

.. ; 010H, The head of user program

GOTO START

DS-TM57MA17_18_E 22 Rev 0.90, 2017/01/09

2.2 System Configuration Register (SYSCFG)

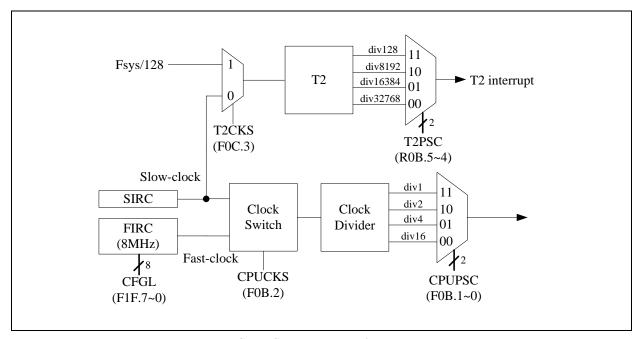
The System Configuration Register (SYSCFG) is located at MTP INFO area. The SYSCFG determines the option for initial condition of MCU. It is written by PROM Writer only. User can select LVR operation mode and chip operation mode by SYSCFG register. The 13th bit of SYSCFG is code protection selection bit. If this bit is 1, the data in PROM will be protected.

Bit		13~0					
Default Value		00_1100_xxxx_xxxx					
Bit		Description					
	PROTECT: Co	de protection selection					
13	1	Enable					
	0	Disable					
	XRSTE: Extern	al pin (PA7) reset enable					
12	1	Enable					
	0	Disable (PA7 as input I/O pin)					
	LVR: Low volta	ge reset mode					
	11	LVR level=2.0V, always enable					
11-10	10	LVR level=2.0V, disable in IDLE/STOP mode					
	01	LVR level=2.3V					
	00	LVR level=2.9V					
	WDTE: WDT re	eset enable					
0.8	11	WDT always enable					
9-8	10	WDT enable in FAST/SLOW mode, disable in IDLE/STOP mode					
	0x	WDT disable					
7-0	Tenx Reserved						

2.3 Power-Down Mode

The Power-down mode includes IDLE mode and STOP mode. It is activated by SLEEP instruction. During the Power-down mode, the system clock and peripherals stop to minimize power consumption, whether the WDT/WKT Timer are working or not depend on F/W setting. The Power-down mode can be terminated by Reset, or enabled Interrupts (External pins and WKT interrupts).

R03	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
PWRDN		PWRDN										
R/W		W										
Reset	-	_	_	_	_	_	_	-				


R03.7~0 **PWRDN:** Write this register to enter Power-down (STOP/IDLE) mode

DS-TM57MA17_18_E 23 Rev 0.90, 2017/01/09

2.4 Dual System Clock

The device is designed with dual-clock system. There are two kinds of clock source, i.e. SIRC (Slow Internal RC) and FIRC (Fast Internal RC). Each clock source can be applied to CPU kernel as system clock. When in IDLE mode, only Slow-clock can be configured to keep oscillating to provide clock source to T2 block. Refer to the figure below.

Clock Scheme Block Diagram

DS-TM57MA17_18_E 24 Rev 0.90, 2017/01/09

FAST Mode:

The device enters FAST mode by setting the CPUCKS (F0B.2). In this mode, the system clock source is FIRC. The Timer0, Timer1 and ADC blocks are also driven by Fast-clock; The PWM0 and PWM1~3 blocks can be driven by FIRCx2, FIRC/3 or Fast-clock. T2 can also be driven by Fast-clock by setting T2CKS=1 and CPUCKS=1.

SLOW Mode:

After power on or reset, the device enters SLOW mode, the default system clock source is SIRC. In this mode, the Fast-clock can be stopped (by FASTSTP=1, for power saving) or run (by FASTSTP=0), and Slow-clock is enabled. All peripheral blocks (Timer0, Timer1, etc...) clock sources are driven by Slow-clock.

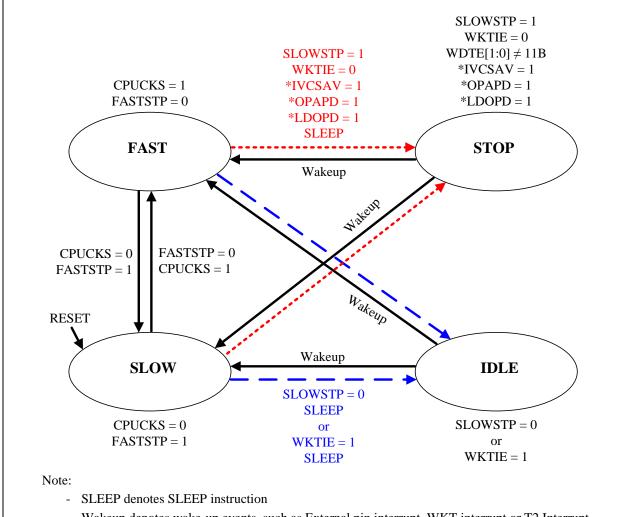
IDLE Mode:

When SLOWSTP (F0F.4) is cleared, the device will enter the IDLE mode after executing the SLEEP instruction. In this mode, the Slow-clock will continue running to provide clock to T2 block (T2CKS=0).

Another way to keep clock oscillation in IDLE mode is setting WKTIE=1 (F08.3) to keeping WKT running before executing the SLEEP instruction or WDTE=11B (SYSCFG.9~8) to keeping WDT running. In such condition, the Slow-clock will also keep running for wakes up CPU periodically no matter SLOWSTP is set or cleared.

T2 and WKT/WDT are independent and have their own control registers. It is possible to keep T2 or WKT working and wake-up in the IDLE mode, which is useful for low power mode Touch Key detection.

STOP Mode:


If Slow-clock and WKT/WDT are disabled before executing the SLEEP instruction, every block is turned off and the device enters the STOP mode. STOP mode is similar to IDLE mode. The difference is all clock oscillators either Fast-clock or Slow-clock is power down and no clock is generated.

DS-TM57MA17_18_E 25 Rev 0.90, 2017/01/09

2.5 Dual System Clock Modes Transition

The device is operated in one of four modes: FAST mode, SLOW mode, IDLE mode, and STOP mode.

- Wakeup denotes wake-up events, such as External pin interrupt, WKT interrupt or T2 Interrupt.
- CPUCKS (F0B.2), FASTSTP (F0B.3), SLOWSTP (F0B.4), WKTIE (F08.3), WDTE (SYSCFG.9~8)
- IVCSAV (R0D.3), OPAPD (F19.5), LDOPD (R0D.2)
- *Shut down IVC/OPA/LDO for power saving

CPU Operation Block Diagram

CPU Mode & Clock Functions Table:

Mode	Oscillator	Fsys	Fast-clock	Slow-clock	TM0/TM1 ADC PWM0~3	T2	Wakeup event
FAST	FIRC	Fast-clock	Run	Run	Run	Run	_
SLOW	SIRC	Slow-clock	Set by FASTSTP bit	Run	Run	Run	-
IDLE	SIRC	Stop	Stop	Run	Stop	Run	WKT/IO/T2
STOP	Stop	Stop	Stop	Stop	Stop	Stop	IO

26 DS-TM57MA17_18_E Rev 0.90, 2017/01/09

• FAST mode switches to SLOW mode

The source clock of Slow-clock is SIRC. The following steps are suggested to be executed by order when FAST mode switches to SLOW mode:

- (1) Switch system clock source to Slow-clock (CPUCKS=0)
- (2) Stop Fast-clock (FASTSTP=1)
- ♦ Example: Switch operating mode from FAST mode to SLOW mode.

BCF CPUCKS ; Switch system clock source to Slow-clock

BSF FASTSTP ; Stop Fast-clock

• SLOW mode switches to FAST mode

The source clock of Fast-clock is FIRC. The following steps are suggested to be executed by order when SLOW mode transits to FAST mode:

- (1) Enable Fast-clock (FASTSTP=0)
- (2) Switch system clock source to Fast-clock (CPUCKS=1)
- ♦ Example: Switch operating mode from SLOW mode to FAST mode

BCF FASTSTP ; Enable Fast-clock.

BSF CPUCKS ; Switch system clock source to Fast-clock

IDLE mode Setting

The IDLE mode can be configured by following setting in order:

- (1) Enable Slow-clock (SLOWSTP=0) or WKT (WKTIE=1)
- (2) Execute SLEEP instruction

IDLE mode can be woken up by External pins interrupt, WKT interrupt and T2 interrupt.

♦ Example: Switch FAST/SLOW mode to IDLE mode.

BCF SLOWSTP ; Enable Slow-clock. SLEEP ; Enter IDLE mode.

• STOP Mode Setting

The STOP mode can be configured by following setting in order:

- (1) Stop Slow-clock (SLOWSTP=1)
- (2) Stop WKT/WDT (WKTIE=0)
- (3) Shut down IVC/OPA/LDO for power saving (IVCSAV=1, OPAPD=1, LDOPD=1)
- (4) Execute SLEEP instruction

STOP mode can be woken up only by External pins interrupt.

♦ Example: Switch FAST/SLOW mode to STOP mode.

BSF SLOWSTP ; Disable Slow-clock. BCF WKTIE ; Disable WDT/WKT

BSF OPAPD ; Shut down OPA in STOP mode

MOVLW xxxx<u>11</u>xxB ; R0D.3=1 (IVCSAV), Shut down IVC in STOP mode MOVWR PWRCTL ; R0D.2=1 (LDOPD), shut down LDO in STOP mode

SLEEP ; Enter STOP mode.

F0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCTL	_	_	_	SLOWSTP	FASTSTP	CPUCKS	CPUPSC	
R/W	_	_	_	R/W	R/W	R/W	R/W	
Reset	1	-	-	0	0	0	1	1

F0B.4 **SLOWSTP**: Slow-clock stop

0: Slow-clock is running

1: Slow-clock stops running in Power-down mode

F0B.3 **FASTSTP**: Fast-clock stop

0: Fast-clock is running1: Fast-clock stops running

F0B.2 **CPUCKS**: System clock source select

0: Slow-clock 1: Fast-clock

F0B.1~0 CPUPSC: System clock source prescaler. System clock source

00: divided by 16 01: divided by 4 10: divided by 2 11: divided by 1

F19	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
OPACTL	OPAMOD	OPAOFSEL	OPAPD		OPAOFADJ					
R/W	R/W	R/W	R/W	R/W						
Reset	0	0	1	0	0	0	0	0		

F19.5 **OPAPD:** OPA power down

0: OPA running1: OPA power down

R03	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWRDN		PWRDN									
R/W		W									
Reset	-	_	_	_	_	_	_	_			

R03.7~0 **PWRDN:** Write this register to enter Power Down mode

R0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWRCTL	CLKFLT	VCCFLT	ı	ı	IVCSAV	LDOPD	LDO25SEL	MODE3V
R/W	R/W	R/W	_	_	R/W	R/W	R/W	R/W
Reset	0	0	_	-	0	0	1	0

R0D.3 **IVCSAV:** IVC auto power saving in STOP/IDLE mode

0: disable IVC save function 1: enable IVC save function

R0D.2 **LDOPD:** Internal LDO (2.5V/1.25V) power down

0: LDO running 1: LDO power down

DS-TM57MA17_18_E 29 Rev 0.90, 2017/01/09

2.6 Power

The TM57MA17/18 has two built-in internal low dropout regulators, IVC and LDO. When MODE3V (R0D.0) =0, the voltage regulator outputs 3.3V power to the internal chip circuit. When MODE3V=1, the IVC is turned off, and the internal circuit receives a power supply directly from the VCC pin. Because the IVC consumes 150 μ A for operation, turning off IVC by setting MODE3V=1 can reduce the chip current consumption. However, setting MODE3V=1 is only valid for an operating condition of V_{CC}<3.6V. The IVCSAV (R0D.3) also controls the IVC. When MODE3V=0 and IVCSAV=1, the IVC is turned off in IDLE/STOP mode for saving power consumption. The LDO can output 2.5V or 1.25V power to LDOC pin by selecting LDO25SEL (R0D.1). The LDO also can be turned off by LDOPD (R0D.1) for saving power consumption.

MODE3V=0

Operation	SFR	CFGW	IVC	LVR	Function
Mode	IVCSAV	LVRE		_ , _ ,	
	X	00	ON	ON	LV Reset 2.9V
FAST SLOW	X	01	ON	ON	LV Reset 2.3V
	X	10	ON	OFF	LV Reset Disable
	X	11	ON	ON	LV Reset 2.0V
	0	00	ON	ON	LV Reset 2.9V
	0	01	ON	ON	LV Reset 2.3V
	0	10	ON	OFF	LV Reset Disable
IDLE	0	11	ON	ON	LV Reset 2.0V
STOP	1	00	OFF	ON	LV Reset 2.9V
	1	01	OFF	ON	LV Reset 2.3V
	1	10	OFF	OFF	LV Reset Disable
	1	11	OFF	ON	LV Reset 2.0V

MODE3V=1

Operation	SFR	CFGW	IVC	LVR	Function
Mode	IVCSAV	LVRE	100	LVK	runction
	X	00	OFF	ON	LV Reset 2.9V
FAST	X	01	OFF	ON	LV Reset 2.3V
SLOW	X	10	OFF	OFF	LV Reset Disable
	X	11	OFF	ON	LV Reset 2.0V
	X	00	OFF	ON	LV Reset 2.9V
IDLE	X	01	OFF	ON	LV Reset 2.3V
STOP	X	10	OFF	OFF	LV Reset Disable
	X	11	OFF	ON	LV Reset 2.0V

R0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWRCTL	CLKFLT	VCCFLT	_	_	IVCSAV	LDOPD	LDO25SEL	MODE3V
R/W	R/W	R/W	_	_	R/W	R/W	R/W	R/W
Reset	0	0	_	_	0	0	1	0

DS-TM57MA17_18_E 30 Rev 0.90, 2017/01/09

ROD.3 IVCSAV: IVC auto power saving in STOP/IDLE mode

0: disable IVC save function 1: enable IVC save function

ROD.2 **LDOPD:** Internal LDO (2.5/1.25V) power down

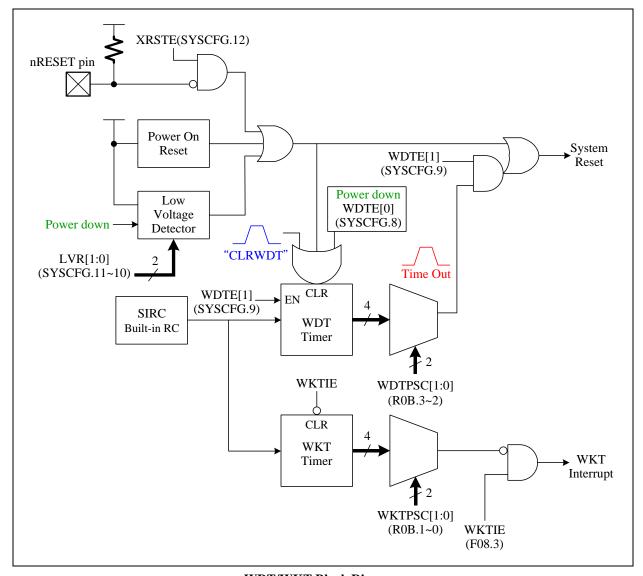
0: LDO running
1: LDO power down

R0D.1 LDO25SEL: Internal LDO voltage select

0: 1.25V 1: 2.5V

R0D.0 **MODE3V:** 3V mode selection

0: system operate in 5V mode (Vcc>3.6V)1: system operate in 3V mode (Vcc<3.6V)


3. Peripheral Functional Block

3.1 Watchdog (WDT) /Wakeup (WKT) Timer

The WDT and WKT share the same built-in internal RC Oscillator and have individual own counters. The overflow period of WDT, WKT can be selected by individual prescaler (WDTPSC[1:0], WKTPSC[1:0]). The WDT timer is cleared by the CLRWDT instruction. If the Watchdog is enabled (SYSCFG[9], WDTE[1]=1), the WDT generates the chip reset signal. In IDLE mode, the WDT is only enabled when WDTE[1:0]=11B. Otherwise it will be disabled and stopped for power saving.

The WKT timer is an interval timer. When WKT overflow time out, it will generate overflow time out flag "WKTIF" (F09.3). The WKT timer is cleared/stopped by WKTIE=0. Set WKTIE=1, the WKT timer will generate WKT overflow time out interrupt and always count regardless at any CPU operating mode.

Watchdog clear is controlled by CLRWDT instruction and moving any value into WDTCLR (R04) is to clear watchdog timer.

WDT/WKT Block Diagram

DS-TM57MA17_18_E 32 Rev 0.90, 2017/01/09

♦ Example: Clear watchdog timer by CLRWDT instruction.

MAIN:

.. ; Execute program.

CLRWDT ; Execute CLRWDT instruction.

. . .

GOTO MAIN

♦ Example: Clear watchdog timer by write WDTCLR register.

MAIN:

.. ; Execute program.

MOVWF WDTCLR ; Write any value into WDTCLR register.

• • •

GOTO MAIN

♦ Example: Set WKT period and interrupt function.

MOVLW xxxxxx10B ; R0B.1~0=2 (WKTPSC), WKT period=60 ms @5V

MOVWR MR0B

MOVLW 1111<u>0</u>111B ; Clear WKT interrupt flag by using byte operation

; Don't use bit operation "BCF WKTIF" to clear flag

MOVWF INTIF ; F-Plane 09H

MOVLW 0000<u>1</u>000B ; Enable WKT interrupt function

MOVWF INTIE

F03	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STATUS	GB1	GB0	RAMBK	TO	PD	Z	DC	C
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F03.4 **TO:** WDT time out flag, read-only

0: after Power On Reset, LVR Reset, or CLRWDT/SLEEP instructions

1: WDT time out occurs

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	_	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	_	W	W	W	W	W	W	W
Reset	_	0	0	0	0	0	0	0

F08.3 **WKTIE:** Wakeup Timer interrupt enable

0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	_	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	0	0	0	0	0	0	0

F09.3 **WKTIF:** Wakeup Timer interrupt event pending flag

This bit is set by H/W while Wakeup Timer is timeout, write 0 to this bit will clear this flag

R04	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
WDTCLR	WDTCLR								
R/W	W								
Reset	_	-	_	_	_	_	_	_	

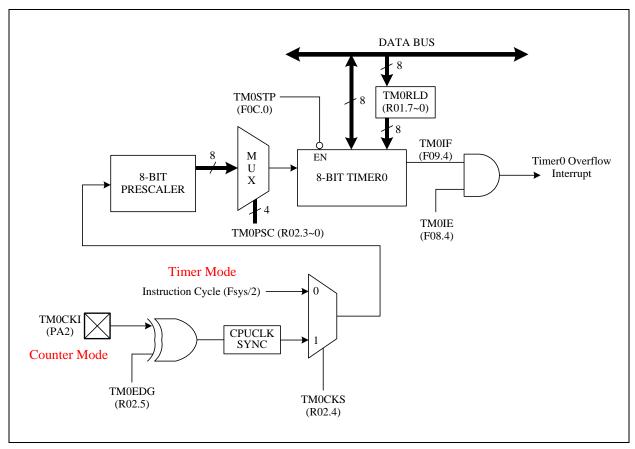
R04.7~0 **WDTCLR:** Write this register to clear WDT timer

R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	INT1EDG	INT0EDG	T2PSC		WDTPSC		WKTPSC	
R/W	R/W	R/W	R/W		R/W		R/W	
Reset	0	0	0	0	1	1	1	1

R0B.3~2 **WDTPSC:** WDT period (@VCC=5V)

00: 120 ms 01: 240 ms 10: 960 ms 11: 1920 ms

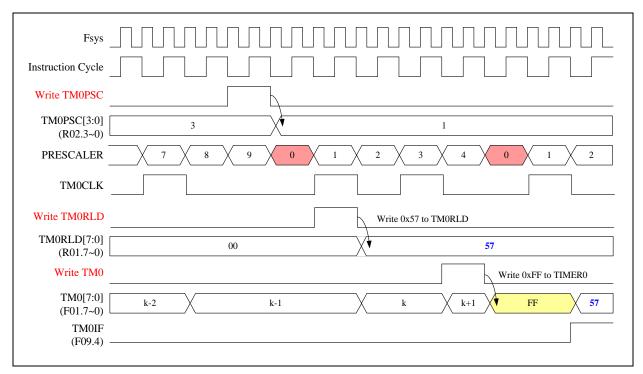
R0B.1~0 **WKTPSC:** WKT period (@VCC=5V)


00: 15 ms 01: 30 ms 10: 60 ms 11: 120 ms

DS-TM57MA17_18_E 34 Rev 0.90, 2017/01/09

3.2 Timer0

The Timer0 is an 8-bit wide register of F-Plane 01h (TM0). It can be read or written as any other register of F-Plane. Besides, Timer0 increases itself periodically and automatically rolls over based on the prescaled clock source, which can be the instruction cycle or TM0CKI (PA2) rising/falling input. The Timer0 increase rate is determined by the TM0PSC (R02.3~0). The Timer0 always generates interrupt flag TM0IF (F09.4) and also reload the new data from TM0RLD (R01.7~0) when its count rolls over. It generates Timer0 Interrupt if the TM0IE (F08.4) bit is set. Timer0 can be stopped counting if the TM0STP (F0C.0) bit is set.


Timer0 Block Diagram

DS-TM57MA17_18_E 35 Rev 0.90, 2017/01/09

Timer Mode:

When the Timer0 prescaler (TM0PSC) is written, the internal 8-bit prescaler will be cleared to 0 to make the counting period correct at the first Timer0 count. TM0CLK is the internal signal that causes the Timer0 to increase by 1 at the end of TM0CLK. TM0WR is also the internal signal that indicates the Timer0 is directly written by instruction; meanwhile, the internal 8-bit prescaler will be cleared. When Timer0 counts from FFh to TM0RLD data, TM0IF (Timer0 Interrupt Flag) will be set to 1 and generate interrupt if TM0IE (Timer0 Interrupt Enable) is set. The following timing diagram describes the Timer0 works in pure Timer mode.

Timer0 works in Timer mode (TM0CKS=0)

The equation of Timer0 interrupt time value is as following:

Timer0 interrupt interval cycle time=Instruction cycle time/TM0PSC/ (256 - TM0RLD)

♦ Example: Setup TM0 work in Timer mode, Fsys=Fast-clock/CPUPSC=FIRC 8 MHz/1=8 MHz

; Setup Timer0 clock source and divider

BSF CPUCKS ; Set Fast-clock as system clock

MOVLW xxx0 0101B ; R02.4 = 0 (TM0CKS), TM0 clock = Instruction cycle

MOVWR TM0CTL; $R02.3\sim0 = 5$ (TM0PSC), divided by 32

; Timer0 clock prescaler=Instruction cycle divided by 32

; Setup Timer0 reload data

MOVLW 80H

MOVWR TM0RLD ; Set Timer0 reload data=128

; Setup Timer0

BSF TM0STP ; Disable Timer0 counting (Default "0").

MOVLW 00H

MOVWF TM0 ; Clear Timer0 content

DS-TM57MA17_18_E 36 Rev 0.90, 2017/01/09

; Enable Timer0 and interrupt function.

MOVLW 11101111B ; Clear Timer0 request interrupt flag by byte operation

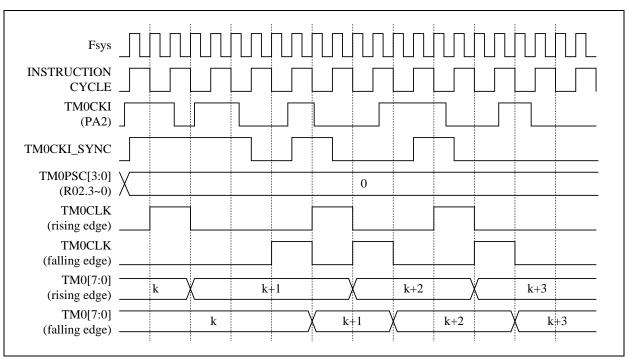
MOVWF INTIF ; F-Plane 09H

MOVLW 000<u>1</u>0000B ; Enable Timer0 interrupt function

MOVWF INTIE ; F-Plane 08H

BCF TMOSTP ; Enable Timer0 counting (Default "0").

Timer0 clock source is Fsys/2=8 MHz/2=4 MHz, Timer0 divided by 32


Timer0 interrupt frequency=4 MHz/32/ (256-128) =976.56 Hz

DS-TM57MA17_18_E 37 Rev 0.90, 2017/01/09

Counter Mode:

If TM0CKS=1 then Timer0 counter source clock is from TM0CKI pin. TM0CKI signal is synchronized by instruction cycle that means the high/low time durations of TM0CKI must be longer than one instruction cycle time to guarantee each TM0CKI's change will be detected correctly by the synchronizer. The following timing diagram describes the Timer0 works in Counter mode.

Timer0 works in Counter mode (TM0CKS=1) for TM0CKI

♦ Example: Setup Timer0 work in Counter mode and clock source from TM0CKI pin (PA2)

; Setup Timer0 clock source from TM0CKI pin (PA2) and divider.

MOVLW 001 1 0000B

MOVWR TM0CTL ; R02.5=1, Select counting edge is falling edge

; R02.4=1, Setup Timer0 clock = TM0CKI pin(PA2)

; R02.3~0=0 (TM0PSC), divided by 1

; TM0 clock prescaler = Instruction cycle divided by 1

; Set Timer0 timer and stop TM0 counting.

BSF TM0STP ; Disable Timer0 counting (Default "0").

MOVLW 00H

MOVWF TM0 ; Write 0 into Timer0 register of F-Plane 01H.

; Start Timer0 count and read Timer0 counter.

BCF TM0STP ; Enable Timer0 counting.

NOP

NOP

NOP

BSF TM0STP ; Disable Timer0 counting (Default "0")

MOVFW TM0 ; Read Timer0 content

DS-TM57MA17_18_E 38 Rev 0.90, 2017/01/09

F01	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TM0		TM0							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

F01.7~0 **TM0:** Timer0 content

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	_	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	0	0	0	0	0	0	0

F08.4 **TM0IE:** Timer0 interrupt enable

0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	-	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	0	0	0	0	0	0	0

F09.4 **TM0IF:** Timer0 interrupt event pending flag
This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

F0C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF0C	_	TCOE	PWM123CLR	PWM0CLR	T2CKS	T2CLR	TM1STP	TM0STP
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	0	-	_	_	_	1	0

F0C.0 **TM0STP:** Timer0 counter stop

0: Release1: Stop counting

R01	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TM0RLD		TM0RLD								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

R01.7~0 TM0RLD: Timer0 reload data

R02	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0CTL	_	_	TM0EDG	TM0CKS	TM0PSC			
R/W	_	_	R/W	R/W	R/W			
Reset	-	_	0	0	0	0	0	0

R02.5 **TM0EDG:** TM0CKI (PA2) edge selection for Timer0 prescaler count

0: TM0CKI rising edge for Timer0 prescaler count 1: TM0CKI falling edge for Timer0 prescaler count

R02.4 TM0CKS: Timer0 clock source select

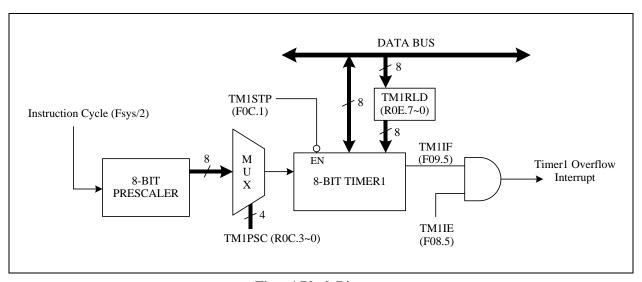
0: Instruction Cycle (Fsys/2) as Timer0 prescaler clock

1: TM0CKI (PA2) as Timer0 prescaler clock

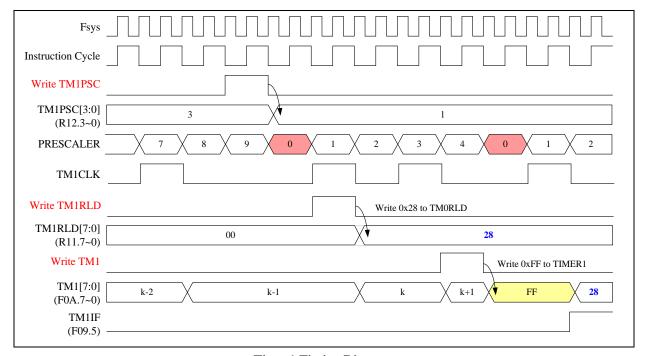
DS-TM57MA17_18_E 39 Rev 0.90, 2017/01/09

R02.3~0 **TM0PSC:** Timer0 prescaler. Timer0 clock source

0000: divided by 1 0001: divided by 2 0010: divided by 4 0011: divided by 8 0100: divided by 16 0101: divided by 32 0110: divided by 64 0111: divided by 128

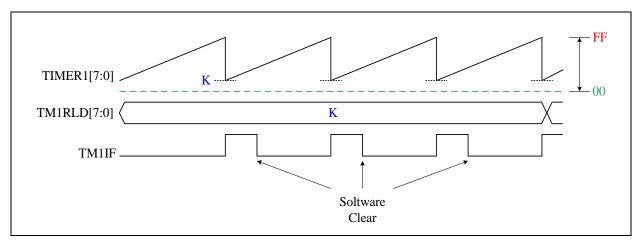

1xxx: divided by 256

DS-TM57MA17_18_E 40 Rev 0.90, 2017/01/09



3.3 Timer1

The Timer1 is an 8-bit wide register of F-Plane. It can be read or written as any other register of F-Plane. It is almost the same as Timer0, except Timer1 doesn't have Counter Mode. Timer1 increases itself periodically and automatically rolls over based on the pre-scaled instruction cycle. The Timer1's increasing rate is determined by the TM1PSC (R0C.3~0). The Timer1 can generate interrupt flag TM1IF (F09.5) and also reload the new data from TM1RLD (R0E.7~0) when it rolls over. It generates Timer1 interrupt if the TM1IE (F08.5) bit is set. Timer1 can be stopped counting if the TM1STP (F0C.1) bit is set.


Timer1 Block Diagram

Timer1 Timing Diagram

DS-TM57MA17_18_E 41 Rev 0.90, 2017/01/09

Timer1 Reload Diagram

When the Timer1 prescaler (TM1PSC) is written, the internal 8-bit prescaler will be cleared to 0 to make the counting period correct at the first Timer1 count. TM1CLK is the internal signal that causes the Timer1 to increase by 1 at the end of TM1CLK. TM1WR is also the internal signal that indicates the Timer1 is directly written by instruction; meanwhile, the internal 8-bit prescaler will be cleared. When Timer1 counts from FFh to TM1RLD data, TM1IF (Timer1 Interrupt Flag) will be set to 1 and generate interrupt if TM1IE (Timer1 Interrupt Enable) is set. The timing diagram describes the Timer1 works in pure Timer mode is shown in above.

The equation of Timer1 interrupt frequency is as following:

Timer1 interrupt frequency=Instruction cycle frequency/TM1PSC/ (256-TM1RLD)

♦ Example: Setup Timer1 work in Timer mode.

; Setup Timer1 clock source and divider

 $\begin{array}{lll} \text{MOVLW} & 00000\underline{1} \ \underline{11}\text{B} & ; \text{F0B.2=1 (CPUCKS), Fsys=Fast-clock} \\ \text{MOVWF} & \text{CLKCTL} & ; \text{F0B.1$$\sim$0=3 (CPUPSC), divided by 1} \\ \text{MOVLW} & 0000\underline{0101}\text{B} & ; \text{R0C.3$$\sim$0=5 (TM1PSC), divided by 32} \\ \text{MOVWR} & \text{TM1CTL} & ; \text{Select Timer1 clock= (Fsys/2)/32=Fsys/64} \\ \end{array}$

; Set Timer1 timer offset and stops TM1 counting

BSF TM1STP ; Stop Timer1 counting (Default "0").

MOVLW F0H

MOVWF TM1; Write F0H into Timer1 counter (F18.7~0)

MOVLW F0H

MOVWR TM1RLD ; Write F0H into Timer1 Reload (R0E.7~0)

; Enable Timer1 timer and interrupt function.

MOVLW 11011111B ; Clear Timer1 request interrupt flag by byte operation

MOVWF INTIF ; F-Plane 09H

MOVLW 00<u>1</u>00000B ; Enable Timer1 interrupt function.

MOVWF INTIE

BCF TM1STP ; Enable Timer1 counting (Default "0").

DS-TM57MA17_18_E 42 Rev 0.90, 2017/01/09

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE		T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	0	0	0	0	0	0	0

F08.5 **TM1IE:** Timer1 interrupt enable

0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF		T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	0	0	0	0	0	0	0

F09.5 **TM1IF:** Timer1 interrupt event pending flag
This bit is set by H/W while Timer1 overflows, write 0 to this bit will clear this flag

F0C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF0C	_	TCOE	PWM123CLR	PWM0CLR	T2CKS	T2CLR	TM1STP	TM0STP
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	0	-	_	-	_	1	0

F0C.1 **TM1STP:** Timer1 counter stop

0: Release1: Stop counting

F18	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TM1		TM1							
R/W		R/W							
Reset			_	0			0	0	

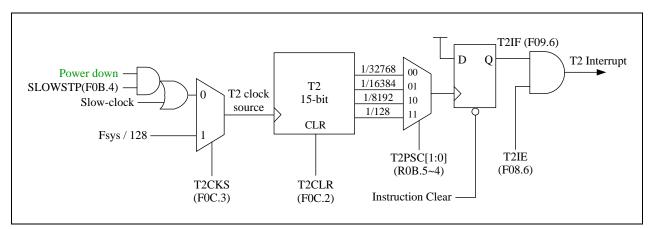
F18 **TM1:** Timer1 content

R0E	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TM1RLD		TM1RLD								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

R0E.7~0 TM1RLD: Timer1 reload data

R0C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
MR0C	PWM	10PSC	PWM123PSC		TM1PSC				
R/W	R/	W	R/W			R/	W		
Reset	0	0	0	0	0	0	0	0	

R0C.3~0 TM1PSC: Timer1 prescaler. Timer1 clock source (Fsys/2)


0000: divided by 1 (Fsys/2) 0001: divided by 2 (Fsys/4) 0010: divided by 4 (Fsys/8) 0011: divided by 8 (Fsys/16) 0100: divided by 16 (Fsys/32) 0101: divided by 32 (Fsys/64) 0110: divided by 64 (Fsys/128) 0111: divided by 128 (Fsys/256) 1xxx: divided by 256 (Fsys/512)

DS-TM57MA17_18_E 43 Rev 0.90, 2017/01/09

3.4 T2:15-bit Timer

The T2 is a 15-bit counter and the clock sources are from either Fsys/128 or Slow-clock. It is used to generate time base interrupt and T2 counter block clock. It is selected by T2CKS (F0C.3). The T2 content cannot be read by instructions. It generates interrupt flag T2IF (F09.6) with the clock divided by 32768/16384/8192/128 depends on T2PSC[1:0] (R0B.5~4) register bits. The following figure shows the block diagram of T2.

T2 Block Diagram

The equation of T2 interrupt frequency is as following:

T2 interrupt frequency = T2 clock source frequency/T2PSC

♦ Example: CPU is running at FAST mode, Fsys=Fast-clock/2=FIRC 4 MHz

; Setup T2 clock source and divider.

MOVLW xxx00<u>1</u> <u>10</u>B ; F0B.2=1 (CPUCKS), Fsys=Fast-clock MOVWF CLKCTL ; F0B.1~0=2 (CPUPSC), divided by 2

; Fsys=8 MHz/2=4 MHz

MOVLW xxxx<u>1</u>xxxB

MOVWF MF0C ; F0C.3=1 (T2CKS), T2 clock source=Fsys/128

MOVLW $xx\underline{01}xxxxB$

MOVWR MR0B ; R0B.5~4=1 (T2PSC), divided by 16384

BSF T2CLR ; F0C.2=1, clear T2 counter

; Enable T2 interrupt function.

MOVLW 10111111B ; Clear T2 request interrupt flag by byte operation

MOVWF INTIF ; F-Plane 09H

MOVLW 01000000B; Enable T2 interrupt function.

MOVWF INTIE ; F-Plane 08H

T2 clock source is Fsys/128=4 MHz/128=31250 Hz, T2PSC=/16384

T2 frequency=31250 Hz/16384=1.907 Hz

♦Example:

; Setup T2 clock source and divider

MOVLW xxxx**0**xxxB

MOVWF MF0C ; F0C.3=0 (T2CKS), T2 clock source=Slow-clock

MOVLW xx**00**xxxxB

MOVWR MR0B ; R0B.5~4=1 (T2PSC), divided by 32768

BSF T2CLR ; F0C.2=1, clear T2 counter

; Enable T2 timer and interrupt function.

MOVLW 10111111B ; Clear T2 request interrupt flag

MOVWF INTIF ; F-Plane 09H

MOVLW 01000000B; Enable T2 interrupt function.

MOVWF INTIE ; F-Plane 08H

T2 clock source is Slow-clock = 128 KHz, T2PSC=/32768,

T2 frequency=128000 Hz/32768 \= 3.91Hz

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	_	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	0	0	0	0	0	0	0

F08.6 **T2IE:** T2 interrupt enable

0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	-	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	0	0	0	0	0	0	0

F09.6 **T2IF:** T2 interrupt event pending flag

This bit is set by H/W while T2 overflows, write 0 to this bit will clear this flag

F0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCTL	_	_	_	SLOWSTP	FASTSTP	CPUCKS	CPU	PSC
R/W	_	_	_	R/W	R/W	R/W	R/W	
Reset		_	_	0	0	0	1	1

F0B.4 **SLOWSTP**: Slow-clock stop

0: Slow-clock is running

1: Slow-clock stops running in Power-down mode

DS-TM57MA17_18_E 45 Rev 0.90, 2017/01/09

F0C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF0C	_	TCOE	PWM123CLR	PWM0CLR	T2CKS	T2CLR	TM1STP	TM0STP
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	0	0	0	0	0	1	0

F0C.3 **T2CKS**: T2 clock source select

0: Slow-clock 1: Fsys/128

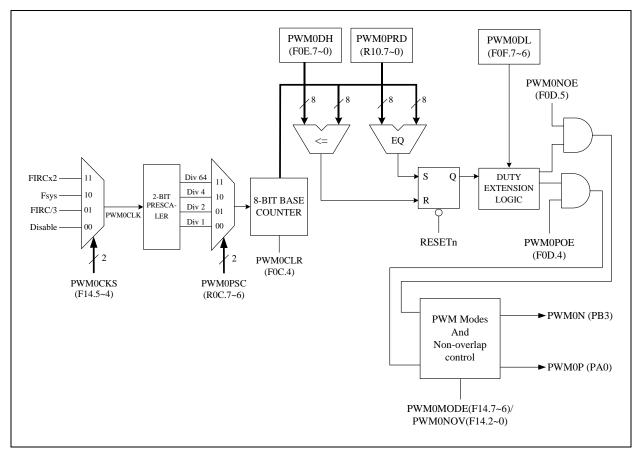
F0C.2 **T2CLR:** T2 counter clear

0: T2 is counting

1: T2 is cleared immediately, this bit is auto cleared by H/W

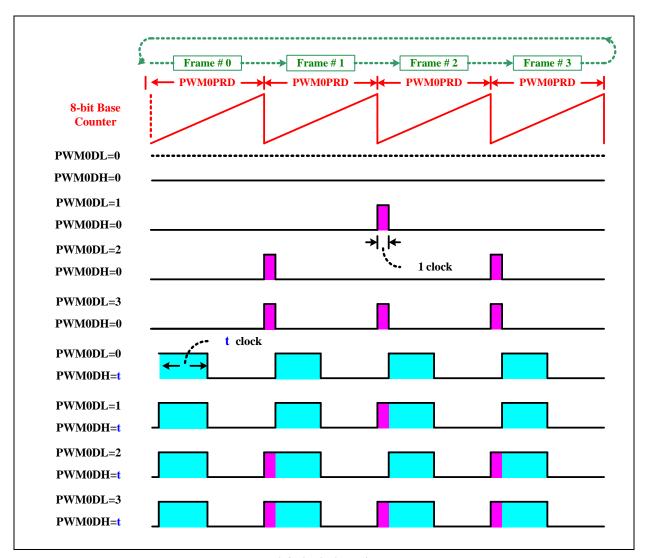
R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	INT1EDG	INT0EDG	T2PSC		WD7	ΓPSC	WKTPSC	
R/W	R/W	R/W	R/W		R/	W	R/	W
Reset	0	0	0	0	1	1	1	1

R0B.5~6 **T2PSC:** T2 prescaler. T2 clock source


00: divided by 32768 01: divided by 16384 10: divided by 8192 11: divided by 128

3.5 PWM0: (8+2) bits PWM

The PWM can generate various frequency waveform with 1024 duty resolution based on PWM0CLK, which can select Fsys, FIRC 16 MHz, FIRC/3 or disable, decided by PWM0CKS[1:0] (F14.5~4). A spread LSB technique allows PWM0 to run its frequency at "PWM0CLK divided by 256" instead of "PWM0CLK divided by 1024", which means the PWM is 4 times faster than normal. The advantage of higher PWM frequency is that the post RC filter can transform the PWM signal to more stable DC voltage level. The PWM output signal reset to low level whenever the 8-bit base counter matches the 8-bit MSB of PWM duty register PWM0DH (F0E.7~0). When the base counter rolls over, the 2-bit LSB of PWM duty register PWM0DL (F0F.7~6) decides whether to set the PWM output signal high immediately or set it high after one clock cycle delay.


The PWM0 period can be set by writing period value to PWM0PRD register (R10.7~0). Note that changing the PWM0PRD will immediately change the PWM0PRD values, which are different from PWM0DH / PWM0DL which has buffer to update the duty at the end of current period. The Programmer must pay attention to the current time to change PWM0PRD by observing the following figure. There is a digital comparator that compares the PWM0 counter and PWM0PRD, if PWM0 counter is larger than PWM0PRD after setting the PWM0PRD, a fault long PWM cycle will be generated because PWM0 counter must count to overflow then keep counting to PWM0PRD to finish the cycle.

PWM0 Block Diagram

DS-TM57MA17_18_E 47 Rev 0.90, 2017/01/09

PWM0 8+2 Timing Diagram

DS-TM57MA17_18_E 48 Rev 0.90, 2017/01/09

♦ Example: CPU running at Fast mode, Fsys=FIRC 8 MHz

; Setup Pin mode

MOVLW xxxxxx**10**B ; R06.1~0=2 (PA0MOD), PA0 Pin mode=Mode2

MOVWR PAMODL ; Mode2: CMOS output

MOVLW **10**xxxxxxB ; R08.7~6=2 (PB3MOD), PB3 Pin mode=Mode2

MOVWR PBMODL ; Mode2: CMOS output

; Setup PWM0 clock prescaler

BSF PWM0CLR ; F0C.4=1, PWM0 clear and hold

MOVLW $xx\underline{11}xxxxB$; F14.5~4=3 (PWM0CKS)

MOVWF PWM0MD ; PWM0 clock source = FIRCx2

MOVLW <u>11</u>xxxxxxB ; R0C.7~6=3(PWM0PSC), PWM0 prescaler / 64

MOVWR MR0C

MVOLW <u>00</u>11x<u>000</u>B ; F14.7~6=0 (PWM0MODE), PWM0 mode=Mode0 MOVWR PWM0MD ; F14.2~0=0 (PWM0NOV), PWM0 non-overlap time=0

; Setup PWM0 mode & Non-overlap control

MOVLW 7FH

MOVWR PWM0PRD ; Set PWM0 period=7FH

MOVLW <u>**00**</u>xxxxxxB

MOVWF PWM0DL ; Set PWM0DL duty=00H

MOVLW 20H

MOVWF PWM0DH ; Set PWM0DH duty=20H

MOVLW xx11xx0xB ; F0D.5=1 (PWM0NOE), Enable PWM0N output to PB3

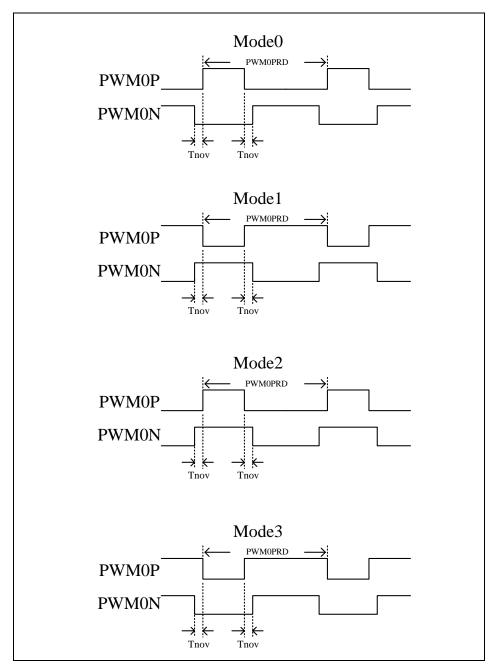
MOVWF PWMCTL ; F0D.4=1 (PWM0NOE), Enable PWM0P output to PA0

; PWM2 is also output to PB3, so need to set PWM2OE=0

BCF PWM0CLR ; F0C.4=0, release PWM0 clear and hold

Example:

PWM0 clock source=FIRCx2, PWM0PSC=/64, PWM0PRD=7FH,


PWM0DL=00H, PWM0DH=20H

PWM0 output frequency=16 MHz/64/ (PWM0PRD+1) =16 MHz/64/128=1953 Hz.

PWM0P output duty=32:128=25 %.

PWM0 can be output via PWM0P and PWM0N with four different modes. The edges of the PWM pulse can be separated with 6 different time non-overlap clocks intervals (Tnov), 0s, 4 PWM0CLKs, 5 PWM0CLKs, 6 PWM0CLKs, 7 PWM0CLKs, and 8 PWM0CLKs which are selected by PWM0NOV (F14.2~0). The default output form is Mode0. The waveforms of the four output modes are shown below.

PWM0 Waveform Modes

DS-TM57MA17_18_E 50 Rev 0.90, 2017/01/09

F0C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF0C	_	TCOE	PWM123CLR	PWM0CLR	T2CKS	T2CLR	TM1STP	TM0STP
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	0	0	0	0	0	1	0

F0C.4 **PWM0CLR**: PWM0 clear and hold

0: PWM0 is running1: PWM0 is clear and hold

F0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCTL	PWM123CKS		PWM0NOE	PWM0POE	PWM1AOE	PWM1BOE	PWM2OE	PWM3OE
R/W	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	0	0	0	0	0	0	0

F0D.5 **PWM0NOE**: Enable PWM0N output to PB3 pin

0: disable 1: enable

F0D.4 **PWM0POE**: Enable PWM0P output to PA0 pin

0: disable 1: enable

F0E	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM0DH		PWM0DH							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

F0E.7~0 **PWM0DH:** PWM0 duty 8-bit MSB

F0F	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM0DL	PWM0DL		_	_	_	_	_	_
R/W	R/W		_	_	_	-	_	-
Reset	0	0	_	_	_	_	_	_

F0F.7~6 **PWM0DL:** PWM0 duty 2-bit LSB

F14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM0MD	PWM0	MODE	PWM	0CKS	_		PWM0NOV			
R/W	R/	W	R/W		_	R/W				
Reset	0	0	1	0	_	0	0	0		

F11.7~6 **PWM0MODE:** PWM0 differential output mode

00: Mode 0 01: Mode 1 10: Mode 2 11: Mode 3

F11.5~4 **PWM0CKS:** PWM0 clock source (Fpwm0) select

00: Disable 01: FIRC/3 10: Fsys 11: FIRCx2

DS-TM57MA17_18_E 51 Rev 0.90, 2017/01/09

F11.2~0 **PWM0NOV:** PWM0 non-overlap control

000: original PWM0

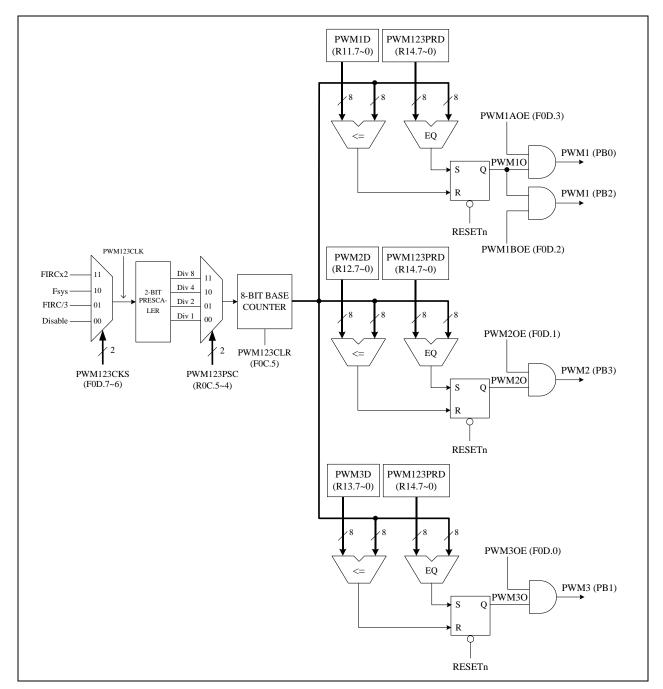
001: non-overlap 4 PWM0CLKs 010: non-overlap 5 PWM0CLKs 011: non-overlap 6 PWM0CLKs 100: non-overlap 7 PWM0CLKs 101: non-overlap 8 PWM0CLKs

R0C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
MR0C	PWM	I0PSC	PWM123PSC		TM1PSC				
R/W	R/	W	R/	W		R/	W		
Reset			_	_			_		

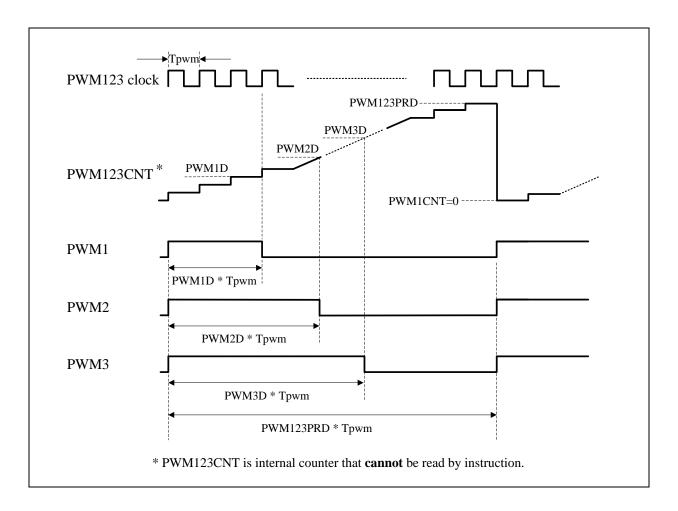
R0C.7~6 **PWM0PSC:** PWM0 prescaler. PWM0 clock source (Fpwm0)

00: divided by 1 01: divided by 2 10: divided by 4 11: divided by 64

R10	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM0PRD		PWM0PRD							
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	


R10.7~0 **PWM0PRD:** PWM0 period data

DS-TM57MA17_18_E 52 Rev 0.90, 2017/01/09



3.6 PWM1 / PWM2 / PWM3

This device doesn't only have one 8+2 bits PWM0 but also has three built-in 8-bit PWM generators. There are PWM1, PWM2 and PWM3. All of them use the same clock source. The PWM1~ PWM3 clock source can select Fsys, FIRC 16 MHz, FIRC/3 or disable, decided by PWM123CKS[1:0] (F0D.7~6). And it also can be divided by 1, 2, 4, and 8 according to PWM123PSC (R0C.5~4). The PWM1~PWM3 shared one period register PWM123PRD (R14.7~0), and their duty cycle can be changed with writing to their independent duty register PWM1D (F11.7~0), PWM2D (F12.7~0) and PWM3D (F13.7~0). The PWM1~3 will output to I/O by setting PWM1AOE (F0D.3), PWM1BOE (F0D.2), PWM2OE (F0D.1), and PWM3OE (F0D.0). Setting the PWM123CLR (F0C.5) bit will clear the PWM counter. Figure shows the block diagram of PWM1~PWM3.

♦ Example: CPU running at Fast mode, Fsys=FIRC 8 MHz

; Setup Pin mode

MOVLW <u>10 10 10 10 10 B</u>; R08.7~6=2 (PB3MOD), PB3 Pin mode=Mode2

; R08.5~4=2 (PB2MOD), PB2 Pin mode=Mode2 ; R08.3~2=2 (PB1MOD), PB1 Pin mode=Mode2 ; R08.1~0=2 (PB0MOD), PB0 Pin mode=Mode2

; Mode2: CMOS output

MOVWR PBMODL

; Setup PWM123 clock prescaler

BSF PWM123CLR ; F0C.5=1, PWM123 clear and hold

MOVLW <u>01</u>xxxxxxB ; F0D.7~6=1 (PWM123CKS) MOVWF PWMCTL ; PWM123 clock source = FIRC/3

MOVLW xx**01**xxxxB ; R0C.5~4=1 (PWM123PSC), PWM123 prescaler/2

MOVWR MR0C

MOVLW C7H

MOVWR PWM123PRD ; Set PWM123 period=C7H

MOVLW 32H

MOVWR PWM1D ; Set PWM1 duty=32H

DS-TM57MA17_18_E 54 Rev 0.90, 2017/01/09

MOVLW 64H

MOVWR PWM2D ; Set PWM2 duty = 64H

MOVLW 96H

MOVWR PWM3D ; Set PWM3 duty=96H

MOVLW 01xx1111B; F0D.3=1 (PWM1AOE), Enable PWM1 output to PB0 MOVWF PWMCTL; F0D.2=1 (PWM1BOE), Enable PWM1 output to PB2

; F0D.1=1 (PWM2OE), Enable PWM2 output to PB3 ; F0D.0=1 (PWM3OE), Enable PWM3 output to PB1

BCF PWM123CLR ; F0C.5=0, release PWM123clear and hold

Example:

PWM1 output duty=PWM1D/ (PWM123PRD + 1) = 50 / (199 + 1) = 1/4

PWM2 output duty=PWM2D/(PWM123PRD + 1) = 100/(199 + 1) = 1/2

PWM3 output duty=PWM3D/ (PWM123PRD+1) =150/ (199 + 1) =3/4

PWM123 clock=FIRC/3=8 MHz / 3 = 2.66 MHz, PWM123 clock divided by 2

PWM123 output frequency=2.66 MHz/2/ (199+1) =6650 Hz

F0C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF0C	_	TCOE	PWM123CLR	PWM0CLR	T2CKS	T2CLR	TM1STP	TM0STP
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	0	0	0	0	0	1	0

F0C.5 **PWM123CLR**: PWM1, PWM2 and PWM3 clear and hold

0: PWM1, PWM2 and PWM3 are running

1: PWM1, PWM2 and PWM3 are clear and hold

F0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCTL	PWM123CKS		PWM0NOE	PWM0POE	PWM1AOE	PWM1BOE	PWM2OE	PWM3OE
R/W	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	0	0	0	0	0	0	0

F0D.7~6 PWM123CKS: PWM1, PWM2 and PWM3 clock source (Fpwm123) select

00: Disable

01: FIRC/3

10: Fsys

11: FIRCx2

F0D.3 **PWM1A0E**: Enable PWM1 output to PB0 pin

0: disable

1: enable

F0D.2 **PWM1B0E**: Enable PWM1 output to PB2 pin

0: disable

1: enable

DS-TM57MA17_18_E 55 Rev 0.90, 2017/01/09

F0D.1 **PWM2OE**: Enable PWM2 output to PB3 pin

0: disable 1: enable

F0D.0 **PWM30E**: Enable PWM3 output to PB1 pin

0: disable 1: enable

R0C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
MR0C	PWM	OPSC	PWM123PSC			TM1PSC			
R/W	R/	W	R/	W	R/W				
Reset	0	0	0	0	0	0	0	0	

R0C.5~4 **PWM123PSC:** PWM1~PWM3 prescaler. PWM1, PWM2 and PWM3 clock source (Fpwm123)

00: divided by 1 01: divided by 2 10: divided by 4 11: divided by 8

R11	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM1D		PWM1D								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

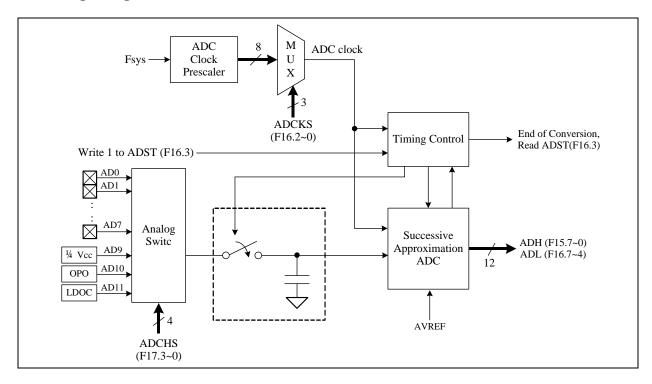
R11.7~0 **PWM1D:** PWM1 duty

R12	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM2D		PWM2D								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

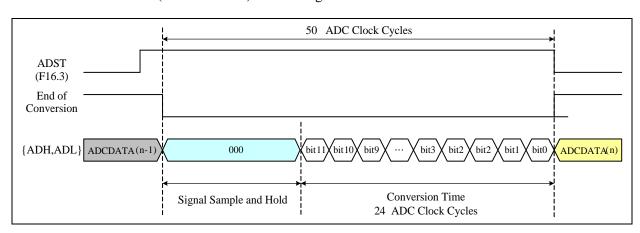
R12.7~0 **PWM2D:** PWM2 duty

R13	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM3D		PWM3D								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

R13.7~0 **PWM3D:** PWM3 duty


R14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM123PRD		PWM123PRD								
R/W		R/W								
Reset	1	1	1	1	1	1	1	1		

R14.7~0 **PWM123PRD:** PWM1, PWM2 and PWM3 shared period data


DS-TM57MA17_18_E 56 Rev 0.90, 2017/01/09

3.7 Analog-to-Digital Converter

The 12-bit ADC (Analog to Digital Converter) consists of a 11-channel analog input multiplexer, control register, clock generator, 12-bit successive approximation register, and output data register. To use the ADC, user needs to set ADCKS (F16.2~0) to choose a proper ADC clock frequency, which must be less than 1 MHz. User then launches the ADC conversion by setting the ADST (F16.3) control bit. After end of conversion, H/W automatic clears the ADST (F16.3) bit. User can poll this bit to know the conversion status. About pin mode configuration, user needs to set the I/O mode as Mode3 when the pin is used as an ADC input. The setting can disable the pin logical input path to save power consumption. User needs to set ADCHS (F17.3~0) to choose the input channel of ADC. One of them, AD9 is 1/4 Vcc input for ADC. But, for better results, user needs delay 30 uS after setting the ADC input channel=AD9, then begin to use ADC again. In TM57MA18, ADC reference voltage is VCC. It should be noted that the voltage of ADC input channel can't exceed 0.95*VCC. In TM57MA17, ADC reference voltage is LDOC (1.25V or 2.5V). The reference voltage can be selected by LDO25SEL (R0D.1). On the other hand the voltage of ADC input channel can't exceed 0.95*2.5V (2.375V), and we must keep LDOPD (R0D.2) = 0 to remain enable LDOC (1.25V or 2.5V) when using the ADC.

DS-TM57MA17_18_E 57 Rev 0.90, 2017/01/09

Example:

[CPU running at FAST mode, Fsys=FIRC 4 MHz]

ADC clock frequency=1 MHz, ADC channel=ADC2 (PA2).

 \Diamond Example:

; Setup ADC clock

MOVLW xxx001 10B ; F0B.2=1 (CPUCKS), Fsys=Fast-clock **MOVWF CLKCTL** ; $F0B.1\sim0=2$ (CPUPSC), divided by 2

; Fsys=8 MHz/2=4 MHz

MOVLW xxxx0**110**B

ADCTL MOVWF ; F16.2~0 (ADCKS), ADC clock=Fsys/4=1 MHz

; Setup Pin mode

MOVLW xx11xxxxB ; R06.5~4=3 (PA2MOD), PA2 Pin mode=Mode3

MOVWR PAMODL

MOVLW 0000**0010**B ; F17.3~0=2 (ADCHS), ADC select ADC2 (PA2 pin)

ADCHS MOVWF

BSF ADST ; F16.3 (ADST), ADC start conversion

WAIT_ADC:

BTFSC ADST ; Wait ADC conversion finish

GOTO WAIT_ADC

MOVFW ; F15.7~0, Read ADC result [11:4] into W **ADH** ; F16.7~4, Read ADC result [3:0] into W **MOVFW ADCTL**

DS-TM57MA17_18_E 58 Rev 0.90, 2017/01/09

F15	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
ADH		ADH								
R/W		R								
Reset	_	_	_	_	_	_	_	_		

F15.7~0 **ADH:** ADC output data MSB[11~4]

F16	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCTL		AI	DL		ADST		ADCKS	
R/W		I	₹		R/W		R/W	
Reset	_					0	0	0

F16.7~4 **ADL:** ADC output data LSB[3~0]

F16.3 **ADST:** ADC start bit.

0: H/W clear after end of conversion

1: ADC start conversion

F16.2~0 ADCKS: ADC clock frequency (Fadc) select

000: Fsys/256 001: Fsys/128 010: Fsys/64 011: Fsys/32 100: Fsys/16 101: Fsys/8 110: Fsys/4 111: Fsys/2

F17	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCHS	_	_	_	_	ADCHS			
R/W	_	_	_	_	R/W			
Reset	_	_	_	_	0	0	0	0

F17.3~0 **ADCHS:** ADC channel select

 0000: ADC0 (PA6)
 0100: ADC4 (PA1)
 1000: Reserved

 0001: ADC1 (PA5)
 0101: ADC5 (PB4)
 1001: 1/4 Vcc

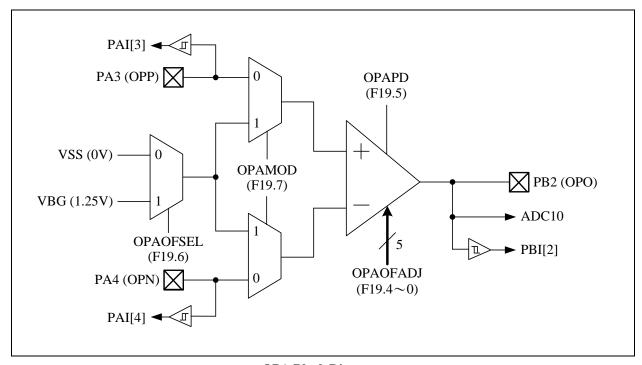
 0010: ADC2 (PA2)
 0110: ADC6 (PB0)
 1010: OPO (PB2)

0011: ADC3 (PB1) 0111: ADC7 (PA0) 1011: LDOC (1.25V or 2.5V)

R0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWRCTL	CLKFLT	VCCFLT	_	_	IVCSAV	LDOPD	LDO25SEL	MODE3V
R/W	R/W	R/W	_	_	R/W	R/W	R/W	R/W
Reset	0	0	_	_	0	0	1	0

ROD.2 **LDOPD:** Internal LDO (2.5V/1.25V) power down

0: LDO running 1: LDO power down


R0D.1 LDO25SEL: Internal LDO voltage select

0: 1.25V 1: 2.5V

3.7 OPA: Operational Amplifier

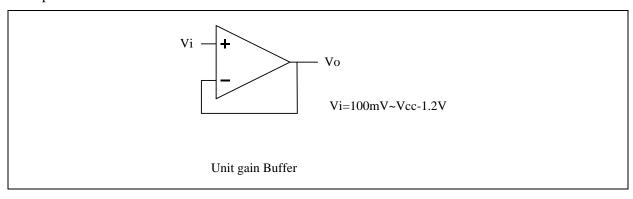
There is an operational amplifier (OPA) in this device. The OPA is a CMOS amplifier featuring high input impedance, extremely low offset voltage, high gain and high stability. It allows common mode input voltage range which extends 0V to V_{CC}-1.2V. This cost-effective device is suitable for high gain, low frequency and low offset voltage application. The OPA is off after IC reset. We could clear OPAPD (F19.5) to turn on the feature of OPA. In addition, the OPA support the build-in offset calibration mode by setting OPAMOD (F19.7). There are two offset voltages (0V or 1.25V) can be selected by OPAOFSEL (F19.6). In the OPA offset calibration mode, user has to change the OPAOFADJ (F19.4~0) value from 00H to 1FH in turn and record the OPAOFADJ value when OPO output low into high. Similarly, changing the OPAOFADJ from 1FH to 00H in turn, we can get another value when OPO output high into low. According to the two values, the suitable OPAOFADJ can be choice for calibration. With I/O mode setting, the corresponding pins have to set as analog mode (Mode3). It can disable the pin logical input path for save power consumption. The OPA block diagram is shown as below. See detailed specifications section on page 96 in the OPA Circuit Characteristics.

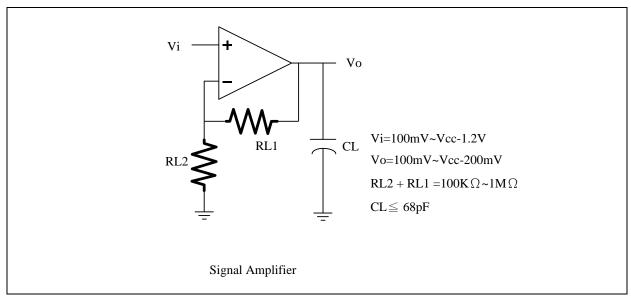
OPA Block Diagram

Feature:

• Low offset voltage : $\leq 2 \text{ mV}$

• Wide Unity Gain Bandwidth: 2.1 MHz


• Open Loop Gain: 120 dB


• Slew Rate: 1.4 V/μs

DS-TM57MA17_18_E 60 Rev 0.90, 2017/01/09

Example:

F19	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPACTL	OPAMOD	OPAOFSEL	OPAPD	OPAOFADJ				
R/W	R/W	R/W	R/W	R/W				
Reset	0	0	1	0	0	0	0	0

F19.7 **OPAMOD:** OPA mode select

0: Normal mode1: Calibration mode

F19.6 **OPAOFSEL:** OPA offset voltage select

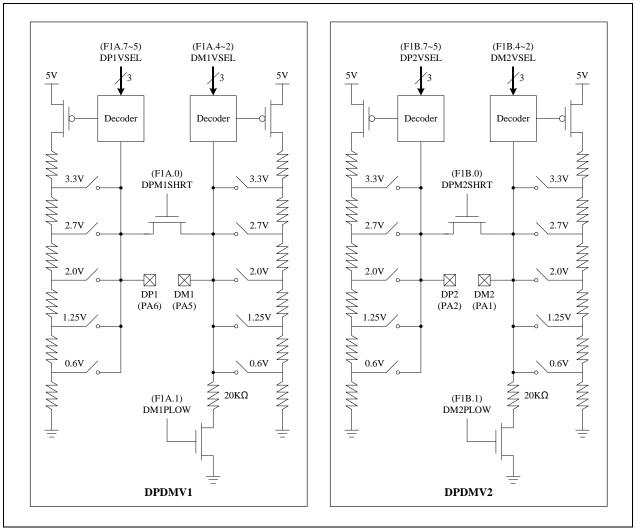
0: VSS (0V) 1: VBG (1.25V)

F19.5 **OPAPD:** OPA power down

0: OPA on 1: OPA off

F19.4~0 **OPAOFADJ:** OPA offset adjustment value

00000: Lowest voltage


11111: Highest voltage

DS-TM57MA17_18_E 61 Rev 0.90, 2017/01/09

3.8 DPDMV

There are two sets DPDMV (DPDMV1 and DPDMV2) in this device. The DPDMV is a voltage switch that can output different voltage 3.3V/2.7V/2.0V/1.25V/0.6V to DP and DM by setting DPVSEL and DMVSEL. Besides, DP and DM can be as internal short circuit by setting DPMSHRT. The DM can assign a pull-low resistor by setting DMPLOW register. According the above-mentioned features, this device can support a high performance fast-charging solution following Quick Charge 2.0 High Voltage Dedicated Charging Port (HVDCP) Class A and Class B specification. It can support not only USB BC compliant devices application but also Apple/Samsung devices. With I/O mode setting, the corresponding pins have to set as analog mode (Mode3). It can disable the pin logical input path for save power consumption. The DPDMV block diagram is shown as below. See detailed specifications section on page 96 in the DPDMV Circuit Characteristics.

DPDMV Block Diagram

DS-TM57MA17_18_E 62 Rev 0.90, 2017/01/09

F1A	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DPM1CTL		DP1VSEL			DM1VSEL		DM1PLOW	DPM1SHRT
R/W	R/W				R/W		R/W	R/W
Reset	0	0	0	0	0	0	0	0

F1A.7~5 **DP1VSEL:** DP1 (PA6) output voltage select

000: disable

001: 0.6V

010: 1.2V

011: 2.0V

100: 2.7V

101: 3.3V

F1A.4~2 **DM1VSEL:** DM1 (PA5) output voltage select

000: disable

001: 0.6V

010: 1.2V

011: 2.0V

100: 2.7V 101: 3.3V

F1A.1 **DM1PLOW:** DM1 pull-low

0: disable

1: enable

F1A.0 **DPM1SHRT:** DP1/DM1 short inside

0: DP1/DM1 no short

1: DP1/DM1 short together

F1B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DPM2CTL	DP2VSEL				DM2VSEL	DM2PLOW	DPM2SHRT	
R/W		R/W			R/W		R/W	R/W
Reset	0	0	0	0	0	0	0	0

F1B.7~5 **DP2VSEL:** DP2 (PA2) output voltage select

000: disable

001: 0.6V

010: 1.2V

011: 2.0V

100: 2.7V

101: 3.3V

F1B.4~2 **DM2VSEL:** DM2 (PA1) output voltage select

000: disable

001: 0.6V

010: 1.2V

011: 2.0V

100: 2.7V

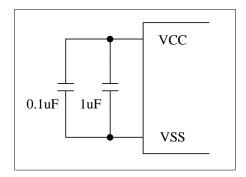
101: 3.3V

F1B.1 **DM2PLOW:** DM2 pull-low

0: disable

1: enable

F1B.0 **DPM2SHRT:** DP2/DM2 short inside


0: DP2/DM2 no short

1: DP2/DM2 short together

3.9 System Clock Oscillator

System clock can be operated in two different oscillation modes. The two oscillation modes are FIRC and SIRC. In the Fast Internal RC mode (FIRC), the on-chip oscillator generates 8 MHz system clock that can be trimmed by IRCF (F1F.7~0). It can separate the frequency into 256 steps. In the Slow Internal RC mode (SIRC), the on-chip oscillator generates 128 KHz system clock. Since power noise degrades the performance of Internal Clock Oscillator, placing power supply bypass capacitors 1 μ F and 0.1 μ F very close to VDD/VSS pins to improve the stability of clock and the overall system.

Internal RC Mode

F1F	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IRCF				IR	CF			
R/W				R	/W			
Reset				by SYST	EM setting			

F1F.7~0 **IRCF:** FIRC frequency adjustment

00H: Lowest frequency

.

FFH: Highest frequency

DS-TM57MA17_18_E 64 Rev 0.90, 2017/01/09

4 I/O Port

4.1 PA0-6, PB0-4

These pins can be used as Schmitt-trigger input, CMOS push-pull output or Open-drain output. The pull-up resistor is assignable to each pin by S/W setting. User can set each pin by their pin mode register. There are 4 kinds of pin modes Mode0, Mode1, Mode2 and Mode3 for each pin can be selected.

Mode	PA0-6, PB0-4 pin function	PXn SFR data	Pin State	Resistor Pull-up	Digital Input
Mode	Onan Drain	0	Drive Low	N	N
Mode 0	Open Drain	1	Pull-up	Y	Y
Mode 1	Onan Drain	0	Drive Low	N	N
Mode 1	Open Drain	1	Hi-Z	N	Y
Mode 2	CMOS Output	0	Drive Low	N	N
Mode 2	CMOS Output	1	Drive High	N	N
Mode 3	Alternative Function, such as ADC,	X		N	N
wiode 3	OPA and DP/DM	(don't care)		17	1/

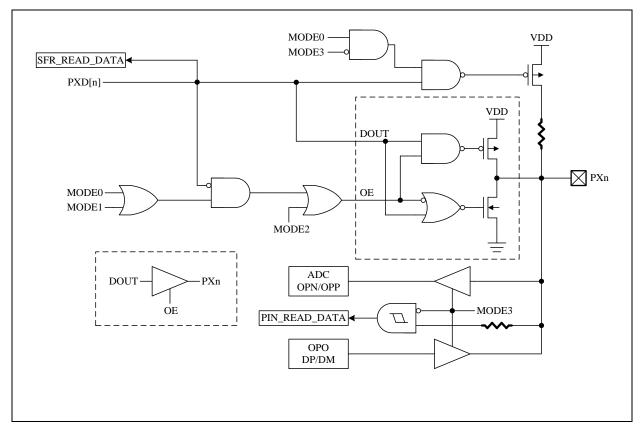
PA0-6, PB0-4 I/O Pin Function Table

If a PA0-6, PB0-4 pin is used for Schmitt-trigger input, S/W must set the I/O pin to Mode0 or Mode1 and set the corresponding Port Data SFR to 1 to disable the pin's output driving circuitry. Beside I/O port function, each PA0-6, PB0-4 pin has one or more alternative functions, ADC, OPA or DP/DM. Most of the functions are activated by setting the individual pin mode control SFR to Mode3. Reading the pin data (PA0-6, PB0-4) has different meaning. In "Read-Modify-Write" instruction, CPU actually reads the output data register. In the other instructions, CPU reads the pin state. The so-called "Read-Modify-Write" instruction includes BSF, BCF and all instructions using F-Plane as destination.

Pin Name	Function	INT	ADC	OPA	DP/DM	Mode3
PA0	PWM0P		ADC7			ADC7
PA1		INT1	ADC4		DM2	ADC4/DM2
PA2	TM0CKI		ADC2		DP2	ADC2/ DP2
PA3				OPP		OPP
PA4				OPN		OPN
PA5			ADC1		DM1	ADC1/DM1
PA6		INT0	ADC0		DP1	ADC0/ DP1
PB0	PWM1		ADC6			ADC6
PB1	PWM3		ADC3			ADC3
PB2	PWM1			OPO		OPO
PB3	PWM2/PWM0N					_
PB4	TCOUT		ADC5			ADC5

PA0-6, PB0-4 multi-function Table

DS-TM57MA17_18_E 65 Rev 0.90, 2017/01/09


The necessary SFR setting for PA0-6, PB0-4 pin's alternative function is list below.

Alternative Function	Mode	PXn SFR data	Pin State	Other necessary SFR setting
TM0CKI,	TM0CKI, 0 1 Input with Pull-up		Input with Pull-up	TM0CTL
INTO, INT1	1	1	Input	INTIE
	0	X	Clock Open Drain Output with Pull-up	
TCOUT 1 X		Clock Open Drain Output	MF0C	
	2	X	Clock Output (CMOS Push-Pull)	
DWA	0	X	PWM Open Drain Output with Pull-up	
PWM0, PWM1~ PWM3	1	X	PWM Open Drain Output	PWMCTL
1 WWI1~ 1 WWI3	2	X	PWM Output (CMOS Push-Pull)	
ADC0~ADC7	ADC0~ADC7 3 X ADC Channel		ADC Channel	ADCHS
OPP, OPN, OPO 3 X OPA analog I/O		OPA analog I/O	OPACTL	
DP1/DM1, DP2/DM2 3 X USB positive/negative data channel		DPM1CTL DPM2CTL		

Mode Setting for PA0-6, PB0-4 Alternative Function

For tables above, a "CMOS Output" pin means it can sink and drive at least 4mA current. It is not recommended to use such pin as input function.

An "Open Drain" pin means it can sink at least 4mA current but only drive a small current ($<20\mu A$). It can be used as input or output function and typically needs an external pull up resistor.

PA0-6, PB0-4 Pin Structure

DS-TM57MA17_18_E 66 Rev 0.90, 2017/01/09

♦ Example: Set PA0 as Schmitt-trigger input with pull-up (Mode0)

MOVLW xxxxxxx<u>1</u>B MOVWF PAD MOVLW xxxxxx**00**B

MOVWR PAMODL ; Set PA0 as Schmitt-trigger input with pull-up

♦ Example: Set PA0 as Schmitt-trigger input without pull-up (Model)

MOVLW xxxxxxx**1**B MOVWF PAD MOVLW xxxxxx**01**B

MOVWR PAMODL ; Set PA0 as Schmitt-trigger input without pull-up

♦ Example: Set PA0 as CMOS push-pull output mode and drive low (Mode2)

MOVLW XXXXXXX<u>0</u>B MOVWF PAD MOVLW XXXXXX<u>10</u>B MOVWR PAMODL

Example: Set PA0 as CMOS push-pull output mode and PWM0P output (Mode2)

MOVLW xxxxxx<u>10</u>B MOVWR PAMODL MOVLW xxx<u>1</u>xxxxB

MOVWF PWMCTL ; Set PWM0POE=1

♦ Example: Set PA0 as ADC7 input (Mode3)

MOVLW xxxxxx<u>11</u>B ; Set PA0 as ADC analog input

MOVWR PAMODL

MOVLW xxxx**0111**B ; Select channel ADC7

MOVWF ADCHS

F05	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAD				PA	ΔD			
R/W		R/W						
Reset	1	1	1	1	1	1	1	1

F05.7 **PAD[7]:** PA7 data or pin mode control

0: PA7 is open-drain output mode and output low

1: PA7 is Schmitt-trigger input mode

F05.6~0 **PAD[6:0]:** PA6~PA0 data

0: output low

1: output high or Schmitt-trigger input mode

F06	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBD	_	_	_			PBD		
R/W	_	_	_			R/W		
Reset	_	_	_	1	1	1	1	1

F06.4~0 **PBD:** PB4~PB0 data

0: output low

1: output high or Schmitt-trigger input mode

R05	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAMODH		_	PA6MOD		PA5MOD		PA4MOD	
R/W	_	_	R/W		R/	W	R/	W
Reset	_	_	0	1	0	1	0	1

R05.5~4 **PA6MOD**: PA6 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2

11: Mode3, ADC0 / DP1

R05.3~2 **PA5MOD**: PA5 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2

11: Mode3, ADC1 / DM1

R05.1~0 **PA4MOD**: PA4 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Mode3, OPN

R06	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAMODL	PA31	MOD	PA2MOD		PA1MOD		PA0MOD	
R/W	R/	W	R/	W	R/	W	R/	W
Reset	0	1	0	1	0	1	0	1

R06.7~6 **PA3MOD**: PA3 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Mode3, OPP

R06.5~4 **PA2MOD**: PA2 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2

11: Mode3, ADC2/DP2

R06.3~2 **PA1MOD**: PA1 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2

11: Mode3, ADC4/DM2

R06.1~0 **PA0MOD**: PA0 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Mode3, ADC7

R07	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBMODH		_	1	_	ı		PB4N	MOD
R/W	_	_	_	_	_	_	R/	W
Reset	_	_	_	_	_	_	0	1

R07.1~0 **PB4MOD**: PB4 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2

11: Mode3, ADC5

R08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBMODL	PB31	MOD	PB2I	MOD	PB1N	MOD	PBO	MOD
R/W	R/	W	R/	W	R/	W	R/	W
Reset	0	1	0	1	0	1	0	1

R08.7~6 **PB3MOD**: PB3 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Reserved

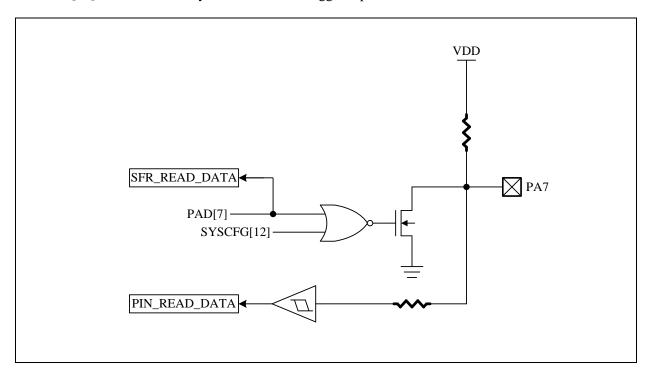
R08.5~4 **PB2MOD**: PB2 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Mode3, OPO

R08.3~2 **PB1MOD**: PB1 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Mode3, ADC3

R08.1~0 **PB0MOD**: PB0 Pin Mode Control


00: Mode0 01: Mode1 10: Mode2 11: Mode3, ADC6

DS-TM57MA17_18_E 69 Rev 0.90, 2017/01/09

4.2 PA7

PA7 can be used in Schmitt-trigger input or open-drain output which is setting by the PAD[7] (F05.7) bit. When the PAD[7] bit is set, PA7 is assigned as Schmitt-trigger input mode, otherwise is assigned as open-drain output mode and output low. The pull-up resistor is always connected to this pin. When SYSCFG[12] is set, PA7 is only used in Schmitt-trigger input for external active low reset.

How to control PA7 status can be concluded as following list.

SYSCFG[12]	PAD7	PN STATE	Pull-up	MODE
0	0	Low	Yes	open-drain output with pull-high (not suggest to use this mode)
0	1	High	Yes	input with pull-high
1	X	High	Yes	reset input with pull-high

♦ Example: Read state from PA7.

Condition: SYSCFG[12] is set to "0". If SYSCFG[12] = "1", then PA7 pin is external reset pin function.

BTFSS PAD,7
GOTO LOOP_A ; If PA7=0.
GOTO LOOP_B ; If PA7=1.

DS-TM57MA17_18_E 70 Rev 0.90, 2017/01/09

MEMORY MAP

F-Plane

Name	Address	R/W	Rst	Description		
(F00) INDF	<u>L</u>		_	Function related to: RAM W/R		
INDF	00.7~0	R/W	-	Not a physical register, addressing INDF actually point to the register whose address is contained in the FSR register		
(F01) TM0				Function related to: Timer0		
TM0	01.7~0	R/W	0	Timer0 content		
(F02) PCL				Function related to: PROGRAM COUNT		
PCL	02.7~0	R/W	0	Programming Counter LSB[7~0]		
(F03) STATUS Function related to: STATUS						
GB1	03.7	R/W	0	General purpose bit 1		
GB0	03.6	R/W	0	General purpose bit 0		
ТО	03.4	R	0	WDT timeout flag, cleared by PWRST, 'SLEEP' or 'CLRWDT' instruction		
PD	03.3	R	0	Sleep mode flag, set by 'SLEEP', cleared by 'CLRWDT' instruction		
Z	03.2	R/W	0	Zero flag		
DC	03.1	R/W	0	Decimal Carry flag		
C	03.0	R/W	0	Carry flag		
(F04) FSR				Function related to: RAM W/R		
GB2	04.7	R/W	0	General purpose bit 2		
FSR	04.6~0	R/W	-	File select register, indirect address mode pointer		
(F05) PAD	(F05) PAD Function related to: Port A					
	05.7	R	ı	PA7 pin or "data register" state		
PAD		W	1	0: PA7 is open-drain output mode 1: PA7 is Schmitt-trigger input mode		
	05.6~0	R	-	Port A pin or "data register" state		
		W	7F	Port A output data register		
(F06) PBD				Function related to: Port B		
PBD	06.4~0	R	-	Port B pin or "data register" state		
		W	FF	Port B output data register		
(F08) INTIE				Function related to: Interrupt Enable		
T2IE	08.6	R/W	0	T2 interrupt enable 0: disable 1: enable		
TM1IE	08.5	R/W	0	Timer1 interrupt enable 0: disable 1: enable		
TM0IE	08.4	R/W	0	Timer0 interrupt enable 0: disable 1: enable		
WKTIE	08.3	R/W	0	Wakeup Timer interrupt enable 0: disable 1: enable		

Name	Address	R/W	Rst	Description		
				INT2 (PA7) pin interrupt enable		
INT2IE	08.2	R/W	0	0: disable		
				1: enable		
INT1IE	00.1	R/W	0	INT1 (PA1) pin interrupt enable 0: disable		
	08.1			1: enable		
INT0IE		R/W	0	INTO (PA6) pin interrupt enable		
	08.0			0: disable		
				1: enable		
(F09) INTIF Function related to: Interrupt Flag						
T2IF	09.6	R	-	T2 interrupt event pending flag, set by H/W while T2 overflows		
1211	09.0	W	0	write 0: clear this flag; write 1: no action		
		R	_	Timer1 interrupt event pending flag, set by H/W while Timer1		
TM1IF	09.5			overflows		
		W	0	write 0: clear this flag; write 1: no action		
TM0IF		R	-	Timer0 interrupt event pending flag, set by H/W while Timer0 overflows		
	09.4	W	0	write 0: clear this flag; write 1: no action		
		R	-	WKT interrupt event pending flag, set by H/W while WKT time out		
WKTIF	09.3					
		W	0	write 0: clear this flag; write 1: no action		
INT2IF	09.2	R		INT2(PA7) interrupt event pending flag, set by H/W at INT2 pin's falling edge		
		W	0	write 0: clear this flag; write 1: no action		
INT1IF	09.1	R	1	INT1(PA1) interrupt event pending flag, set by H/W at INT1 pin's		
				falling / rising edge		
		W	0	write 0: clear this flag; write 1: no action		
INT0IF	09.0	R	-	INT0(PA6) interrupt event pending flag, set by H/W at INT0 pin's falling / rising edge		
		W	0	write 0: clear this flag; write 1: no action		
(F0A) PCH Function related to: PROGRAM COUNT						
PCH	0a.1~0	R/W	0	Programming Counter MSB[9~8]		
(F0B) CLKCT				Function related to: Fsys		
(FOD) CLICT	0b.4	R/W	0	Slow-clock stop		
SLOWSTP				0: Slow-clock is running		
				1: Slow-clock stops running in Power-down mode		
	0b.3	R/W	0	Fast-clock stop		
FASTSTP				0: Fast-clock is running 1: Fast-clock stops running		
CPUCKS	0b.2	R/W	0	System clock source select		
				0: Slow-clock		
				1: Fast-clock		
CPUPSC	0b.1~0	R/W	3	System clock source prescaler. System clock source		
				00: divided by 16 01: divided by 4		
				10: divided by 2		
				11: divided by 1		

Name	Address	R/W	Rst	Description
(F0C) MF0C			<u> </u>	Function related to: Fsys/PWM0~3/Timer0/Timer1/T2
(1 2)				Enable Instruction Cycle (Fsys/2) output to PB4 pin (TCOUT)
TCOE	0c.6	R/W	0	0: disable
				1: enable
				PWM1/PWM2/PWM3 clear and hold
PWM123CLR	0c.5	R/W	0	0: PWM1/PWM2/PWM3 are running
				1: PWM1/PWM2/PWM3 are clear and hold
				PWM0 clear and hold
PWM0CLR	0c.4	R/W	0	0: PWM0 is running
				1: PWM0 is clear and hold
TO CIVE	0.2	D ///		T2 clock select
T2CKS	0c.3	R/W	0	0: Slow-clock
				1: Fsys/128
Tagin	0.2	D/W	0	T2 counter clear
T2CLR	0c.2	R/W	0	0: T2 is counting
				1: T2 is cleared immediately, this bit is auto cleared by H/W Timer1 counter stop
TM1STP	0c.1	R/W	0	0: Release
IMISIF	00.1	IX/ VV	U	1: Stop counting
				Timer0 counter stop
TM0STP	0c.0	R/W	0	0: Release
11/10511	00.0	10/ 11		1: Stop counting
(F0D) PWMCT	T			Function related to: PWM0/PWM1/PWM2/PWM3
(IOD) I WHICE				PWM1, PWM2 and PWM3 clock source (Fpwm123) select
				00: Disable
PWM123CKS	0d.7~6	R/W	2	01: FIRC/3
1 //1/1120 0110	0417	10	_	10: Fsys
				11: FIRCx2
				Enable PWM0N output to PB3 pin
PWM0NOE	0d.5	R/W	0	0: disable
				1: enable
				Enable PWM0P output to PA0 pin
PWM0POE	0d.4	R/W	0	0: disable
				1: enable
				Enable PWM1 output to PB0 pin
PWM1AOE	0d.3	R/W	0	0: disable
				1: enable
DVV (4 D O E	0.1.0	D 411		Enable PWM1 output to PB2 pin
PWM1BOE	0d.2	R/W	0	0: disable
				1: enable
PWM2OE	04.1	D/W/	0	Enable PWM2 output to PB3 pin
F W M Z O E	0d.1	R/W	0	0: disable
				1: enable Enable PWM3 output to PB1 pin
PWM3OE	0d.0	R/W	0	0: disable
1 WWISOE	00.0	17/ 44	U	1: enable
(F0E) PWM0DH			Function related to: PWM0	
, ,		D/W	0	
PWM0DH	0e.7~0	R/W	0	PWM0 duty 8-bit MSB
(F0F) PWM0D				Function related to: PWM0
PWM0DL	0f.7~6	R/W	0	PWM0 duty 2-bit LSB

Name	Address	R/W	Rst	Description
(F14) PWM0M	D			Function related to: PWM0
PWM0MODE	14.7~6	R/W	0	PWM0 differential output mode 00: Mode0 01: Mode1 10: Mode2 11: Mode3
PWM0CKS	14.5~4	R/W	2	PWM0 clock source (Fpwm0) select 00: Disable 01: FIRC/3 10: Fsys 11: FIRCx2
PWM0NOV	14.2~0	R/W	0	PWM0 non-overlap control 000: original PWM0 001: non-overlap 4 PWM0CLKs 010: non-overlap 5 PWM0CLKs 011: non-overlap 6 PWM0CLKs 100: non-overlap 7 PWM0CLKs 101: non-overlap 8 PWM0CLKs
(F15) ADH				Function related to: ADC
ADH	15.7~0	R	-	ADC output data MSB[11~4]
(F16) ADCTL				Function related to: ADC
ADL	16.7~4	R	-	ADC output data LSB[3~0]
ADST	16.3	R/W	0	ADC start bit. 0: H/W clear after end of conversion 1: ADC start conversion
ADCKS	16.2~0	R/W	0	ADC clock frequency (Fadc) select 000: Fsys/256 001: Fsys/128 010: Fsys/64 011: Fsys/32 100: Fsys/16 101: Fsys/8 110: Fsys/4 111: Fsys/2
(F17) ADCHS				Function related to: ADC
ADCHS	17.3~0	R/W	0	ADC channel select 0000: ADC0 (PA6) 0001: ADC1 (PA5) 0010: ADC2 (PA2) 0011: ADC3 (PB1) 0100: ADC4 (PA1) 0101: ADC5 (PB4) 0110: ADC6 (PB0) 0111: ADC7 (PA0) 1000: Reserved 1001: 1/4 Vcc 1010: OPO (PB2) 1011: LDOC (1.25V or 2.5V, select by LDO25SEL (R0D.1))
(F18) TM1				Function related to: Timer1
TM1	18.7~0	R/W	0	Timer1 content

Name	Address	R/W	Rst	Description			
(F19) OPACTL				Function related to: OPA			
OPAMOD	19.7	R/W	0	OPA mode select 0: Normal mode 1: Calibration mode			
OPAOFSEL	19.6	R/W	1	OPA offset voltage select 0: VSS (0V) 1: VBG (1.25V)			
OPAPD	19.5	R/W	0	OPA power down 0: OPA on 1: OPA off			
OPAOFADJ	19.4~0	R/W	0	OPA offset adjustment value 00000: Lowest voltage 11111: Highest voltage			
(F1A) DPM1C	ΓL			Function related to: DP1/DM1			
DP1VSEL	1a.7~5	R/W	0	DP1 (PA6) output voltage select 000: disable 001: 0.6V 010: 1.2V 011: 2.0V 100: 2.7V 101: 3.3V			
DM1VSEL	1a.4~2	R/W	0	DM1 (PA5) output voltage select 000: disable 001: 0.6V 010: 1.2V 011: 2.0V 100: 2.7V 101: 3.3V			
DM1PLOW	1a.1	R/W	0	DM1 pull-low 0: disable 1: enable			
DPM1SHRT	1a.0	R/W	0	DP1/DM1 short inside 0: DP1/DM1 no short 1: DP1/DM1 short together			
(F1B) DPM2C7	ΓL		ı	Function related to: DP2/DM2			
DP2VSEL	1b.7~5	R/W	0	DP2 (PA2) output voltage select 000: disable 001: 0.6V 010: 1.2V 011: 2.0V 100: 2.7V 101: 3.3V			
DM2VSEL	1b.4~2	R/W	0	DM2 (PA1) output voltage select 000: disable 001: 0.6V 010: 1.2V 011: 2.0V 100: 2.7V 101: 3.3V			

Name	Address	R/W	Rst	Description
DI MADY CVV	41. 4	D 444		DM2 pull-low
DM2PLOW	1b.1	R/W	0	0: disable
				1: enable DP2/DM2 short inside
DPM2SHRT	1b.0	R/W	0	0: DP2/DM2 no short
DIWIZSIIKI	10.0	IX/ VV	U	1: DP2/DM2 short together
(F1C) RSR				Function related to: RAM W/R
RSR	1c.7~0	R/W	-	R-Plane file select register, indirect address mode pointer
(F1D) DPL				Function related to: Table Read
DPL	1d.7~0	R/W	0	Table read low address, data ROM pointer (DPTR) low byte[7~0]
(F1E) DPH				Function related to: Table Read
DPH	1e.1~0	R/W	0	Table read high address, data ROM pointer (DPTR) high byte[9~8]
(F1F) IRCF				Function related to: Internal RC
IRCF	1f.7~0	R/W	by SYS.	FIRC frequency adjustment 00H: Lowest frequency
				FFH: Highest frequency
User Data Men	nory			
EDAM	20~3F	R/W	-	FRAM bit-addressable area (32 Bytes)
FRAM	40~7F	R/W	-	FRAM common area (64 Bytes)

DS-TM57MA17_18_E 76 Rev 0.90, 2017/01/09

R-Plane

Name	Address	R/W	Rst	Description
(R00) INDR				Function related to: RAM W/R
INDR	00.7~0	R/W	_	Not a physical register, addressing INDR actually point to the register
		12 //		whose address is contained in the RSR register
(R01) TM0RLI	1		_	Function related to: Timer0
TM0RLD	01.7~0	R/W	0	Timer0 reload data
(R02) TM0CTI	L			Function related to: Timer0
TM0EDG	02.5	R/W	0	TM0CKI (PA2) edge selection for Timer0 prescaler count 0: TM0CKI rising edge for Timer0 prescaler count 1: TM0CKI falling edge for Timer0 prescaler count
TM0CKS	02.4	R/W	0	Timer0 clock source select 0: Instruction Cycle (Fsys/2) as Timer0 prescaler clock 1: TM0CKI (PA2) as Timer0 prescaler clock
TM0PSC	02.3~0	R/W	0	Timer0 prescaler. Timer0 clock source 0000: divided by 1 0001: divided by 2 0010: divided by 4 0011: divided by 8 0100: divided by 16 0101: divided by 32 0110: divided by 64 0111: divided by 128 1xxx: divided by 256
(R03) PWRDN				Function related to: Power Down
PWRDN	03	W	-	Write this register to enter STOP/IDLE Mode (i.e. 'SLEEP' instruction)
(R04) WDTCL	R			Function related to: WDT
WDTCLR	04	W	-	Write this register to clear WDT timer (i.e. 'CLRWDT' instruction)
(R05) PAMOD	H			Function related to: Port A
PA6MOD	05.5~4	R/W	1	PA6~PA4 I/O mode control
PA5MOD			1	00: Mode0
PASMOD	05.3~2	R/W	1	01: Mode1 10: Mode2
PA4MOD	05.1~0	R/W	1	11: Mode3, used as analog I/O (ADC, OPA, DP/DM)
(R06) PAMOD	L			Function related to: Port A
PA3MOD	06.7~6	R/W	1	PA3~PA0 I/O mode control
PA2MOD	06.5~4	R/W	1	00: Mode0
PA1MOD	06.3~2	R/W	1	01: Mode1 10: Mode2
PA0MOD	06.1~0	R/W	1	11: Mode3, used as analog I/O (ADC, OPA, DP/DM)
(R07) PBMOD	Н			Function related to: Port B
PB4MOD	07.1~0	R/W	1	PB4 I/O mode control 00: Mode0 01: Mode1 10: Mode2 11: Mode3, used as ADC5

Name	Address	R/W	Rst	Description
(R08) PBMOD	L			Function related to: Port B
PB3MOD	08.7~6	R/W	1	PB3~PB0 I/O mode control
PB2MOD	08.5~4	R/W	1	00: Mode0
PB1MOD	08.3~2	R/W	1	01: Mode1 10: Mode2
PB0MOD	08.1~0	R/W	1	11: Mode3, used as analog I/O (ADC, OPA)
(R0B) MR0B	00.1	10 //	-	Function related to: INTO/INT1/T2/WKT/WDT
(ROD) MIKOD				INT1 (PA1) trigger edge select
INT1EDG	0b.7	R/W	0	0: INT1 (PA1) pin falling edge to trigger interrupt event
				1: INT1 (PA1) pin rising edge to trigger interrupt event
				INT0 (PA6) trigger edge select
INT0EDG	0b.6	R/W	0	0: INTO (PA6) pin falling edge to trigger interrupt event
				1: INT0 (PA6) pin rising edge to trigger interrupt event T2 prescaler. T2 clock source
				00: divided by 32768
T2PSC	0b.5~4	R/W	0	01: divided by 16384
				10: divided by 8192
				11: divided by 128
				WDT period (@VCC=5V)
WDTDCC	01-2-2	D/W	2	00: 120 ms 01: 240 ms
WDTPSC	0b.3~2	R/W	3	10: 960 ms
				11: 1920 ms
				WKT period (@VCC=5V)
				00: 15 ms
WKTPSC	0b.1~0	R/W	3	01: 30 ms
				10: 60 ms
(DAG) MDAG				11: 120 ms
(R0C) MR0C				Function related to: PWM0/PWM1/PWM2/PWM3/Timer1
				PWM0 prescaler. PWM0 clock source (Fpwm0) 00: divided by 1
PWM0PSC	0c.7~6	R/W	0	01: divided by 2
			U	10: divided by 4
				11: divided by 64
				PWM1~PWM3 prescaler. PWM1~PWM3 clock source (Fpwm123)
PWM123PSC	0c.5~4	R/W	0	00: divided by 1
PWM123PSC	00.3~4	K/W	U	01: divided by 2 10: divided by 4
				11: divided by 8
				Timer1 prescaler. Timer1 clock source
				0000: divided by 1
				0001: divided by 2
				0010: divided by 4 0011: divided by 8
TM1PSC	0c.3~0	R/W	0	0101: divided by 8 0100: divided by 16
				0101: divided by 32
				0110: divided by 64
				0111: divided by 128
				1xxx: divided by 256

Name	Address	R/W	Rst	Description
(R0D) PWRCTL			Function related to: EFT/Power Saving/LDO/System Voltage	
CLKFLT	0d.7	R/W	0	Fsys clock filter for noise defending 0: Higher Fsys 1: Lower Fsys
VCCFLT	0d.6	R/W	0	VCC filter, enhance the chip's power noise immunity 0: disable 1: enable
IVCSAV	0d.3	R/W	0	IVC auto power saving in STOP/IDLE mode 0: disable IVC save function 1: enable IVC save function
LDOPD	0d.2	R/W	0	Internal LDO (2.5V/1.25V) power down 0: LDO running 1: LDO power down
LDO25SEL	0d.1	R/W	1	Internal LDO voltage select 0: 1.25V 1: 2.5V
MODE3V	0d.0	R/W	0	3V mode selection 0: system operate in 5V mode (Vcc>3.6V) 1: system operate in 3V mode (Vcc<3.6V)
(R0E) TM1RLD				Function related to: Timer1
TM1RLD	0e.7~0	R/W	0	Timer1 reload data
(R10) PWM0P	RD			Function related to: PWM0
PWM0PRD	10.7~0	R/W	FF	PWM0 period data
(R11) PWM1D				Function related to: PWM1
PWM1D	11.7~0	R/W	0	PWM1 duty
(R12) PWM2D				Function related to: PWM2
PWM2D	12.7~0	R/W	0	PWM2 duty
(R13) PWM3D				Function related to: PWM3
PWM3D	13.7~0	R/W	0	PWM3 duty
(R14) PWM123	BPRD			Function related to: PWM1/PWM2/PWM3
PWM123PRD	14.7~0	R/W	FF	PWM1, PWM2 and PWM3 shared period data

INSTRUCTION SET

Each instruction is a 14-bit word divided into an Op Code, which specifies the instruction type, and one or more operands, which further specify the operation of the instruction. The instructions can be categorized as byte-oriented, bit-oriented and literal operations list in the following table.

For byte-oriented instructions, "f" or "r" represents the address designator and "d" represents the destination designator. The address designator is used to specify which address in Program memory is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If "d" is "0", the result is placed in the W register. If "d" is "1", the result is placed in the address specified in the instruction.

For bit-oriented instructions, "b" represents a bit field designator, which selects the number of the bit affected by the operation, while "f" represents the address designator. For literal operations, "k" represents the literal or constant value.

Field / Legend	Description
f	F-Plane Register File Address
r	R-Plane Register File Address
b	Bit address
k	Literal. Constant data or label
d	Destination selection field. 0 : Working register 1 : Register file
TO	WDT Time Out Flag
PD	Power Down Flag
W	Working Register
Z	Zero Flag
С	Carry Flag
DC	Decimal Carry Flag
PC	Program Counter
TOS	Top Of Stack
GIE	Global Interrupt Enable Flag (i-Flag)
[]	Option Field
()	Contents
•	Bit Field
В	Before
A	After
←	Assign direction

DS-TM57MA17_18_E 80 Rev 0.90, 2017/01/09

Mnemon	ic	Op Code	Cycle	Flag Affect	Description
		Byte-Orien	ted File R	egister Instru	ction
ADDWF	f,d	00 0111 dfff ffff	1	C, DC, Z	Add W and "f"
ANDWF	f,d	00 0101 dfff ffff	1	Z	AND W with "f"
CLRF	f	00 0001 1fff ffff	1	Z	Clear "f"
CLRW		00 0001 0100 0000	1	Z	Clear W
COMF	f,d	00 1001 dfff ffff	1	Z	Complement "f"
DECF	f,d	00 0011 dfff ffff	1	Z	Decrement "f"
DECFSZ	f,d	00 1011 dfff ffff	1 or 2	-	Decrement "f", skip if zero
INCF	f,d	00 1010 dfff ffff	1	Z	Increment "f"
INCFSZ	f,d	00 1111 dfff ffff	1 or 2	-	Increment "f", skip if zero
IORWF	f,d	00 0100 dfff ffff	1	Z	OR W with "f"
MOVFW	f	00 1000 0fff ffff	1	-	Move "f" to W
MOVRW	r	01 1111 00rr rrrr	1	-	Move "r" to W
MOVWF	f	00 0000 1fff ffff	1	-	Move W to "f"
MOVWR	r	01 1110 00rr rrrr	1	-	Move W to "r"
RLF	f,d	00 1101 dfff ffff	1	С	Rotate left "f" through carry
RRF	f,d	00 1100 dfff ffff	1	С	Rotate right "f" through carry
SUBWF	f,d	00 0010 dfff ffff	1	C, DC, Z	Subtract W from "f"
SWAPF	f,d	00 1110 dfff ffff	1	-	Swap nibbles in "f"
TESTZ	f	00 1000 1fff ffff	1	Z	Test if "f" is zero
XORWF	f,d	00 0110 dfff ffff	1	Z	XOR W with "f"
		Bit-Orient	ed File Re	egister Instruc	etion
BCF	f,b	01 000b bbff ffff	1	-	Clear "b" bit of "f"
BSF	f,b	01 001b bbff ffff	1	-	Set "b" bit of "f"
BTFSC	f,b	01 010b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if clear
BTFSS	f,b	01 011b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if set
		Literal	and Cont	rol Instruction	n
ADDLW	k	01 1100 kkkk kkkk	1	C, DC, Z	Add Literal "k" and W
ANDLW	k	01 1011 kkkk kkkk	1	Z	AND Literal "k" with W
CALL	k	10 kkkk kkkk kkkk	2	-	Call subroutine "k"
CLRWDT		01 1110 0000 0100	1	TO, PD	Clear Watch Dog Timer
GOTO	k	11 kkkk kkkk kkkk	2	-	Jump to branch "k"
IORLW	k	01 1010 kkkk kkkk	1	Z	OR Literal "k" with W
MOVLW	k	01 1001 kkkk kkkk	1	-	Move Literal "k" to W
NOP		00 0000 0000 0000	1	-	No operation
RET		00 0000 0100 0000	2	-	Return from subroutine
RETI		00 0000 0110 0000	2	-	Return from interrupt
RETLW	k	01 1000 kkkk kkkk	2	-	Return with Literal in W
TABRL		00 0000 0101 0000	2	-	Lookup ROM low data to W
TABRH		00 0000 0101 1000	2	-	Lookup ROM high data to W
SLEEP		01 1110 0000 0011	1	TO, PD	Go into Power-down mode, Clock oscillation stops
XORLW	k	01 1101 kkkk kkkk	1	Z	XOR Literal "k" with W

ADDLW Add Literal "k" and W

 $\begin{array}{lll} \text{Syntax} & \text{ADDLW k} \\ \text{Operands} & \text{k}: 00\text{h} \sim \text{FFh} \\ \text{Operation} & (\text{W}) \leftarrow (\text{W}) + \text{k} \\ \text{Status Affected} & \text{C, DC, Z} \\ \end{array}$

OP-Code 01 1100 kkkk kkkk

Description The contents of the W register are added to the eight-bit literal 'k' and the result is

placed in the W register.

Cycle

Example ADDLW 0x15 B: W = 0x10

A:W=0x25

ADDWF Add W and "f"

SyntaxADDWF f [,d]Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation $(destination) \leftarrow (W) + (f)$

Status Affected C, DC, Z

OP-Code 00 0111 dfff ffff

Description Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in

the W register. If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example ADDWF FSR, 0 B: W = 0x17, FSR = 0xC2

A : W = 0xD9, FSR = 0xC2

ANDLW Logical AND Literal "k" with W

 $\begin{array}{lll} \text{Syntax} & \text{ANDLW k} \\ \text{Operands} & \text{k}: 00\text{h} \sim \text{FFh} \\ \text{Operation} & (\text{W}) \leftarrow (\text{W}) \text{ AND k} \\ \end{array}$

Status Affected Z

OP-Code 01 1011 kkkk kkkk

Description The contents of W register are AND'ed with the eight-bit literal 'k'. The result is

placed in the W register.

Cycle 1

Example ANDLW 0x5F B: W = 0xA3

A:W=0x03

ANDWF AND W with "f"

SyntaxANDWF f [,d]Operands $f: 00h \sim 7Fh, d: 0, 1$

Operation (destination) \leftarrow (W) AND (f)

Status Affected Z

OP-Code 00 0101 dfff ffff

Description AND the W register with register 'f'. If 'd' is 0, the result is stored in the W

register. If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example ANDWF FSR, 1 B: W = 0x17, FSR = 0xC2

A: W = 0x17, FSR = 0x02

BCF Clear "b" bit of "f"

Syntax BCF f [,b]

Operands $f: 00h \sim 3Fh, b: 0 \sim 7$

Operation $(f.b) \leftarrow 0$

Status Affected

OP-Code 01 000b bbff ffff

Description Bit 'b' in register 'f' is cleared.

Cycle

Example BCF FLAG_REG, 7 B: FLAG_REG = 0xC7

 $A : FLAG_REG = 0x47$

BSF Set "b" bit of "f"

Syntax BSF f [,b]

Operands $f: 00h \sim 3Fh, b: 0 \sim 7$

Operation $(f.b) \leftarrow 1$

Status Affected

OP-Code 01 001b bbff ffff
Description Bit 'b' in register 'f' is set.

Cycle 1

Example BSF FLAG_REG, 7 $B : FLAG_REG = 0x0A$

A: FLAG REG = 0x8A

BTFSC Test "b" bit of "f", skip if clear(0)

Syntax BTFSC f [,b] Operands $f: 00h \sim 3Fh, b: 0 \sim 7$

Operation Skip next instruction if (f.b) = 0

Status Affected -

OP-Code 01 010b bbff ffff

Description If bit 'b' in register 'f' is 1, then the next instruction is executed. If bit 'b' in register

'f' is 0, then the next instruction is discarded, and a NOP is executed instead,

making this a 2nd cycle instruction.

Cycle 1 or 2

Example LABEL1 BTFSC FLAG, 1 B: PC = LABEL1

TRUE GOTO SUB1 A: if FLAG.1 = 0, PC = FALSE FALSE ... A: if FLAG.1 = 1, PC = TRUE

BTFSS Test "b" bit of "f", skip if set(1)

Syntax BTFSS f [,b] Operands $f: 00h \sim 3Fh, b: 0 \sim 7$ Operation Skip next instruction if (f.b) = 1

Status Affected -

OP-Code 01 011b bbff ffff

Description If bit 'b' in register 'f' is 0, then the next instruction is executed. If bit 'b' in register

'f' is 1, then the next instruction is discarded, and a NOP is executed instead,

making this a 2nd cycle instruction.

Cycle 1 or 2

Example LABEL1 BTFSS FLAG, 1 B: PC = LABEL1

TRUE GOTO SUB1 A: if FLAG.1 = 0, PC = TRUE FALSE ... A: if FLAG.1 = 1, PC = FALSE

CALL Call subroutine "k"

Syntax CALL k
Operands k: 000h ~ FFFh

Operation Operation: $TOS \leftarrow (PC) + 1$, $PC.11 \sim 0 \leftarrow k$

Status Affected -

OP-Code 10 kkkk kkkk kkkk

Description Call Subroutine. First, return address (PC+1) is pushed onto the stack. The 12-bit

immediate address is loaded into PC bits <11:0>. CALL is a two-cycle

instruction.

Cycle 2

Example LABEL1 CALL SUB1 B: PC = LABEL1

A : PC = SUB1, TOS = LABEL1 + 1

CLRF Clear "f"

SyntaxCLRF fOperands $f: 00h \sim 7Fh$ Operation $(f) \leftarrow 00h, Z \leftarrow 1$

Status Affected Z

OP-Code 00 0001 1fff ffff

Description The contents of register 'f' are cleared and the Z bit is set.

Cycle 1

Example $CLRF FLAG_REG = 0x5A$

 $A : FLAG_REG = 0x00, Z = 1$

CLRW Clear W

Syntax CLRW

Operands -

Operation $(W) \leftarrow 00h, Z \leftarrow 1$

Status Affected Z

OP-Code 00 0001 0100 0000

Description W register is cleared and Z bit is set.

Cycle 1

Example CLRW B: W = 0x5A

A: W = 0x00, Z = 1

CLRWDT Clear Watchdog Timer

Syntax CLRWDT

Operands -

Operation WDT/WKT Timer ← 00h

Status Affected TO, PD

OP-Code 01 1110 0000 0100

Description CLRWDT instruction clears the Watchdog/Wakeup Timer

Cycle 1

Example CLRWDT B: WDT counter = ?

A: WDT counter = 0x00

COMF Complement "f"

 $\begin{array}{lll} \text{Syntax} & \text{COMF f [,d]} \\ \text{Operands} & \text{f : 00h} \sim 7\text{Fh, d : 0, 1} \\ \text{Operation} & (\text{destination}) \leftarrow (\bar{\text{f}}) \\ \text{Status Affected} & Z \\ \end{array}$

OP-Code 00 1001 dfff ffff

Description The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W.

If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example COMF REG1, 0 B : REG1 = 0x13

A: REG1 = 0x13, W = 0xEC

DECF Decrement "f"

Example DECF CNT, 1 B: CNT = 0x01, Z = 0

A : CNT = 0x00, Z = 1

DECFSZ Decrement "f", Skip if 0

Syntax DECFSZ f [,d] Operands $f: 00h \sim 7Fh, d: 0, 1$

Operation (destination) \leftarrow (f) - 1, skip next instruction if result is 0

Status Affected -

OP-Code 00 1011 dfff ffff

Description The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W

register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, then a NOP is executed instead, making

it a 2 cycle instruction.

Cycle 1 or 2

Example LABEL1 DECFSZ CNT, 1 B: PC = LABEL1

GOTO LOOP A: CNT = CNT - 1

CONTINUE if CNT = 0, PC = CONTINUE if CNT \neq 0, PC = LABEL1 + 1

GOTO Unconditional Branch

SyntaxGOTO kOperands $k:000h \sim FFFh$ Operation $PC.11\sim 0 \leftarrow k$

Status Affected -

OP-Code 11 kkkk kkkk kkkk

Description GOTO is an unconditional branch. The 12-bit immediate value is loaded into PC

bits <11:0>. GOTO is a two-cycle instruction.

Cycle

Example LABEL1 GOTO SUB1 B: PC = LABEL1

A : PC = SUB1

INCF Increment "f"

 $\begin{array}{ll} \text{Syntax} & \text{INCF } f \text{ [,d]} \\ \text{Operands} & \text{f} : 00\text{h} \sim 7\text{Fh} \end{array}$

Operation (destination) \leftarrow (f) + 1

Status Affected Z

OP-Code 00 1010 dfff ffff

Description The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W

register. If 'd' is 1, the result is placed back in register 'f'.

Cycle 1

Example INCF CNT, 1 B: CNT = 0xFF, Z = 0

A: CNT = 0x00, Z = 1

INCFSZ Increment "f", Skip if 0

Syntax INCFSZ f [,d] Operands $f: 00h \sim 7Fh, d: 0, 1$

Operation (destination) \leftarrow (f) + 1, skip next instruction if result is 0

Status Affected

OP-Code 00 1111 dfff ffff

Description The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W

register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead, making it a 2

cycle instruction.

Cycle 1 or 2

Example LABEL1 INCFSZ CNT, 1 B: PC = LABEL1

GOTO LOOP A: CNT = CNT + 1

CONTINUE if CNT = 0, PC = CONTINUE if CNT \neq 0, PC = LABEL1 + 1

IORLW Inclusive OR Literal with W

 $\begin{tabular}{lll} Syntax & IORLW & & \\ Operands & k:00h \sim FFh \\ Operation & (W) \leftarrow (W) OR & \\ \end{tabular}$

Status Affected Z

OP-Code 01 1010 kkkk kkkk

Description The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is

placed in the W register.

Cycle 1

Example IORLW 0x35 B: W = 0x9A

A : W = 0xBF, Z = 0

IORWF Inclusive OR W with "f"

Syntax IORWF f [,d] Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation (destination) \leftarrow (W) OR k

Status Affected Z

OP-Code 00 0100 dfff ffff

Description Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the

W register. If 'd' is 1, the result is placed back in register 'f'.

Cycle 1

Example IORWF RESULT, 0 B: RESULT = 0x13, W = 0x91

A: RESULT = 0x13, W = 0x93, Z = 0

Move "f" to W **MOVFW**

MOVFW f **Syntax Operands** f:00h~7Fh Operation $(W) \leftarrow (f)$

Status Affected

OP-Code 00 1000 0fff ffff

Description The contents of register 'f' are moved to W register.

Cycle

Example MOVFW FSR B : FSR = 0xC2, W = ?

A: FSR = 0xC2, W = 0xC2

MOVLW Move Literal to W

MOVLW k Syntax Operands k:00h ~ FFh $(W) \leftarrow k$ Operation

Status Affected

OP-Code 01 1001 kkkk kkkk

Description The eight-bit literal 'k' is loaded into W register. The don't cares will assemble as

0's.

Cycle

Example MOVLW 0x5A B:W=?

A:W=0x5A

MOVRW Move "r" to W

MOVRW r Syntax Operands $r:00h \sim 3Fh$ Operation $(W) \leftarrow (r)$ Status Affected

OP-Code

01 1111 00rr rrrr The contents of register 'r' are moved to W register.

Description Cycle

MOVRW MR0B B : MR0B = 0x0F, W = ?Example

A : MR0B = 0x0F, W = 0x0F

Move W to "f" **MOVWF**

MOVWF f Syntax Operands f:00h~7Fh Operation $(f) \leftarrow (W)$

Status Affected

OP-Code 00 0000 1fff ffff

Description Move data from W register to register 'f'.

Cycle

Example MOVWF REG1 B : REG1 = 0xFF, W = 0x4F

A : REG1 = 0x4F, W = 0x4F

MOVWR Move W to "r"

Status Affected -

OP-Code 01 1110 00rr rrrr

Description Move data from W register to register 'r'.

Cycle 1

Example MOVWR REG1 B : REG1 = 0xFF, W = 0x4F

A: REG1 = 0x4F, W = 0x4F

NOP No Operation

Syntax NOP Operands -

Operation No Operation

Status Affected -

OP-Code 00 0000 0000 0000 Description No Operation

Cycle 1 Example NOP

RET Return from Subroutine

Syntax RET Operands -

Operation $PC \leftarrow TOS$

Status Affected -

OP-Code 00 0000 0100 0000

Description Return from subroutine. The stack is POPed and the top of the stack (TOS) is

loaded into the program counter. This is a two-cycle instruction.

Cycle 2

Example RET A: PC = TOS

RETI Return from Interrupt

Syntax RETI Operands -

Operation $PC \leftarrow TOS, GIE \leftarrow 1$

Status Affected -

OP-Code 00 0000 0110 0000

Description Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the

PC. Interrupts are enabled. This is a two-cycle instruction.

Cycle 2

Example A: PC = TOS, GIE = 1

DS-TM57MA17_18_E 88 Rev 0.90, 2017/01/09

RETLW Return with Literal in W

Syntax RETLW k
Operands k: 00h ~ FFh

Operation $PC \leftarrow TOS, (W) \leftarrow k$

Status Affected

OP-Code 01 1000 kkkk kkkk

Description The W register is loaded with the eight-bit literal 'k'. The program counter is

loaded from the top of the stack (the return address). This is a two-cycle

instruction.

Cycle 2

Example CALL TABLE B: W = 0x07

: A: W = value of k8

TABLE ADDWF PCL, 1 RETLW k1 RETLW k2

:

RETLW kn

TABRL Return DPTR low byte to W

Syntax TABRL

Operands -

Operation (W) \leftarrow ROM[DPTR] low byte content, Where DPTR={DPH[max:8],DPL[7:0]}

Status Affected

OP-Code 00 0000 0101 0000

Description The W register is loaded with low byte of ROM[DPTR]. This is a two-cycle

instruction.

Cycle 2 Example :

:

MOVLW (TAB1&0xFF)

MOVWF DPL ; Where DPL is F-plane register

MOVLW (TAB1>>8)&0xFF

MOVWF DPH ; Where DPH is F-plane register

TABRL ; W=0x89 TABRH ; W=0x37

ORG 0234H

TAB1:

.DT 0x3789, 0x2277 ;ROM data 14 bits

TABRH Return DPTR high byte to W

Syntax TABRH

Operands -

Operation (W) \leftarrow ROM[DPTR] high byte content, Where DPTR={DPH[max:8],DPL[7:0]}

Status Affected

OP-Code 00 0000 0101 1000

Description The W register is loaded with high byte of ROM[DPTR]. This is a two-cycle

instruction.

Cycle 2

RLF Rotate Left "f" through Carry

Syntax RLF f [,d] Operands $f: 00h \sim 7Fh, d: 0, 1$

Operation f: 00n ~ /Fn, d: 0,

C Register f ◀

Status Affected C

OP-Code 00 1101 dfff ffff

Description The contents of register 'f' are rotated one bit to the left through the Carry Flag. If

'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in

register 'f'.

Cycle 1

Example $RLF \ REG1, 0 \\ B: REG1 = 1110 \ 0110, C = 0$

A : REG1 = 1110 0110 W = 1100 1100, C = 1

RRF Rotate Right "f" through Carry

Syntax RRF f [,d]
Operands f: 00h at 7Fh d: 0

Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation

Status Affected C

OP-Code 00 1100 dfff ffff

Description The contents of register 'f' are rotated one bit to the right through the Carry Flag.

If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back

in register 'f'.

Cycle

Example RRF REG1, 0 B: REG1 = $1110 \ 0110$, C = 0

A: REG1 = 1110 0110 W = 0111 0011, C = 0

SLEEP Go into standby mode, Clock oscillation stops

Syntax SLEEP
Operands Operation Status Affected TO, PD

OP-Code 01 1110 0000 0011

Description Go into STOP mode with the oscillator stops.

Cycle 1

Example SLEEP -

DS-TM57MA17_18_E 90 Rev 0.90, 2017/01/09

Syntax	SUBWF f [,d]							
Operands	f: 00h ~ 7Fh, d: 0, 1							
Operation	$(destination) \leftarrow (f) - (W)$							
Status Affected	C, DC, Z							
OP-Code	00 0010 dfff ffff							
Description	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result							
	is stored in the W register. If 'd' is	1, the result is stored back in register 'f'.						
Cycle	1							
Example	SUBWF REG1, 1	B: REG1 = $0x03$, W = $0x02$, C = ?, Z = ?						
		A: REG1 = $0x01$, W = $0x02$, C = 1, Z = 0						
	SUBWF REG1, 1	B: REG1 = $0x02$, W = $0x02$, C = ?, Z = ?						
		A: REG1 = $0x00$, W = $0x02$, C = 1, Z = 1						
	SUBWF REG1, 1	B: REG1 = $0x01$, W = $0x02$, C = ?, Z = ?						
		A: REG1 = $0xFF$, W = $0x02$, C = 0 , Z = 0						

SWAPF Swap Nibbles in "f"

Syntax	SWAPF f [,d]	
Operands	$f: 00h \sim 7Fh, d: 0, 1$	
Operation	$(destination, 7\sim 4) \leftarrow (f.3\sim 4)$	(-0) , (destination.3 \sim 0) \leftarrow (f.7 \sim 4)
Status Affected	-	
OP-Code	00 1110 dfff ffff	
Description	The upper and lower nib	bles of register 'f' are exchanged. If 'd' is 0, the result is
	placed in W register. If 'd	' is 1, the result is placed in register 'f'.
Cycle	1	
Example	SWAPF REG, 0	B: REG1 = 0xA5

A : REG1 = 0xA5, W = 0x5A

TESTZ Test if "f" is zero

Syntax	TESTZ f	
Operands	f:00h~7Fh	
Operation	Set Z flag if (f) is 0	
Status Affected	Z	
OP-Code	00 1000 1fff ffff	
Description	If the content of register '	is 0, Zero flag is set to 1.
Cycle	1	
Example	TESTZ REG1	B : REG1 = 0, Z = ?
•		A : REG1 = 0, Z = 1

XORLW Exclusive OR Literal with W

Syntax	XORLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) \text{ XOR } k$	
Status Affected	Z	
OP-Code	01 1101 kkkk kkkk	
Description	The contents of the W reg	ster are XOR'ed with the eight-bit literal 'k'. The result
	is placed in the W register.	
Cycle	1	
Example	XORLW 0xAF	B:W=0xB5
_		A: W = 0x1A

DS-TM57MA17_18_E 91 Rev 0.90, 2017/01/09

XORWF	Exclusive OR	W	with	''f''

SyntaxXORWF f [,d]Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation(destination) \leftarrow (W) XOR (f)

Status Affected Z

OP-Code 00 0110 dfff ffff

Description Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is

stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example XORWF REG, 1 B : REG = 0xAF, W = 0xB5

A : REG = 0x1A, W = 0xB5

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings $(T_A = 25$ °C)

Parameter	Rating	Unit
Supply voltage	V_{SS} -0.3 to V_{SS} +6.5	
Input voltage	V_{SS} -0.3 to V_{CC} +0.3	V
Output voltage	V_{SS} -0.3 to V_{CC} +0.3	
Output current high per 1 PIN	-25	
Output current high per all PIN	-80	A
Output current low per 1 PIN	+30	mA
Output current low per all PIN	+150	
Maximum operating voltage	5.5	V
Operating temperature	-40 to +85	°C
Storage temperature	-65 to +150	C

2. DC Characteristics ($T_A = 25$ °C, $V_{DD} = 2.0 V$ to 5.5V)

Parameter	Sym	Co	Conditions		Тур	Max	Unit
Input High Voltage	V_{IH}	All Input, except PA7	$V_{CC} = 3\sim 5V$	0.6Vcc	ı	Vcc	V
		PA7	$V_{CC} = 3\sim 5V$	0.7Vcc	-	Vcc	V
Input Low Voltage	V_{IL}	All Input, except PA7	$V_{CC} = 3\sim 5V$	Vss	-	0.2Vcc	V
		PA7	$V_{CC} = 3 \sim 5V$	Vss	_	0.2Vcc	V
		All Output,	$V_{CC} = 5V, V_{OH} = 4.5V$	4	9	_	
Output High Current	T	except PA0, PB3	$V_{\rm CC} = 3V, V_{\rm OH} = 2.7V$	2	4	_	mA
Output High Current	I_{OH}	PA0, PB3	$V_{CC} = 5V, V_{OH} = 4.5V$	15	30	_	ША
		rau, rbs	$V_{\rm CC} = 3V, V_{\rm OH} = 2.7V$	7	14	_	
		All Output,	$V_{\rm CC} = 5V, V_{\rm OL} = 0.5V$	7	15	_	
Output Low Current	I_{OL}	except PA0, PB3	$V_{CC} = 3V, V_{OL} = 0.3V$	4	8	_	mA
Output Low Current		PA0, PB3	$V_{\rm CC} = 5V, V_{\rm OL} = 0.5V$	32	65	_	
			$V_{\rm CC} = 3V, V_{\rm OL} = 0.3V$	17	35	_	
Input Leakage Current (pin high)	$I_{\rm ILH}$	All Input	$V_{IN} = V_{CC}$	_	ı	1	uA
Input Leakage Current (pin low)	I_{ILL}	All Input	$V_{IN} = 0V$		ı	-1	uA
		FAST mode FIRC8 MHz, MODE3V = 0	$V_{CC} = 4.5 \text{ to } 5.5 \text{V}$	ı	1.6	ı	mA
Power Supply Current (No Load)	I_{CC}	FAST mode FIRC4 MHz MODE3V = 0	$V_{CC} = 4.5 \text{ to } 5.5 \text{V}$	ı	1.1	ı	ША
		SLOW mode SIRC128 KHz LDOPD = 0 OPPD = 1 MODE3V = 1	$V_{CC} = 3.0V$	_	200	_	uA

DS-TM57MA17_18_E 93 Rev 0.90, 2017/01/09

Parameter	Sym	Co	onditions	Min	Тур	Max	Unit		
		SLOW mode SIRC128 KHz LDOPD = 1 OPPD = 1 MODE3V = 1	$V_{CC} = 3.0V$	-	130	-	uA		
		IDLE mode SIRC128 KHz	$V_{CC} = 3.0V$ LVR enable	-	5	_			
Power Supply Current (No Load)	I_{CC}	$\begin{aligned} & \text{MODE3V} = 1 \\ & \text{T2PSC} = 0 \\ & \text{LDOPD} = 1 \\ & \text{OPPD} = 1 \end{aligned}$	$V_{\rm CC} = 3.0V$ LVR disable in IDLE	-	3.8	Ι	uA		
	MODE3V STOP mod	STOP mode	$V_{CC} = 5.0V$ LVR disable in STOP	-	0.1	1	uA		
		WODES V = 1	$V_{CC} = 5.0V$, LVR enable	_	4	6			
					STOP mode MODE3V = 1	$V_{CC} = 3.0V$, LVR disable in STOP	-	0.1	1
			Fsys= 2MHz	LVR _{th}		5.5	V		
		MODE3V = 0	Fsys= 4MHz	LVR_{th}	1	5.5			
System Operating	V_{SYS}		Fsys= 8MHz	LVR_{th}	_	5.5			
Voltage	▼ SYS		Fsys= 2MHz	LVR_{th}	_	3.6	,		
		MODE3V = 1	Fsys= 4MHz	LVR_{th}	_	3.6			
			Fsys= 8MHz	LVR_{th}	_	3.6			
		VIN = 0 V	$V_{\rm CC} = 5.0 V$		110	_	ΚΩ		
Pull-up Resistor	R_{UP}	Ports A/B	$V_{\rm CC} = 3.0 V$	_	220	_	1100		
Tun up resistor	TOP	VIN = 0 V	$V_{\rm CC} = 5.0 V$	_	70	_	ΚΩ		
		PA7	$V_{CC} = 3.0V$	_	70	_	1100		

3. Clock Timing $(T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Condition	Min	Тур	Max	Unit
FIRC Frequency	$0^{\circ}\text{C} \sim 85^{\circ}\text{C}, V_{\text{CC}} = 5.0 \text{ V}$	-2.5%	8	+2.5%	
	25° C, $V_{CC} = 3.0 \sim 5.0 \text{ V}$	-3%	8	+3%	MHz
	25° C, $V_{CC} = 2.5 \sim 5.0 \text{ V}$	-5%	8	+5%	MITIZ
FIRC adjust step	IRCF increase or decrease by1	_	_	1%	

DS-TM57MA17_18_E 94 Rev 0.90, 2017/01/09

4. Reset Timing Characteristics ($T_A = -40$ °C to +85°C)

Parameter	Conditions	Min	Тур	Max	Unit
RESET Input Low width	Input $V_{CC} = 5 \text{ V} \pm 10 \%$	3	_	_	μs
WDT time	$V_{CC} = 3 \text{ V, WDTPSC} = 11$	-20%	2080	+20%	ma
WDT time	$V_{CC} = 5 \text{ V}, \text{WDTPSC} = 11$	-20%	1920		ms
WVT time	$V_{CC} = 3 \text{ V, WKTPSC} = 11$	-20%	128	+20%	ma
WKT time	$V_{CC} = 5 \text{ V, WKTPSC} = 11$	-20%	120	+20%	ms
CPU start up time	$V_{CC} = 3 \text{ V}$	_	11	_	ma
	$V_{CC} = 5 \text{ V}$	_	15	_	ms

5. LVR Circuit Characteristics $(T_A = 25$ °C)

Parameter	Symbol	Min	Тур	Max	Unit
LVR Reference Voltage		-	2.9	-	
	LVR_{th}	-	2.3	-	V
		-	2.0	-	
LVR Hysteresis Voltage	$V_{ m HYST}$	-	±0.1	_	V
Low Voltage Detection time	$t_{ m LVR}$	100	_	_	μs

6. ADC Electrical Characteristics (TA = 25°C, VCC = 2.2V to 5.5V, VSS = 0V)

Parameter	Conditions		Тур	Max	Units
Total Accuracy	V -5V V -0V	_	±2.5	<u>±</u> 4	LSB
Integral Non-Linearity	$V_{CC} = 5V, V_{SS} = 0V$		±3.2	±5	LSD
Max Input Clock (f _{ADC})	_	_	-	1	MHz
Conversion Time	$f_{ADC} = 1 \text{ MHz}$	_	50	_	μs
Innut Voltage	TM57MA17	V_{SS}	-	0.95LDOC	W
Input Voltage	TM57MA18	V_{SS}	ı	0.95VCC	V

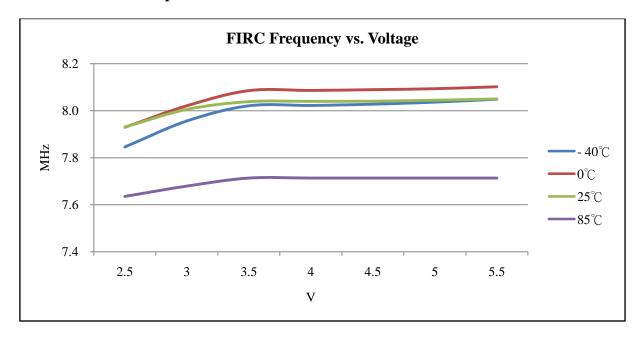
7. LDO Characteristics (LDO25SEL = 0)

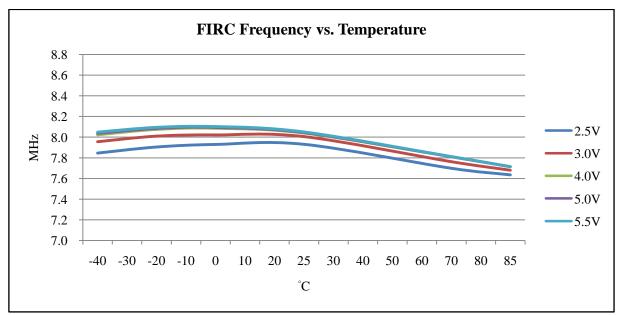
Parameter	Conditions	Min	Тур	Max	Units
	TA = 25°C, $VCC = 5.0V$	-1%	1.25	+1%	V
LDOC pin	$TA = 25$ °C, $VCC = 2.0 \sim 5.5$ V	-2%	1.25	+2%	V
	$TA = -40^{\circ}C \text{ to } +85^{\circ}C, VCC = 2.0 \sim 5.5V$	-3%	1.25	+3%	V

DS-TM57MA17_18_E 95 Rev 0.90, 2017/01/09

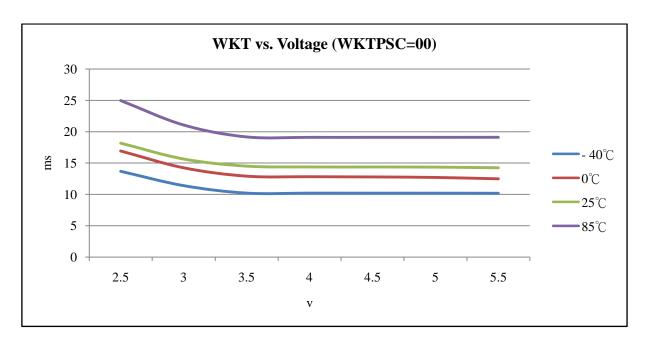
8. OPA Circuit Characteristics (TA = 25 °C, VCC = 5V, VSS = 0V, C $_{Load}$ = 100 pF , R $_{Load}$ = 1 M Ω)

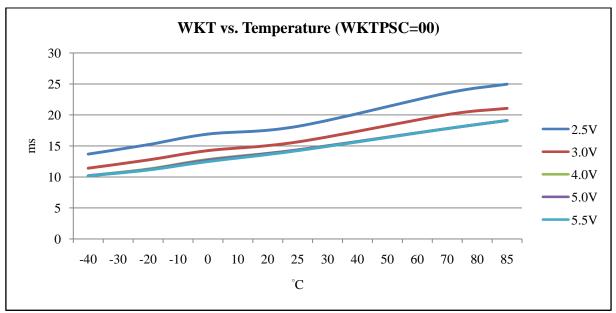
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
V_{CC}	Power supply		2.2	-	5.5	V
V _{icm}	Input Common voltage		0.1	-	V _{CC} -1.2	V
V _{OS}	Input Offset Voltage	Vo = 2V, after trim	-	-	2	mV
$\Delta V_{OS} / \Delta T$	Temperature Coefficient of VOS	Vo = 2V	-	-	5	μV/°C
$ m A_{VOL}$	Large Signal Voltage Gain	$RL = 1 M\Omega$ $CL = 100 pF$ $Vi = 0.1 \text{ to } 4V$ $Vo = 1 \text{ to } 4V$	-	120	-	dB
GBW	Gain Band Width Product	$RL = 1 M\Omega$ $CL = 100 pF$	-	2.1	-	MHz
CMRR	Common Mode Rejection Ratio	Vo = 2V	-	80	-	dB
PSRR	Power Supply Rejection Ratio	Vo = 2V	-	80	-	dB
I_{CC}	Supply Current Per Single Amplifier	Av = 1 $Vo = 2V$ No load	-	300	-	uA
SR	Slew Rate at Unity Gain	No load	-	1.4	-	V/µs
Фт	Phase Margin at Unity Gain	$RL = 1 M\Omega$ $CL = 100 pF$	-	60	-	Degree
I_{OH}	Output Source Current	Vi+-Vi-≥10mV	-	18	-	μΑ
I_{OL}	Output Sink Current	ViVi+≥10mV	-	20	-	mA


9. DPDMV Circuit Characteristics (TA = 25 °C, VCC = 5V, VSS = 0V)

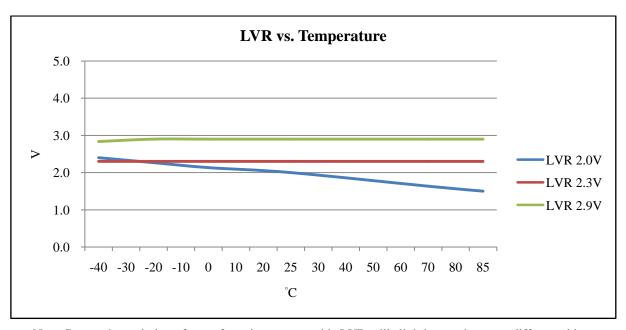

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
DP Current	I_{DP}		-	100	-	uA
DM Current	I_{DM}		ı	100	-	uA
DP and DM short switch resistance	R_{Short}	$I_{Short} = 200 \text{ uA}$	ı	1	40	Ω
DP Voltage variation	ΔV_{DP}	$I_{DP} = 100 uA$	-2	-	-3	mV
DM Voltage variation	ΔV_{DM}	$I_{DM} = 100 \text{ uA}$	-2	-	-3	mV
DP and DM voltage level switch resistance	R_{SW}	$I_{SW} = 200 \text{ uA}$	ı	ı	6	ΚΩ

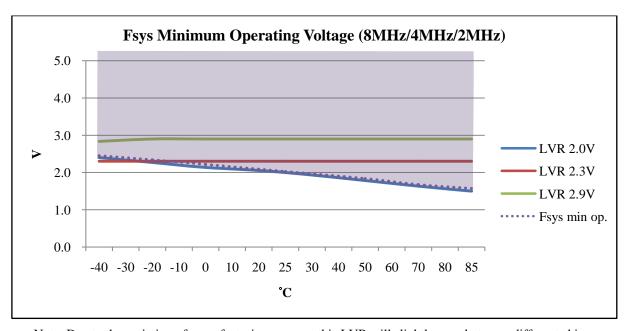
DS-TM57MA17_18_E 96 Rev 0.90, 2017/01/09


10. Characteristic Graphs

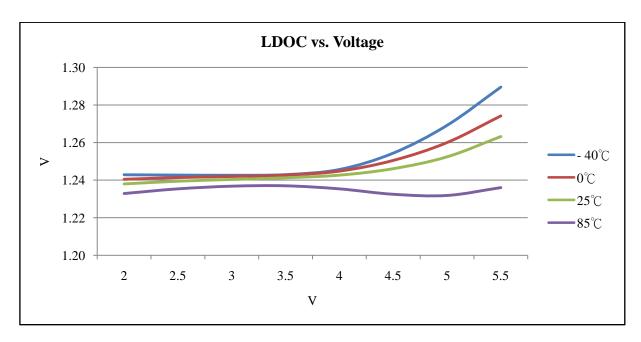


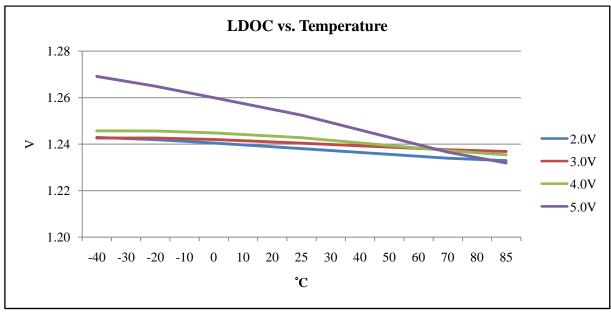
DS-TM57MA17_18_E 97 Rev 0.90, 2017/01/09





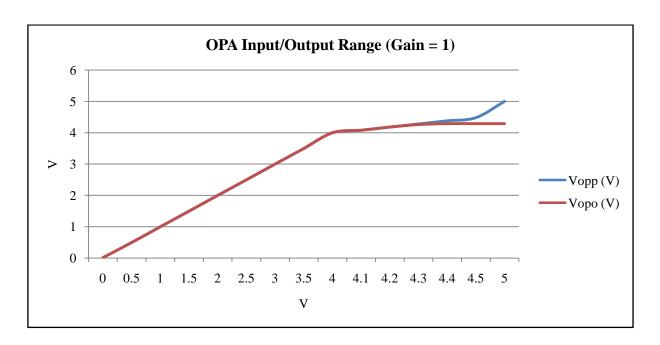
DS-TM57MA17_18_E 98 Rev 0.90, 2017/01/09


Note. Due to the variation of manufacturing process, this LVR will slightly vary between different chips.



Note. Due to the variation of manufacturing process, this LVR will slightly vary between different chips.

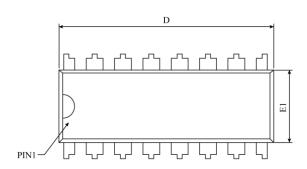
DS-TM57MA17_18_E 99 Rev 0.90, 2017/01/09

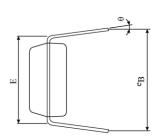


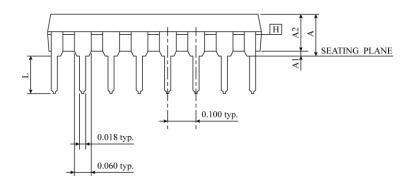
DS-TM57MA17_18_E 100 Rev 0.90, 2017/01/09

DS-TM57MA17_18_E 101 Rev 0.90, 2017/01/09

PACKAGING INFORMATION

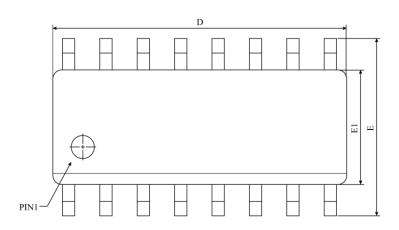

The ordering information:

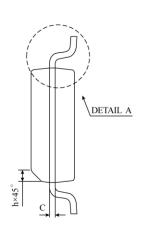

Ordering number	Package
TM57MA17-MTP	Wafer/Dice blank chip
TM57MA17-COD	Wafer/Dice with code
TM57MA17-MTP-03	DIP 16-pin (300 mil)
TM57MA17-MTP-16	SOP 16-pin (150 mil)
TM57MA18-MTP	Wafer/Dice blank chip
TM57MA18-COD	Wafer/Dice with code
TM57MA18-MTP-03	DIP 16-pin (300 mil)
TM57MA18-MTP-16	SOP 16-pin (150 mil)

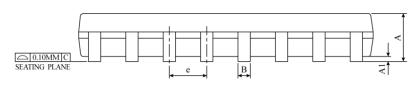

DS-TM57MA17_18_E 102 Rev 0.90, 2017/01/09

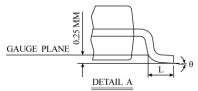
16-DIP Package Dimension

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	-	-	4.369	-	-	0.172	
A1	0.381	0.673	0.965	0.015	0.027	0.038	
A2	3.175	3.302	3.429	0.125	0.130	0.135	
D	18.669	19.177	19.685	0.735	0.755	0.775	
Е	7.620 BSC			0.300 BSC			
E1	6.223	6.350	6.477	0.245	0.250	0.255	
L	2.921	3.366	3.810	0.115	0.133	0.150	
e_{B}	8.509	9.017	9.525	0.335	0.355	0.375	
θ	0°	7.5°	15°	0°	7.5°	15°	
JEDEC	MS-001 (BB)						


NOTES


- 1. "D" , "E1" DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOTEXCEED .010 INCH.
- 2. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.
- 3. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.
- 4. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.
- 5. DATUM PLANE \boxplus COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.


DS-TM57MA17_18_E 103 Rev 0.90, 2017/01/09



16-SOP Package Dimension

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH		
	MIN	NOM	MAX	MIN	NOM	MAX
A	1.35	1.55	1.75	0.0532	0.0610	0.0688
A1	0.10	0.18	0.25	0.0040	0.0069	0.0098
В	0.33	0.42	0.51	0.0130	0.0165	0.0200
С	0.19	0.22	0.25	0.0075	0.0087	0.0098
D	9.80	9.90	10.00	0.3859	0.3898	0.3937
Е	5.80	6.00	6.20	0.2284	0.2362	0.2440
E1	3.80	3.90	4.00	0.1497	0.1536	0.1574
e	1.27 BSC			0.050 BSC		
h	0.25	0.38	0.50	0.0099	0.0148	0.0196
L	0.40	0.84	1.27	0.0160	0.0330	0.0500
θ	0°	4°	8°	0°	4°	8°
JEDEC	MS-012 (AC)					

*NOTES: DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL

NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

DS-TM57MA17_18_E 104 Rev 0.90, 2017/01/09