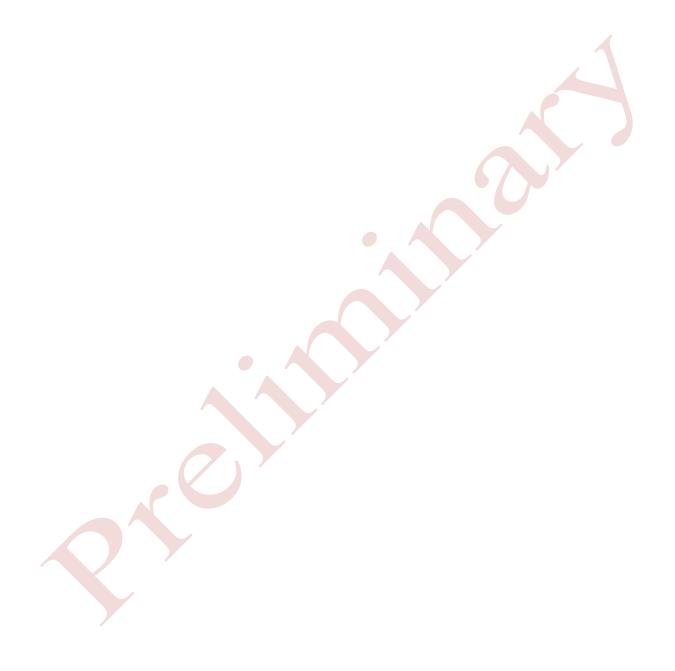


十速

TM57PT46/PA46

DATA SHEET


Rev 1.0

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. Tenx does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Tenx products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses tenx products for any such unintended or unauthorized application, Buyer shall indemnify and hold tenx and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that tenx was negligent regarding the design or manufacture of the part.

AMENDMENT HISTORY

Version	Date	Description
V1.0	Aug, 2016	New release

DS-TM57PT46_PA46_E 2 Rev 1.0, 2016/08/08

CONTENTS

AME	NDMENT HISTORY	2
CON	TENTS	3
FEAT	ΓURES	5
BLO	CK DIAGRAM	7
	ASSIGNMENT	
	DESCRIPTIONS	
PIN S	SUMMARY	10
FUN	CTIONAL DESCRIPTION	
1.	CPU Core	12
	1.1 Clock Scheme and Instruction Cycle	12
	1.2 RAM Addressing Mode	13
	1.3 Programming Counter (PC) and Stack	
	1.4 ALU and Working (W) Register	
	1.5 STATUS Register (F-Plane 03H)	
	1.6 Interrupt	
2	Chip Operation Mode	
	2.1 Reset	24
	2.2 System Configuration Register (SYSCFG)	25
	2.3 PROM Re-use ROM	26
	2.4 Power-Down Mode	
	2.5 Dual System Clock	
	2.6 Dual System Clock Modes Transition	
3	Peripheral Functional Block	33
	3.1 Watchdog (WDT) Timer/Wakeup (WKT) Timer	33
	3.2 Timer0: 8-bit Timer/Counter with Pre-scale (PSC)	
	3.3 Timer1	
	3.4 PWM: (8+2) bits PWM	
	3.5 PPG (Programmable Pulse Generator)	
	3.6 Buzzer Output	
	3.7 Touch Key	
	3.9 OPA/Comparators offset voltage trimming procedures	
	3.10 System Clock Oscillator	
4		
4	I/O Port	
	4.1 PA0-2	
	4.2 PA3-6, PB0-4, PD0-7	
	4.3 PA7	/3

MEMORY MAP		77
F-Plane	•••••	77
R-Plane	•••••	82
INSTRUCTION SET	•••••	87
ELECTRICAL CHARACTERISTICS	•••••	99
1. Absolute Maximum Ratings		99
2. DC Characteristics		100
3. Clock Timing		101
4. Reset Timing Characteristics		101
5. OPA Electrical Characteristics		101
6. COMPARATOR Electrical characteristics		102
7. Characteristic Graphs		103
PACKAGING INFORMATION		105

FEATURES

1. Interrupt

- Three External Interrupt pins
 - 2 pins are falling edge wake-up triggered
 - 1 pin is rising or falling edge wake-up triggered
- Timer0/Timer1/WKT (wake-up) Interrupts
- ADC Interrupt
- CMP1 rising or falling triggered interrupt
- CMP2/CMP3 falling edge triggered interrupt
- CMP4 over current duration triggered interrupt
- 2. Port B individual pin low level wake up
- 3. Wake-up (WKT) Timer
 - Clocked by built-in RC oscillator with 4 adjustable Interrupt times
 1.1 ms/2.3 ms/36 ms/145 ms @5V, 1.4 ms/2.8 ms/46 ms/182 ms @3V
- 4. Watchdog Timer
 - Clocked by built-in RC oscillator with 4 adjustable Reset Times
 145 ms/290 ms/1160 ms/2320 ms @5V, 180 ms/364 ms/1456 ms/2913 ms @3V
 Watchdog timer can be disabled/enabled in STOP mode (WDTSTP, (R0D.5))
- 5. 1 Independent PWM
 - 8+2 bits, period-adjustable/duty-adjustable/Clear&Hold
 - Clock source: FIRC 8 MHz and 16 MHz which double of FIRC
- 6. 12-bit ADC converter with 12 input channels
- 7. Programmable Pulse Generator (PPG) function for Induction Heating
- 8. 15 channel Touch Key (TM57PT46 only)
- 9. 1 Operational Amplifiers with output connect to CMP4 inverted terminal
- 10. 4 specified Comparators cooperate with PPG function
- 11. Reset Sources
 - Power On Reset
 - Watchdog Reset
 - Low Voltage Reset
 - External Pin Reset
- 12. Low Voltage Reset Option: LVR2.1V, LVR2.1V disable in STOP mode, LVR3.1V, and disable

13. Operating Voltage: Low Voltage Reset Level to 5.5V

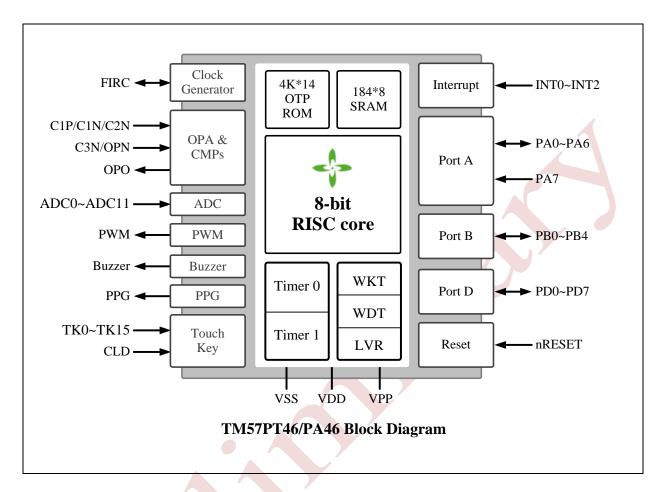
- Fsys=4 MHz, 1.8V~5.5V
- Fsys=8 MHz, 2.1V~5.5V
- Fsys=16 MHz, 2.9V~5.5V
- 14. Enhanced Power Noise Rejection.
- 15. Operating Temperature Range: -40°C to +85°C
- 16. Instruction set: 38 Instructions
- 17. Instruction Execution Time
 - 2 oscillation clocks per instruction except branch

18. I/O ports: Maximum 21 programmable I/O pins

- Pseudo-Open-Drain Output
- Open-Drain Output
- CMOS Push-Pull Output
- Schmitt Trigger Input with pull-up resistor option

19. Package Types:

- 24-pin SOP (300 mil)
- 20-pin DIP (300 mil), SOP (300 mil)
- 18-pin SOP


20. Supported EV board on ICE

EV board: EV8203

BLOCK DIAGRAM

Note that Touch Key block is only for TM57PT46

PIN ASSIGNMENT

		-
ADC11/C2N/PD7 1		24 PD3/C1P
CLD/CAPT/INT0/PA6 2		23 PD4/C1N/TK14
TK0/TM0OUT/PA5 3	TM57PT46	22 PD5/C3N/TK13
\overline{PPG} 4	TM57PA46	21 PD1/OPN
TK1/PB0 5	1 W15/FA40	20 PD0/TM1OUT/ADC0/TK12
TK2/ADC10/PB1 6		19 PD2/OPO/ADC1
TK3/ADC9/INT1/PA1 7		18 PB4/TK11
VSS 8		17 VDD
TK4/ADC8/TCOUT/PD6 9	SOP-24	16 PB3/ADC2/TK10
nRESET/INT2/PA7 10		15 PB2/ADC3/TK9
TK5/ADC7/BUZ/PA3 11		14 PA0/PWM/ADC4/TK8
TK6/ADC6/PA4 12		13 PA2/TM0CKI/ADC5/TK7
		A
ADC11/C2N/PD7 1		20 PD3/C1P
CLD/CAPT/INTO/PA6 2		19 PD4/C1N/TK14
PPG 3	TM57PT46	18 PD5/C3N/TK13
TK3/ADC9/INT1/PA1 4	TM57PA46	17 PD1/OPN
VSS 5		16 PD0/TM1OUT/ADC0/TK12
TK4/ADC8/TCOUT/PD6 6	DIP-20	15 PD2/OPO/ADC1
nRESET/INT2/PA7 7	SOP-20	14 VDD
TK5/ADC7/BUZ/PA3 8	201 20	13 PB3/ADC2/TK10
TK6/ADC6/PA4 9		12 PB2/ADC3/TK9
TK7/ADC5/TM0CKI/PA2 10		11 PA0/PWM/ADC4/TK8
ADC11/C2N/PD7 1		18 PD3/C1P
CLD/CAPT/INT0/PA6 2	TM57PT46	17 PD4/C1N/TK14
PPG 3	TM57PA46	16 PD5/C3N/TK13
TK1/PB0 4	1 W15/PA40	15 PD1/OPN
TK3/ADC9/INT1/PA1 5		14 PD2/OPO/ADC1
nRESET/INT2/PA7 6		13 PB4/TK11
VSS 7	SOP-18	12 VDD
TK5/ADC7/BUZ/PA3 8		11 PA0/PWM/ADC4/TK8
TK6/ADC6/PA4 9		10 PA2/TM0CKI/ADC5/TK7

^{*} Note that TM57PA46 doesn't have TK0~TK14 and CLD pins.

PIN DESCRIPTIONS

Name	In/Out	Pin Description
PA0-PA2	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "pseudo-open-drain" output. Pull-up resistors are assignable by software.
PA3–PA6 PB0–PB4 PD0–PD7	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "open-drain" output. Pull-up resistors are assignable by software.
PPG	О	PPG output
VPP/nRESET/ PA7	I/O	Schmitt-trigger input with pull-high configurable, External active low reset, normal stay to "high".
VDD, VSS	P	Power Voltage input pin and ground
VPP	I	PROM programming high voltage input
INT0-INT2	I	External interrupt input
PWM	О	PWM outputs
TCOUT	О	Instruction cycle clock divided by N output. Where N is 1,2,4,8. The instruction clock frequency is system clock frequency divided by two (Fsys/2).
TM0CKI	I	Timer0's input in counter mode
CAPT	I	Timer0/Timer1 Capture input
BUZ	О	Buzzer output
TM0OUT	О	Timer0 overflow toggle output
TM1OUT	О	Timer1 overflow toggle output
ADC0~ADC11	I	A/D converter input
TK0~TK14	I	Touch Key input (for TM57PT46 only)
CLD	I	Touch Key capacitor input (for TM57PT46 only)
C1P, C1N	I	Synchronous comparator CMP1 Positive/Negative inputs
C2N	I	IGBT over-voltage comparator CMP2 Negative input
C3N	I	Power over-voltage comparator CMP3 Negative input
OPN	I	Negative terminal of OPA
ОРО	O	Outputs of OPA, also connects to Negative terminal of CMP4 (Over-current comparator).

PROGRAMMING PINS:

VDD/VSS/PA0/PA1/PA3/PA4/PA7 (VPP)

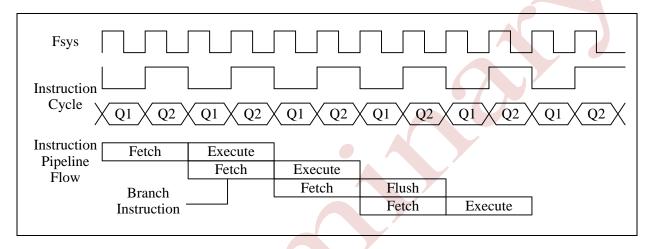
PIN SUMMARY

N	Pin Iumbe	er					GPIO)		set		Alt	ernat	e Fun	ction
					Inj	put	(Outpu	t	Res					
24-SOP /S-DIP	20-SOP/DIP	18-SOP/DIP	Pin Name	Туре	Weak Pull-up	Ext. Interrupt	Q.O	P.O.D	ďď	Function After Reset	\mathbf{MM}	Touch Key	ADC	PPG	MISC
1	1	1	PD7	I/O	0		0		0	PD7			P		
2	2	2	CLD/CAPT INT0/PA6	I/O	0	0	0		0	PA6		0			САРТ
3			TK0/ TM0OUT/PA5	I/O	0		0		0	PA5		0	0		TM0OUT
4	3	3	PPG	О					0	PPG				0	
5		4	TK1/PB0	I/O	0		0		0	PB0		0			
6			TK2/PB1/ ADC10	I/O	0		0		0	PB1		0			
7	4	5	TK3/ADC9/ INT1/PA1	I/O	0	0		0	0	PA1		0	0		
8	5	7	VSS	P						VSS					
9	6		TK4/ADC8/ TCOUT/PD6	I/O	0		0		0	PD6		0	0		TCOUT
10	7	6	nRESET/VPP INT2/PA7	I/O	0	0	0		0	*					VPP nRESET
11	8	8	TK5/ADC7/ BUZ/PA3	I/O	0	<i>,</i>	0		0	PA3		0	0		BUZ
12	9	9	TK6/ADC6/ PA4	I/O	0		0		0	PA4		0	0		
13	10	10	TK7/ADC5/ TM0CKI/PA2	I/O	0			0	0	PA2		0	0		TM0CKI
14	11	11	TK8/ADC4/ PWM/PA0	I/O	0			0	0	PA0	0	0	0		
15	12		TK9/ADC3/ PB2	I/O	0		0		0	PB2		0	0		
16	13		TK1 <mark>0/</mark> ADC2/ PB3	I/O	0		0		0	PB3		0	0		
17	14	12	VDD	P				0		VDD					
18		13	TK11/PB4	I/O	0		0		0	PB4		0			
19	15	14	ADC1/OPO/ PD2	I/O	0		0		0	PD2			0	0	
20	16		TK12/ADC0/ TM1OUT/PD0	I/O	0		0		0	PD0		0	0		TM1OUT

N	Pin lumbe	er					GPIO	١		Reset		Alternate Function		ction	
					Inj	out	(Outpu	t	Re					
24-SOP /S-DIP	20-SOP/DIP	18-SOP/DIP	Pin Name	Туре	Weak Pull-up	Ext. Interrupt	0.D	P.O.D	P.P	Function After	\mathbf{PWM}	Touch Key	ADC	PPG	MISC
21	17	15	OPN/PD1	I/O	0		0	0	0	PD1				0	
22	18	16	TK13/C3N/ PD5	I/O	0		0	0	0	PD5		0		0	
23	19	17	TK14/C1N/ PD4	I/O	0		0		0	PD4		0		0	
24	20	18	TK15/C1P/ PD3	I/O	0		0		0	PD3				0	

Symbol: P.P. = Push-Pull Output
P.O.D. = Pseudo Open Drain
O.D. = Open Drain

^{*} Depends on XRSTE bit of Configword



FUNCTIONAL DESCRIPTION

1. CPU Core

1.1 Clock Scheme and Instruction Cycle

The system clock (Fsys) is internally divided by two to generate Q1 state and Q2 state for each instruction cycle. The Programming Counter (PC) is updated at Q1 and the instruction is fetched from program ROM and latched into the instruction register in Q2. It is then decoded and executed during the following Q1-Q2 cycle. Branch instructions take two cycles since the fetch instruction is 'flushed' from the pipeline, while the new instruction is being fetched and then executed.

Terminology definitions:

Fsys: System clock. The main clock that drives the core logic and all peripherals. The clock source can be either Fast-clock or Slow-clock which can be set by registers.

Fast-clock: The clock source is from Fast Internal RC oscillator (FIRC).

Slow-clock: The clock source is from Slow Internal RC oscillator (SIRC).

Instruction Cycle=Fsys/2

*FXT: Fast Crystal

FIRC: Fast Internal RC oscillator

*XRC: Fast or Slow External RC oscillator

*SXT: Slow Crystal (32 KHz) SIRC: Slow Internal RC oscillator

DS-TM57PT46_PA46_E 12 Rev 1.0, 2016/08/08

^{*} TM57PT46/PA46 don't support FXT/XRC/SXT modes.

1.2 RAM Addressing Mode

There are two Data Memory Planes in CPU, R-Plane and F-Plane. The registers in R-Plane are write-only. The "MOVWR" instruction copy the W-register's content to R-Plane registers by direct addressing mode. The lower locations of F-Plane are reserved for the SFR. Above the SFR is General Purpose Data Memory, implemented as static RAM. F-Plane can be addressed directly or indirectly. Indirect Addressing is made by INDF register. The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR (F04.6~0) register (FSR is a pointer). The first half of F-Plane is bit-addressable, while the second half of F-Plane is not bit-addressable. There are two RAM banks can be selected by RAMBK (F03.5).

_	R-Plane
00	
	SFR
	MOVWR Instruction
	Write Only
3F	

	F-Pl	ane								
00	SFR									
1F	Bit-Addi	ressable								
20	SRA	M								
27	Bit-Addı	ressable								
28	SRAM	SRAM								
	Bit-Addressable	Bit-Addressable								
3F	(RAMBK=0)	(RAMBK=1)								
40		<i>(</i>								
	SRAM	SRAM								
	(RAMBK=0)	(RAMBK=1)								
7F										

♦ Example: Write immediate data into R-Plane register

MOVLW AAH ; Move immediate AAH into W register MOVWR 05H ; Move W value into R-Plane location 05H

♦ Example: Write immediate data into F-Plane register

MOVLW 55H ; Move immediate 55H into W register MOVWF 20H ; Move W value into F-Plane location 20H

♦ Example: Move F-Plane location 20H data into W register

MOVFW 20H ; To get a content of F-Plane location 20H to W

♦ Example: Clear SRAM Bank0 data by indirect addressing mode

MOVLW 20H ; W=20H (SRAM start address)

MOVWF FSR ; Set start address of user SRAM into FSR register

BCF STATUS, 5 ; Set RAMBK=0

LOOP:

MOVLW 00H

MOVWF INDF ; Clear user SRAM data

INCF FSR, 1 ; Increment the FSR for next address

MOVLW 80H ; W=80H (SRAM end address)
XORWF FSR, 0 ; Check the FSR is end address of user SRAM?

BTFSS STATUS, 2; Check the Z flag

GOTO LOOP ; If Z=0, goto LOOP label

... ; If Z=1, exit LOOP

1.3 Programming Counter (PC) and Stack

The Programming Counter is 12-bit wide capable of addressing a 4K x 14 OTP ROM. As a program instruction is executed, the PC will contain the address of the next program instruction to be executed. The PC value is normally increased by one except the followings. The Reset Vector (000h) and the Interrupt Vector (001h) are provided for PC initialization and Interrupt. For CALL/GOTO instructions, PC loads 12 bits address from instruction word. For RET/RETLW instructions, PC retrieves its content from the top level STACK. For the other instructions updating PC[7:0], the PC[11:8] keeps unchanged. Therefore, the data of a lookup table must be located with the same PC[11:8]. The STACK is 12-bit wide and 6-level in depth. The CALL instruction and hardware interrupt will push STACK level in order. While the RET/RETL/RETLW instructions pop the STACK level in order.

♦ Example: To look up the PROM data located "TABLE"

ORG 000H ; Reset Vector

GOTO START ; Goto user program address

START:

MOVLW 00H

MOVWF ; Set lookup table's address (INDEX) **INDEX**

LOOP:

MOVFW ; Move INDEX value to W register **INDEX**

CALL TABLE ; To Lookup data (W=55H when INDEX=00H)

; Increment the INDEX for next address **INCF** INDEX, 1

GOTO LOOP ; Goto LOOP label

X = 1, 2, 3, ..., 6, 7**ORG** X00H

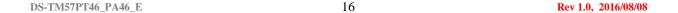
TABLE:

ADDWF PCL, 1 ; (Addr=X00H) Add the W with PCL, the result

; is stored back in PCL **RETLW** ; W=55H when return 55H 56H ; W=56H when return

RETLW RETLW 58H ; W=58H when return

Note: TM57PT46/PA46 defines 256 ROM addresses as one page, so that TM57PT46/PA46 has 16 pages, 000H~0FFH, 100H~1FFH, 200H~2FFH, ..., and F00H~FFFH. On the other words, PC[11:8] can be defined as page. A lookup table must be located at the same page to avoid getting wrong data. Thus, the lookup table has maximum 255 data for above example with starting a lookup table at X00H (X=1, 2, 3, ..., 6, 7). If a lookup table has fewer data, it does not need to set the starting address at X00H, just only confirm all lookup table data are located at the same page.



1.4 ALU and Working (W) Register

The ALU is 8-bit wide and capable of addition, subtraction, shift and logical operations. In two-operand instructions, typically one operand is the W register, which is an 8-bit non-addressable register used for ALU operations. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either W register or a file register. Depending on the instruction executed, the ALU may affect the values of Carry (C), Digit Carry (DC), and Zero (Z) Flags in the STATUS register. The C and DC flags operate as a/Borrow and/Digit Borrow, respectively, in subtraction.

Note: /Borrow represents inverted of Borrow register.

/Digit Borrow represents inverted of Digit Borrow register.

1.5 STATUS Register (F-Plane 03H)

This register contains the arithmetic status of ALU, the reset status, and the voltage status. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. It is recommended, therefore, that only BCF, BSF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect those bits. The RAMBK bit is used to the SRAM Bank selection.

STATUS	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
Reset Value	0	0	0	0	0	0	0 /	0				
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W				
Bit	Description											
7	GB0: Gene	GB0: General Purpose Bit 0										
6	GB1: Gene	eral Purpose	Bit 1									
5	RAMBK: 0: SRAM 1: SRAM		x Selection				y '					
4		_		eset, or CLR	WDT/SLEE	P instruction	ıs					
3	0: after P	Down Flag Power On Re LEEP instru	eset, LVR Re	eset, or CLR	WDT instru	ction						
2		sult of a logi	c operation i									
	DC: Decin	nal Carry Fla	ng or Decima	l /Borrow F	lag							
		ADD in	struction			SUB in	struction					
1	0: no carry				0: a borrow from the low nibble bits of the							
	1: a carry f	rom the low	nibble bits o	of the result	result oc 1: no borro							
	C: Carry F	lag or /Borro	ow Flag									
0	ADD instruction SUB instruction											
Ü	0: no carry 1: a carry occurs from the MSB 1: no borrow											

♦ Example: Write immediate data into STATUS register

MOVLW 00H

MOVWF STATUS ; Clear STATUS register

♦ Example: Bit addressing set and clear STATUS register

BSF STATUS, C ; Set C=1 BCF STATUS, C ; Clear C=0

♦ Example: Determine the C flag by BTFSS instruction

BTFSS STATUS, C ; Check the C flag

GOTO LABEL_1 ; If C=0, goto LABEL_1 label
GOTO LABEL_2 ; If C=1, goto LABEL_2 label

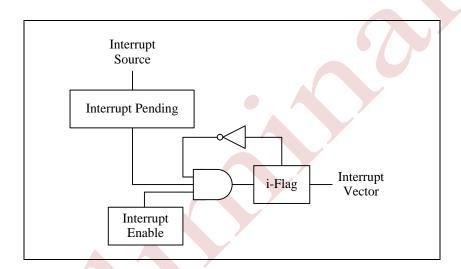
♦ Example: Detect WDT time out event occurrs

LOOP:

BTFSC STATUS, TO ; Check the LVD flag

GOTO WDT_Timeout_Proc ; If TO=1, goto WDT_Timeout_Proc

MAIN:



1.6 Interrupt

The TM57PT46/PA46 has 1 level, 1 vector and 11 interrupt sources. Each interrupt source has its own enable control bit. An interrupt event will set its individual pending flag; no matter its interrupt enable control bit is 0 or 1. Because TM57PT46/PA46 has only 1 vector, there is not an interrupt priority register. The interrupt priority is determined by F/W.

If the corresponding interrupt enable bit has been set (INTE), it would trigger CPU to service the interrupt. CPU accepts interrupt in the end of current executed instruction cycle. In the mean while, a "CALL 001" instruction is inserted to CPU, and i-flag is set to prevent recursive interrupt nesting.

The i-flag is cleared in the instruction after the "RETI" instruction. That is, at least one instruction in main program is executed before service the pending interrupt. The interrupt event is level triggered. F/W must clear the interrupt event register while serving the interrupt routine.

♦ Example: Setup INT1 (PA1) interrupt request with rising edge trigger

ORG 000H ; Reset Vector

GOTO START ; Goto user program address

ORG 001H ; All interrupt vector

GOTO INT ; If INT1 (PA1) input occurred rising edge

ORG 002H

START:

MOVLW xxxxxx**0**xB

MOVWR PAPUN ; Select INT1 (PA1) pin mode pull-up enable

MOVLW xxxxxx<u>1</u>xB

MOVWF PAD ; Release INT1 (PA1), it becomes Schmitt-trigger

; input mode with input pull-up resistor

MOVLW xxxxxx**0**xB

MOVWR PAE ;Disable INT1(PA1) push-pull output

MOVLW xxxxxxx**1**B

MOVWR ROB ; Set INT1 interrupt trigger as rising edge

MOVLW 1111111<u>0</u>1B

MOVWF INTF ; Clear INT1 interrupt request flag

MOVLW 000000<u>1</u>0B

MOVWF INTE ; Enable INT1 interrupt

MAIN:

GOTO MAIN

INT:

MOVWF 20H; Store W data to SRAM 20H

MOVFW STATUS ; Get STATUS data

MOVWF 21H ; Store STATUS data to SRAM 21H

BTFSS XINT1F ; Check XINT1F bit

GOTO EXIT_INT ; XINT1F=0, exit interrupt subroutine

; INT1 interrupt service routine

MOVLW 1111111<u>0</u>1B

MOVWF INTF ; Clear INT1 interrupt request flag

EXIT_INT:

MOVFW21H; Get SRAM 21H dataMOVWFSTATUS; Restore STATUS data

MOVFW 20H ; Restore W data

RETI ; Return from interrupt

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	-	TM1IE	TM0IE	WKTIE	XINT2E	XINT1E	XINT0E
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F08.7 **ADCIE**: ADC interrupt enable

0: disable 1: enable

F08.6 N/A

F08.5 **TM1IE**: Timer1 interrupt enable

0: disable 1: enable

F08.4 **TM0IE**: Timer0 interrupt enable

0: disable 1: enable

F08.3 **WKTIE**: WKT interrupt enable

0: disable 1: enable

F08.2 **XINT2E**: External pin XINT2 (PA7) interrupt enable

0: disable 1: enable

F08.1 **XINT1E**: External pin XINT1 (PA1) interrupt enable

0: disable 1: enable

F08.0 **XINT0E**: External pin XINT0 (PA6) interrupt enable

0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	CMPIF	TM1IF	TM0IF	WKTIF	XINT2F	XINT1F	XINT0F
R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	-	0	0	0	0	0	0

F09.7 **ADCIF**: ADC interrupt event pending flag

This bit is set by H/W while A/D conversion is completed, write 0 to this bit will clear this flag

F09.6 **CMPIF**: Comparators interrupt event pending flag

This bit is set by H/W while CMP1IF or CMP2IF or CMP3IF or CMP4IF is/are set, write 0s to those bits will clear this flag.

Because of the output of comparators may change at power on, so the CMPIF may not be '0'. Make sure the comparators are all in stable state then clear CMP1IF to CMP4IF before use.

F09.5 **TM1IF**: Timer1 interrupt event pending flag

This bit is set by H/W while Timer1 overflows, write 0 to this bit will clear this flag

F09.4 **TM0IF**: Timer0 interrupt event pending flag

This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

F09.3 **WKTIF**: WKT interrupt event pending flag

This bit is set by H/W while WKT overflows, write 0 to this bit will clear this flag

F09.2 **XINT2F**: INT2 interrupt event pending flag

This bit is set by H/W at INT2 pin's falling edge, write 0 to this bit will clear this flag

F09.1 **XINT1F**: INT1 interrupt event pending flag

This bit is set by H/W at INT1 pin's falling/rising edge, write 0 to this bit will clear this flag

F09.0 **XINT0F**: INT0 interrupt event pending flag

This bit is set by H/W at INTO pin's falling edge, write 0 to this bit will clear this flag

F0E	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CMPIEF	CMP1IE	CMP2IE	CMP3IE	CMP4IE	CMP1IF	CMP2IF	CMP3IF	CMP4IF
R/W								
Reset	0	0	0	0	0	0	0	0

F0E.7 **CMP1IE**: CMP1 interrupt enable

0: disable 1: enable

F0E.6 **CMP2IE**: CMP2 interrupt enable

0: disable1: enable

F0E.5 **CMP3IE**: CMP3 interrupt enable

0: disable 1: enable

F0E.4 CMP4IE: CMP4 interrupt enable

0: disable 1: enable

DS-TM57PT46_PA46_E 22 Rev 1.0, 2016/08/08

F0E.3 **CMP1IF**: CMP1 interrupt event pending flag

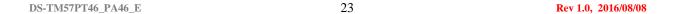
This bit is set by H/W while CMP1 output falling/rising is happened, write 0 to this bit will clear this flag

F0E.2 **CMP2IF**: CMP2 interrupt event pending flag

This bit is set by H/W while CMP2 output falling is happened, write 0 to this bits will clear this flag

F0E.1 **CMP3IF**: CMP3 interrupt event pending flag

This bit is set by H/W while CMP3 output falling is happened, write 0 to this bit will clear this flag


F0E.0 **CMP4IF**: INT0 interrupt event pending flag

This bit is set by H/W while CMP4 output falling is happened, write 0 to this bit will clear this flag

R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	PWMOE	PWMPSC		TCOE	TM0OE	TM10E	TM1CKS	INT1EDG
R/W	W	W		W	W	W	W	W
Reset	0	0	0	0	0	0	0	0

R0B.0 **INT1EDG:** INT1 pin (PA1) edge interrupt event

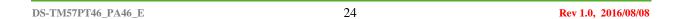
0: falling edge to trigger1: rising edge to trigger

2 Chip Operation Mode

2.1 Reset

The TM57PT46/PA46 can be RESET in four ways.

- Power-On-Reset
- Low Voltage Reset (LVR)
- External Pin Reset (PA7)
- Watchdog Reset (WDT)


After Power-On-Reset, all system and peripheral control registers are then set to their default hardware Reset values. The clock source, LVR level and chip operation mode are selected by the SYSCFG register value. The Low Voltage Reset features static reset when supply voltage is below a threshold level. There are two threshold levels can be selected. The LVR's operation mode is defined by the SYSCFG register.

There are two voltage selections for the LVR threshold level, one is higher level which is suitable for application with V_{DD} is more than 3V, the other one is suitable for application with V_{DD} is more than 2.1V. See the following LVR Selection Table; user must also consider the lowest operating voltage of operating frequency.

LVR Selection Table:

LVR Threshold Level	Consider the operating voltage to choose LVR
LVR2.1	$5.5V > V_{DD} > 2.2V$
LVR3.0	$5.5V > V_{DD} > 3.1V$

The External Pin Reset and Watchdog Reset can be disabled or enabled by the SYSCFG register. These two resets also set all the control registers to their default reset value.

2.2 System Configuration Register (SYSCFG)

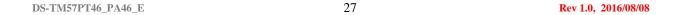
The System Configuration Register (SYSCFG) is located at ROM address FFCh. The SYSCFG determines the option for initial condition of MCU. It is written by PROM Writer only. User can select LVR threshold voltage and chip operation mode by SYSCFG register. The default value of SYSCFG is 3FFFh. The 14th bit of SYSCFG is code protection selection bit. If this bit is 0, the data in PROM will be protected, when user reads PROM.

Bit		13~0					
Default Value		111111111111					
Bit		Description					
13	PROTECT: Co	ode protection selection					
	0	Enable					
	1	Disable					
12	REUSE: PROM	I Re-use control					
	0	Enable					
	1	Disable					
11-10	LVR: Low Volt	tage Reset Mode					
	00	LVR disable					
	01	LVR = 3.0V, always enable					
	10	LVR = 2.1V, disable at STOP mode					
	11	LVR = 2.1V; always enable					
9-8	N/A						
7	XRSTE: Extern	nal Pin (PA7) Reset Enable					
	0	Disable, PA7 as IO pin					
	1	Enable					
6	WDTE: WDT I	Reset Enable					
	0	WDT Reset Disable					
	1	WDT Reset Always Enable					
5-0	Reserved						

2.3 PROM Re-use ROM

The PROM of this device is 4K words. For some F/W program, the program size could be less than 2K words. To fully utilize the PROM, the device allows users to reuse the PROM. This feature is named as Two Time Programmable (TTP) ROM. While the first half of PROM is occupied by a useless program code and the second half of the PROM remains blank, users can re-write the PROM with the updated program code into the second half of the PROM. In the Re-use mode, the Reset Vector and Interrupt Vector are re-allocated at the beginning of the PROM's second half by the Assembly Compiler. Users simply choose the "REUSE" option in the ICE tool interface, and then the Compiler will move the object code to proper location. That is, the user's program still has reset vector at address 000h, but the compiled object code has reset vector at 800h. In the SYSCFG, if protect mode is enabled and not Re-use, the Code protection area is first half of PROM. This allows the Writer tool to write then verify the Code during the Re-use Code programming. After the Re-use Code being written into the PROM's second half, user should write "REUSE" control bit to "0". In the mean while, the Code protection area becomes the whole PROM except the Reserved Area.

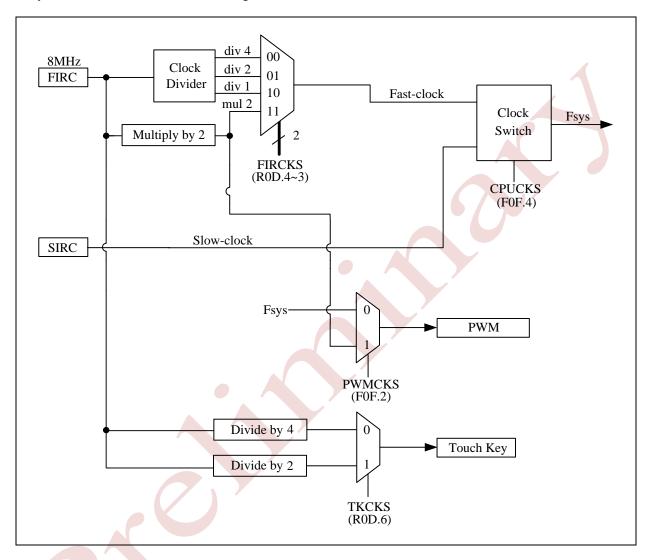
_	PROM, not Re-use	PROM, Re-use	
000 001	Reset Vector Interrupt Vector	000 001	
7FF 800 801	User Code	Code Protect Area 7FF 800 Reset Vector Interrupt Vector User Code	Code Protect Area
FFB	Checksum 2	FFB Checksum 2	
FFC	SYSCFG	FFC SYSCFG]
FFD	Manufacturer	FFD Manufacturer	
FFE	Reserved	FFE Reserved	
FFF	Area	FFF Area	<u> </u>



2.4 Power-Down Mode

The Power-down mode of TM57PT46/PA46 has only STOP Mode. It is activated by SLEEP instruction. During the Power-down mode, the system clock and peripherals stop to minimize power consumption. The WDT is working or not depends on SYSCFG. The WKT is working or not depends on WKTIE (MF08.3). The Power-down mode can be terminated by Reset, or enabled Interrupts (External pins and WKT) and PB0-4 pins low level wake up.

R03	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWRDN	PWRDN									
R/W		W								
Reset	_	_	_	_	_	_	-	_		


R03.7~0 **PWRDN:** Write this register to enter Power Down (STOP) Mode

2.5 Dual System Clock

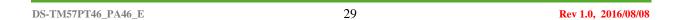
TM57PT46/PA46 is designed with dual-clock system. There are two kinds of clock source, SIRC (Slow Internal RC) Clock and FIRC (Fast Internal RC) Clock. Each clock source can be applied to CPU kernel as system clock source. Refer to the Figure as below.

FAST Mode:

After power-on or reset, TM57PT46/PA46 enters FAST mode at power on. In FAST mode, TM57PT46/PA46 use FIRC as its CPU clock. TM57PT46/PA46 enters FAST mode by setting the CPUCKS (F0F.4=0) when it is in SLOW mode. If user wants to change to SLOW mode, because Slow-clock is always enabled, then switch to Slow-clock as CPU clock (F0F.4=1).

In this mode, the program is executed using Fast-clock as system clock source. The Timer0 and Timer1 blocks are driven by Fast-clock. PWMs can be driven by Fast-clock or FIRC 16 MHz by setting PWMCKS (F0F.2).

SLOW Mode:

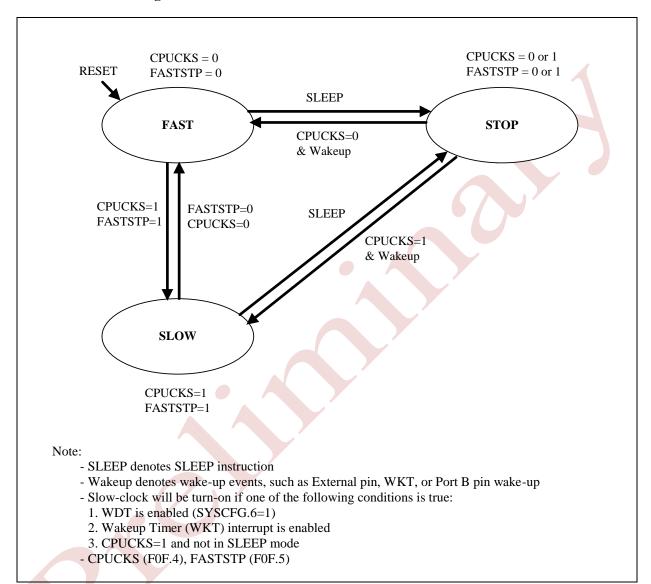

TM57PT46/PA46 has only one type of Slow Clock, that is SIRC. User can select SIRC as its System clock by setting CPUCKS (F0F.4=1).

IDLE Mode:

The TM57PT46/PA46 does not support IDLE mode because there is no T2 exist in this model.

STOP Mode:

If Slow-clock is disabled, all blocks will be turned off and the TM57PT46/PA46 will enter the "STOP Mode" after executing the SLEEP instruction. STOP mode is similar to IDLE mode. The difference is all clock oscillators either Fast-clock or Slow-clock are stopped and no clocks are generated.



2.6 Dual System Clock Modes Transition

TM57PT46/PA46 is operated in one of three modes: FAST Mode, SLOW Mode, and STOP Mode.

Modes Transition Diagram:

CPU Mode & Clock Functions Table:

Mode	Oscillator	Fsys	Fast-clock	Slow-clock	TM0	TM1	PWM	Wakeup event
FAST	FIRC	Fast-clock	Run	Run	Run	Run	Run	X
SLOW	SIRC	Slow-clock	Run	Run	Run	Run	Run	X
STOP	Stop	Stop	Stop	Stop	Stop	Stop	Stop	IO

FAST Mode transits to SLOW Mode:

The source clock of Slow-clock is Slow Internal RC (SIRC). The following steps are suggested to be executed by order when FAST mode transits to SLOW mode:

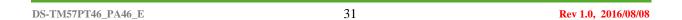
- (1) Switch system clock source to Slow-clock (CPUCKS=1)
- (2) Stop Fast-clock (FASTSTP=1)
- ♦ Example: Switch operating mode from FAST mode to SLOW mode

BSF CPUCKS ; Switch system clock source to Slow-clock

BSF FASTSTP ; Stop Fast-clock

SLOW Mode transits to FAST Mode:

The source clock of Fast-clock is Fast Internal RC (FIRC). The following steps are suggested to be executed by order when SLOW mode transits to FAST mode:


(1) Enable Fast-clock (FASTSTP=0)

(2) Switch system clock source to Fast-clock (CPUCKS=0)

♦ Example: Switch operating mode from SLOW mode to FAST mode with FXT

BCF FASTSTP ; Enable Fast-clock

BCF CPUCKS ; Switch system clock source to Fast-clock

STOP Mode Setting:

The STOP mode can be configured by following setting in order:

- (1) Stop Slow-clock (WDTE=0, WKTIE=0)
- (2) Execute SLEEP instruction

User must make sure all possibilities to make Slow Internal RC running are disabled. First, make sure WDT is not enabled. Second, WKT interrupt is not enabled.

STOP mode can be woken up by interrupt (INT0, INT1, INT2), WKT, or PB0-4 pins low level wake up.

♦ Example: Switch operating mode to STOP mode

SLEEP ; Enter STOP mode

IO setting notes in STOP mode:

Note: In STOP/IDLE mode, PA3 and PA4 must be set as input mode with internal pull-up enable to avoid floating state when select FXT or SXT mode. The PA3 and PA4 IO setting list is as below.

(Note that TM57PT46/PA46 doesn't support FXT and SXT oscillation mode.)

	Fast-clock	Slow-clock	PAE3	PAPUN3	PAD3	PAE4	PAPUN4	PAD4
1	FIRC	SIRC	*	*	*	*	*	*
2	FIRC	SXT	0	0	1	0	0	1
3	FXT	SIRC	0	0	1	0	0	1

※ ∶ Don't care

F0F	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCTL	BUZEN	ADST	FASTSTP	CPUCKS	PWMCLR	PWMCKS	OPAPD	OPACAL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	1	0	1	0

F0F.5 FASTSTP: Fast-clock Enable / Disable

0: enable 1: disable

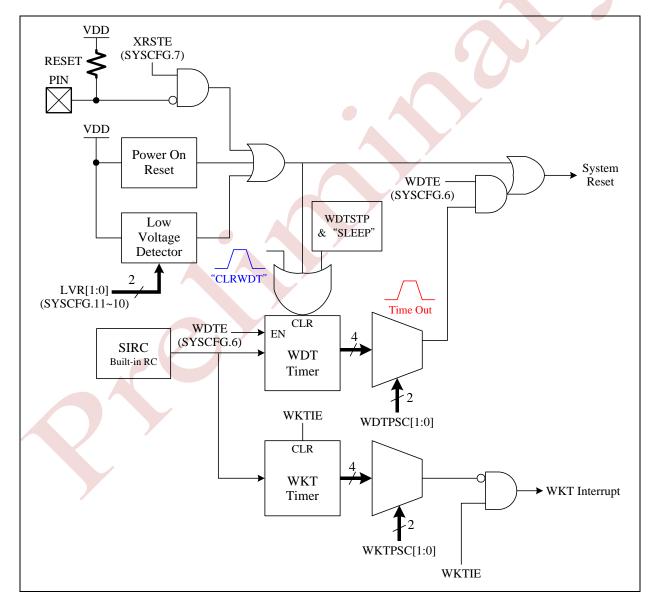
F0F.4 **CPUCKS**: System clock source select

0: Fast-clock 1: Slow-clock

Warning: The CLKCTL (F0F) can't be set directly for CPU modes transition. It may cause the transition fail.

Please refer the mentioned steps for transition in this chapter.

DS-TM57PT46_PA46_E 32 Rev 1.0, 2016/08/08



3 Peripheral Functional Block

3.1 Watchdog (WDT) Timer/Wakeup (WKT) Timer

The WDT and WKT share the same internal RC oscillator (SIRC). The overflow period of WDT, WKT can be selected by WDTPSC[1:0] and WKTPSC[1:0]. The WDT timer is cleared by the CLRWDT instruction. If the Watchdog is enabled (WDTE = 1), the WDT generates the chip reset signal when WDT overflows. Set WDTSTP (R0C.3) to '1' can let WDT timer stop counting after executing SLEEP instruction, i.e. WDTSTP=0 WDT timer always keeps counting even if the SLEEP instruction is executed.

The WKT timer is an interval timer, if WKT timer overflows, it will generate WKT Interrupt Flag (WKTIF). The WKT timer is cleared/stopped by WKTIE=0. Set WKTIE=1, the WKT timer will always count regardless at any CPU operating mode.

WDT/WKT Block Diagram

DS-TM57PT46_PA46_E 33 Rev 1.0, 2016/08/08

The WDT and WKT's behavior in different Mode are shown as below table.

Mode	WDTE WKTIE		WDTSTP	Internal SIRC Oscillator
	0	0		Stop
Normal Mode	0	1	0/1	
	1	0	0/1	Run
	1	1		
	0	0	0	Stop
	0	1	0	Run
	1	0	0	Run
Power Down Mode	1	1	0	Run
rowel Down Mode	0	0	1	Stop
	0	1	1	Run
	1	0	1	Stop
	1	1	1	Run

F03	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STATUS	GBIT1	GBIT0	RAMBK	ТО	PD	Z	DC	С
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F03.4 **TO:** WDT time out flag, read-only

0: after Power On Reset, LVR Reset, or CLRWDT/SLEEP instructions

1: WDT time out occurs

R04	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
WDTCLR		WDTCLR							
R/W		W							
Reset	-	_	-	-	_	_	_	_	

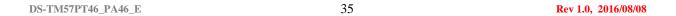
R04.7~0 **WDTCLR:** Write this register to clear WDT

R0C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0C	WK	TPSC	WDT	ΓPSC	WDTSTP	TM1CM	FIR	CKS
R/W	_	W		W	W	W	W	W
Reset	_ /	0	0	0	0	0	1	0

R0C.7~6 WKTPSC: WKT pre-scale select: (the time IS NOT precise enough for accurate timing applications)

Bit 1	Bit 0	5V	3V
0	0	1.1 ms	1.4 ms
0	1	2.2 ms	2.7 ms
1	0	36 ms	44 ms
1	1	143 ms	177 ms

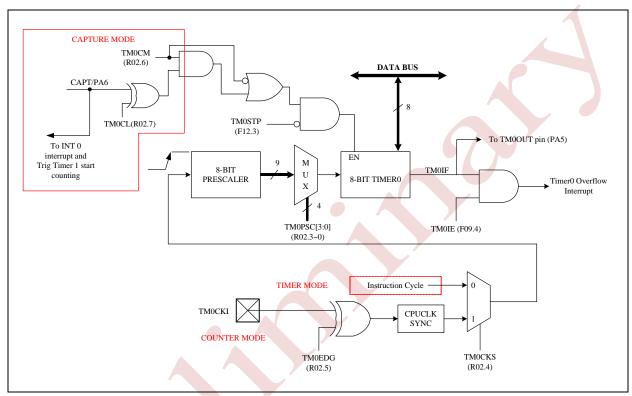
DS-TM57PT46_PA46_E 34 Rev 1.0, 2016/08/08


R0C.5~4 **WDTPSC:** WDT pre-scale select: (the time IS NOT precise enough for accurate timing applications)

Bit 1	Bit 0	5V	3V
0	0	140 ms	175 ms
0	1	280 ms	355 ms
1	0	1140 ms	1440 ms
1	1	2280 ms	2880 ms

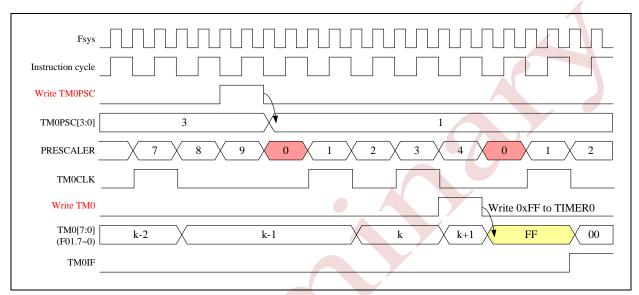
ROC.3 **WDTSTP:** WDT stops counting when in STOP mode

0: WDT keeps counting when in STOP mode


1: WDT stops counting when in STOP mode

3.2 Timer0: 8-bit Timer/Counter with Pre-scale (PSC)

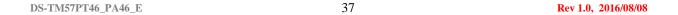
The Timer0 is an 8-bit wide register of F-Plane. It can be read or written as any other register of F-Plane. Besides, Timer0 increases itself periodically and automatically rolls over based on the pre-scaled clock source, which can be the instruction cycle or TM0CKI (PA2) rising/falling input. The Timer0's increasing rate is determined by the TM0PSC[3:0] (R02.3~0). The Timer0 can generate interrupt flag TM0IF (F09.4) when it rolls over. It generates Timer0 interrupt if the TM0IE (F08.4) bit is set. Timer0 can be stopped counting if the TM0STP (F12.3) bit is set.


Timer0 Block Diagram

DS-TM57PT46_PA46_E 36 Rev 1.0, 2016/08/08

The following timing diagram describes the Timer0 works in pure timer mode.

When the Timer0 prescaler (TM0PSC) is written, the internal 8-bit prescaler will be cleared to 0 to make the counting period correct at the first Timer0 count. TM0CLK is the internal signal that causes the Timer0 to increase by 1 at the end of TM0CLK. TM0WR is also the internal signal that indicates the Timer0 is directly written by instruction; meanwhile, the internal 8-bit prescaler will be cleared. When Timer0 counts from FFh to 00h, TM0IF (Timer0 Interrupt Flag) will be set to 1 and generate interrupt if TM0IE (Timer0 Interrupt Enable) is set.



Timer0 works in Timer mode

The equation of TM0OUT initial value is as following.

TM0OUT output frequency=Instruction cycle/TM0PSC/ (256-TM0)

TM0OUT output time period=1/TM0OUT output frequency.

♦Example:

Setup TM0 Work in Timer mode and counting overflow toggle output to TM0OUT (PA5) pin configuration.

; Setup TM0 clock source and divider.

MOVLW 00000101B

MOVWR R02 ; Setup TM0=Timer mode.

; TM0 clock source=Instruction cycle.

; Divided by 32

; Set TM0 timer.

BSF TM0STP ; Disable TM0 counting (Default "0").

MOVLW 156

MOVWF TMO ; Write 156 into TM0 register of F-Plane.

; Set TM0OUT pin function.

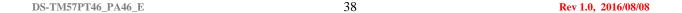
MOVLW 00001000B

MOVWR R0C ; Enable TM0 match toggle output to TM0OUT (PA5).

; Enable TM0 timer and interrupt function.

MOVLW 11101111B ; Clear TM0 request interrupt flag

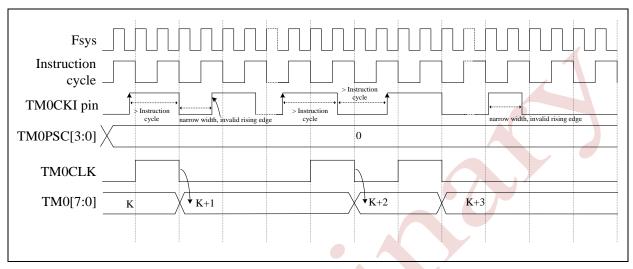
MOVWF INTIF


BSF TM0IE ; Enable TM0 interrupt function.
BCF TM0STP ; Enable TM0 counting (Default "0").

Example:

TM0 clock source is Fsys=4 MHz, Instruction cycle=2 MHz, TM0PSC=/32, TM0=156,

TM0OUT output frequency=2 MHz/32/ (256-156) =2 MHz/32/100=312.5 Hz


TM0OUT output time period=1/312.5 Hz=3.2 ms.

The following timing diagram describes the Timer0 works in counter mode.

TM0CKS=1 if Timer0 counter source clock is from TM0CKI pin. TM0CKI signal is synchronized by instruction cycle, which means the high/low time durations of TM0CKI must be longer than one instruction cycle time to guarantee each TM0CKI's change will be detected correctly by the synchronizer.

Timer0 works in Counter mode for TM0CKI (TM0EDG=0)

◇Example:

Setup TM0 Work in counter mode and clock source from TM0CKI pin (PA2) configuration.

; Setup TM0 clock source from TM0CKI pin (PA2) and divider.

MOVLW 00010000B

MOVWR R02 ; Setup TM0=Counter mode.

Select TM0 prescaler counting edge=rising edge.

; TM0 clock source=TM0CKI pin (PA2)

; Divided by 1

; Set TM0 timer and stop TM0 counting.

BSF TM0STP ; Disable TM0 counting (Default "0").

MOVLW 00H

MOVWF TM0 ; Write 0 into TM0 register of F-Plane.

; Start TM0 count and read TM0 count.

BCF TM0STP ; Enable TM0 counting.

NOP NOP

BSF TM0STP ; Disable TM0 counting (Default "0")

MOVFW TM0

F01	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TM0		TM0								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

F01.7~0 **TM0:** Timer0 content

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	-	TM1IE	TM0IE	WKTIE	XINT2E	XINT1E	XINT0E
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F08.4 **TM0IE**: Timer0 interrupt enable

0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	CMPIF	TM1IF	TM0IF	WKTIF	XINT2F	XINT1F	XINT0F
R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	-	0	0	0	0	0	0

F09.4 **TM0IF**: Timer0 interrupt event pending flag

This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

F12	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF14	CALINDEX	TM1SET	TM1CLR	TM1STP	TM0STP	C1PPGEN	PPGEN	PPGSTB
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	0	0	0	0	0	0

F12.3 **TM0STP**: Timer0 counter stop

0: Timer0 is counting1: Timer0 stops counting

R02	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0CTL	TM0CL	TM0CM	TM0EDG	TM0CKS	TM0PSC			
R/W	W	W	W	W	W			
Reset	0	0	0	0	0	0	0	0

R02.7 **TM0CL:** Timer0 Capture Mode Level

0: CAPT pin high level capture

1: CAPT pin low level capture

R02.6 **TM0CM:** Timer0 Mode Selection

0: Timer/Counter Mode, clock source from Instruction Cycle (Fsys/2) or TM0CKI

1: Capture Mode, counts CAPT pin level duration.

R02.5 **TM0EDG:** TM0CKI (PA2) edge selection for Timer0 prescaler count

0: TM0CKI (PA2) rising edge for Timer0 prescaler count

1: TM0CKI (PA2) falling edge for Timer0 prescaler count

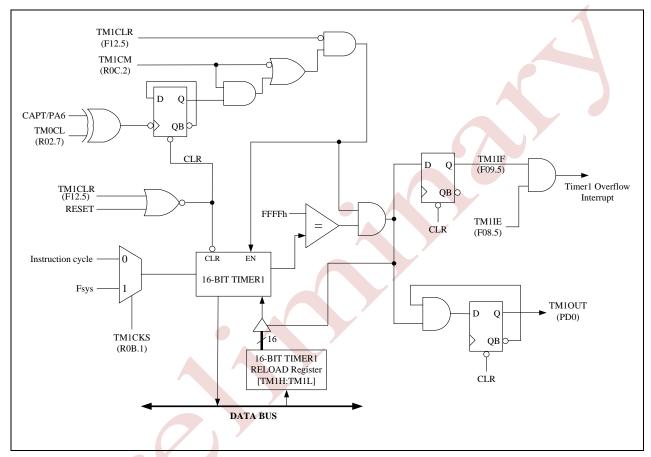
R02.4 TM0CKS: Timer0 clock source select

0: Instruction Cycle (Fsys/2) as Timer0 prescaler clock

1: TM0CKI (PA2) as Timer0 prescaler clock

DS-TM57PT46_PA46_E 40 Rev 1.0, 2016/08/08

R02.3~0 **TM0PSC:** Timer0 prescaler. Timer0 clock source


0000: divided by 1 0001: divided by 2 0010: divided by 4 0011: divided by 8 0100: divided by 16 0101: divided by 32 0110: divided by 64

0111: divided by 128 1xxx: divided by 256

3.3 Timer1

Timer1 is a 16-bit counter used as Capture/Timer mode with 16-bit auto-reload register. Timer1 can only be accessed by reading F-Plane TM1H and TM1L. Writing TM1H and TM1L is actually writing to Timer1 reload registers. The clock sources of Timer1 are Fsys and Instruction cycle, selected by TM1CKS (R0B.1). Setting the bit TM1CLR (F12.5) will clear Timer1 and hold Timer1 on 0000h. Setting the TM1STP (F12.4) bit will stop Timer1 counting. TM1OUT is an output signal that toggles when Timer1 overflow.

Timer1 Block Diagram

Note that writing to TM1H and TM1L is actually writing to Timer1 reload register, while reading TM1H and TM1L is actually reading the Timer1 counter itself. That is, Timer1 counter and Timer1 reload register share two addresses (F0A, F0B) of F-Plane.

DS-TM57PT46_PA46_E 42 Rev 1.0, 2016/08/08

♦Example:

Setup TM1 Work in Timer mode and counting overflow toggle output to TM1OUT (PD0) pin configuration.

; Setup TM1 clock source and divider.

MOVLW 0000<u>1</u>00<u>1</u>B ; TM1OE=1 (Enable TM1OUT)

MOVWR R0C ; TM1CKS=1 (Fsys as Timer1 clock source)

MOVLW 0001000B ; TM1CM=0 (Timer1 as timer mode)

MOVWR R0D

; Set TM1 timer.

BSF TM1STP ; Stop TM1 counting (Default "0").

BCF TM1SET

BSF TM1CLR ; Clear TM1 counter (Default "0").

MOVLW FFH

MOVWF TM1H; Write FFH into TM1 counting high byte.

MOVLW 00H

MOVWF TM1L; Write 00H into TM1 counting low byte.

; Enable TM0 timer and interrupt function.

MOVLW 11011111B ; Clear TM1 request interrupt flag

MOVWF INTIF

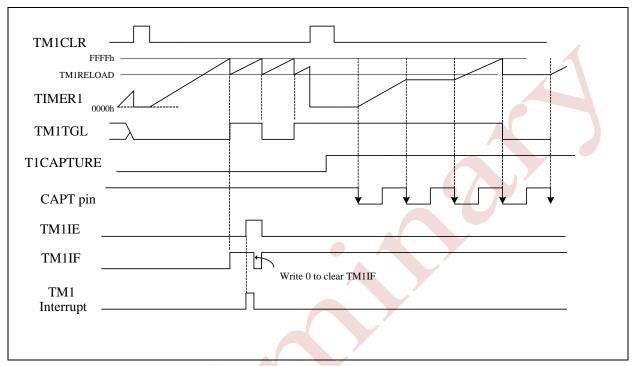
BSF TM1IE; Enable TM1 interrupt function.

BCF TM1SET

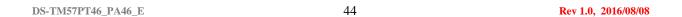
BCF TM1CLR

BCF TM1STP ; Enable TM1 counting (Default "0").

Example:

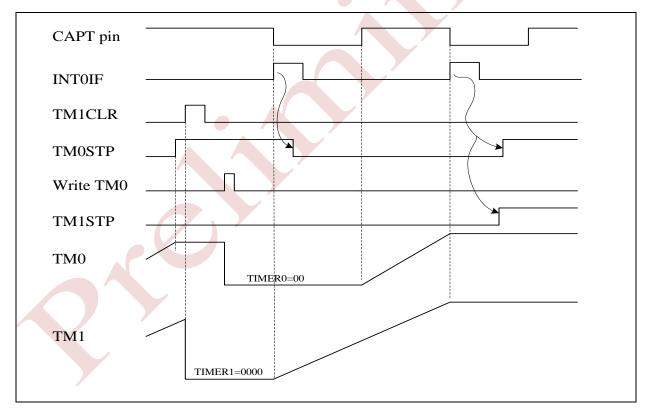

TM1 clock source prescaler is Fsys=4 MHz, TM1 LSB=FFH, TM1 LSB=01H

TM1OUT output frequency=2 MHz/ (FFFF–FF00) =2 MHz/256=7.8 KHz


TM1OUT output time period=1/7.8 KHz=128 u

Timer1 can also works with Capture mode. When works in Capture mode, Timer1 will start counting when the TM1CLR bit is cleared and the first falling edge of CAPT pin (if TM0CL=0) is coming. When the 2nd falling edge of CAPT pin is coming, Timer1 stops counting and hold the value. When the 3rd falling edge of CAPT pin is coming, the Timer1 continues counting. The following figure shows the detail timing diagram.

Timer1 works in Capture mode (TM0CL=0, implies CAPT falling edge)



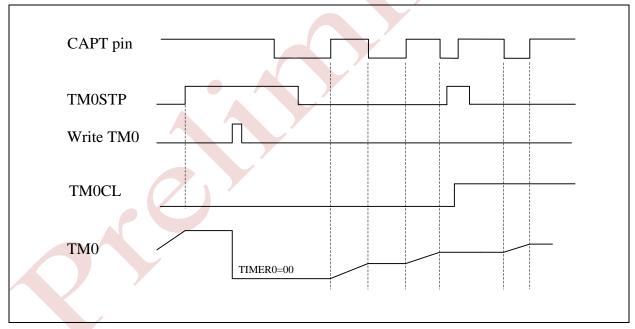
Timer0 and Timer1 are used for Pulse Width and Period Capture

Timer0 and Timer1 can cooperate to measure the signal period and duty cycle time. The key is multifunction of PA6 (CAPT, INT0). Suppose that:

- TM0CKS=0, Timer0 prescaler increases per instruction cycle.
- TM0CM=1, TM1CM=1. Timer0 and Timer1 work in Capture mode.
- PA6 pin (CAPT pin) interrupts every falling edge. TM0CL=0, **Timer1** starts/holds in turn when PA6 pin (CAPT pin) falling edge is coming. **Timer0** starts counting when PA6 pin (CAPT pin) is in logic '1' level, and holds the Timer0 value when PA6 pin (CAPT pin) is in logic '0' level.
- Timer1 is used to measure the signal period, Timer0 is used to measure the PA6 (CAPT pin) in logic '1' time (i.e. the duty cycle of the signal).

The following figure shows how to use Timer0 and Timer1 to measure the PA6 (CAPT pin) signal's period and duty cycle (TM0CL=0).

Timer0 and Timer1 are used to measure the signal on CAPT pin.


DS-TM57PT46_PA46_E 45 Rev 1.0, 2016/08/08

Follow the steps below to start measuring the CAPT pin's period and duty cycle.

- 1. Stop Timer0 by firmware (TM0STP=1, Timer0 will be stopped and hold)
- 2. Clear Timer1 by firmware (TM1CLR=1)
- **3.** Clear Timer0 by directly write 00h to Timer0 (Timer0 is still hold). Once CAPT pin falling edge is coming, the Timer1 starts counting; meanwhile the PA6 interrupt is generated and clears the TM0STP by firmware. Now the Timer0 is ready to count when CAPT pin goes high.
- **4.** CAPT pin rising edge is coming, Timer0 starts counting until the CAPT pin returns to 0 and holds the counting value. Timer1 also stops counting and holds the value.
- **5.** PA6 interrupt is generated again, firmware stops Timer1 and Timer0 to read the period and duty cycle.

It is not necessary to use both Timer0 and Timer1. If only the duty cycle (CAPT high time) needs to be measured, there is no need to use Timer1 to measure the period. In such case, user can set the TM0CM=1 and TM1CM=0. Timer0 is counting up only when CAPT pin is '1'. Note that the internal prescaler will be kept to next Timer0 count, so it will not lose the counting accuracy.

Timer0 is used to measure the high (or low) time on CAPT pin

DS-TM57PT46_PA46_E 46 Rev 1.0, 2016/08/08

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	-	TM1IE	TM0IE	WKTIE	XINT2E	XINT1E	XINT0E
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F08.5 **TM1IE**: Timer1 interrupt enable

0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	CMPIF	TM1IF	TM0IF	WKTIF	XINT2F	XINT1F	XINT0F
R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	-	0	0	0	0	0	0

F09.5 **TM1IF**: T2 interrupt event pending flag

This bit is set by H/W while Timer1 overflows, write 0 to this bit will clear this flag

F0A	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TM1L				TM	I1L				
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

F0A.7~0 **TM1L**: Timer1 counter low byte

Read TM1L will get the Timer1 counter low byte. Write TM1L will write the Timer1 reload register low byte.

F0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM1H				TM	1H			
R/W				R/	W			
Reset	0	0	0	0	0	0	0	0

F0B.7~0 TM1H: Timer1 counter high byte

Read TM1H will get the Timer1 counter high byte. Write TM1H will write the Timer1 reload register high byte.

F12	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF14	CALINDEX	TM1SET	TM1CLR	TM1STP	TM0STP	C1PPGEN	PPGEN	PPGSTB
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	-	0	0	0	0	0	0	0

F12.4 **TM1STP**: Timer1 counter stop

0: Timer1 is counting

1: Timer1 stops counting

F12.5 **TM1CLR:** Timer1 counter clear

0: Release Timer1 clear

1: Clear Timer1 to '0000'h and hold

F12.6 **TM1SET:** Timer1 counter set to 'FFFF'h

0: Release Timer1 set

1: Set Timer1 to 'FFFF'

DS-TM57PT46_PA46_E 47 Rev 1.0, 2016/08/08

R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	PWMOE	PWMPSC		TCOE	TM0OE	TM10E	TM1CKS	INT1EDG
R/W	W	W		W	W	W	W	W
Reset	0	0	0	0	0	0	0	0

R0B.2 **TM10E**: Timer1 overflow toggle output to PD0

0: disable output TM1OUT 1: enable output TM1OUT

R0B.1 **TM1CKS:** Timer1 clock source selection

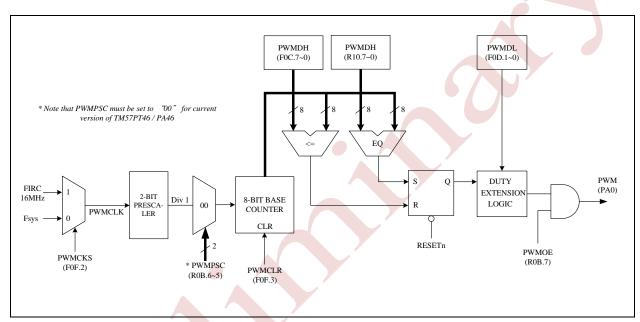
0: Instruction cycle (Fsys/2)1: System clock (Fsys)

R0C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0C	WK	TPSC	WDTPSC		WDTSTP	TM1CM	FIR	CKS
R/W	_	W		W	W	W	W	W
Reset	_	0	0	0	0	0	1	0

ROC.2 TM1CM: Timer1 Mode Selection

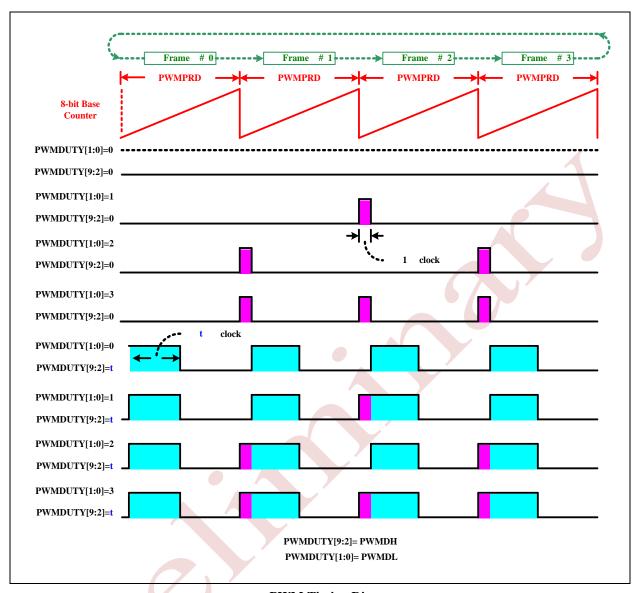
0: Timer1 in Timer Mode

1: Timer1 in Capture Mode to measure CAPT pin period time between successive rising or falling edges.



3.4 PWM: (8+2) bits PWM

The PWM can generate fix frequency waveform with 1024 duty resolution based on System Clock (Fsys) or FIRC 16MHz. A spread LSB technique allows PWM to run its frequency at "System Clock divided by 256" instead of "System Clock divided by 1024", which means the PWM is 4 times faster than normal. The advantage of higher PWM frequency is that the post RC filter can transform the PWM signal to more stable DC voltage level. The PWM output signal reset to low level whenever the 8-bit base counter matches the 8-bit MSB of PWM duty register PWMDH (F0C.7~0). When the base counter rolls over, the 2-bit LSB of PWM duty register PWMDL (F0D.1~0) decides whether to set the PWM output signal high immediately or set it high after one clock cycle delay.


PWMPSC is not be implemented in this version, user must set PWMPSC to "00" to prevent malfunction.

PWM Block Diagram

PWM Timing Diagram

Example:

[CPU running at Fast mode, Fsys=FIRC 8 MHz]

♦Example:

; Setup PWM0 clock prescaler.

BCF PWMCKS ; PWM0 clock source = Fsys MOVLW <u>1</u> <u>00</u>000000B ; Fsys=8 MHz, PWMOE=1

MOVWR R0B ;

MOVLW 80H

MOVWR PWMPRD ; Set PWM period=80H.

MOVLW 00000000B

MOVWF F0D ; Set PWMDL duty=00H

MOVLW 20H

MOVWF PWMDH ; Set PWMDH duty=20H

BCF PWMCLR ; Enable PWM0 counting

Example:

Fsys=8 MHz, PWMPRD=80H,

PWMDL=00H, PWMDH=20H

PWM output frequency=8 MHz/ (PWMPRD+1) =8 MHz/129=62 KHz.

PWMP output duty=32:129=24.8%.

F0C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWMDH		PWMDH									
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

F0C.7~0 **PWMDH**: PWM duty 8-bit MSB

F0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF0D		PC	CH		-		PWN	MDL
R/W	R	R	R	R	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F0D.1~0 **PWMDL**: PWM duty 2-bit LSB

FOF	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCTL	BUZEN	ADST	FASTSTP	CPUCKS	PWMCLR	PWMCKS	OPAPD	OPACAL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	1	0	1	0

F0F.3 PWMCLR: PWM clear and hold

0: PWM is running

1: PWM is clear and hold

F0F.2 **PWMCKS**: PWM clock selection

0: Fsys as PWM clock source

1: FIRC 16MHz as PWM clock source

R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	PWMOE	PWMPSC		TCOE	TM0OE	TM10E	TM1CKS	INT1EDG
R/W	W	W	W		W	W	W	W
Reset	0	0	0	0	0	0	0	0

R0B.7 PWMOE: PWM output enable

> 0: disable PWM output 1: enable PWM output

R0B.6~5 **PWMPSC**: PWM clock source

User code must set these 2 bits to "00" to prevent malfunction of PWM

R10	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWMPRD		PWMPRD									
R/W		W									
Reset	1	1	1	1	1	1	1	1			

R10.7~0 **PWMPRD**: PWM period data

DS-TM57PT46_PA46_E 52 Rev 1.0, 2016/08/08

3.5 PPG (Programmable Pulse Generator)

The PPG function can generate a 9-bit precision wide low pulse which can be stop by 3 comparator (CMP2, CMP3, and CMP4) outputs and can be re-triggered by 1 comparator output (CMP1). The PPG block diagram is below.

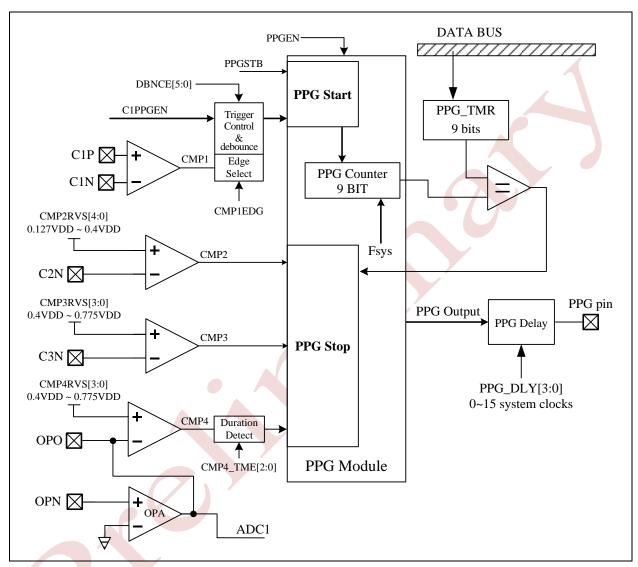


Fig 3.5.1 PPG Bock Diagram

The PPG pulse can be generated in 2 modes, Single Pulse Mode and Continuous Triggered Mode.

DS-TM57PT46_PA46_E 53 Rev 1.0, 2016/08/08

3.5.1 Single Pulse Mode

Single Pulse Mode is generated by software setting PPGSTB (F12.0) to 1 and clear to 0 immediately

BSF PPGSTB
BCF PPGSTB

After the executing the above 2 instructions, if C1PPGEN (F12.2) is 0, and PPGEN (F12.1) is 1, one PPG pulse will be generated whose pulse width is [PPG_TMR9, PPG_TMR] in the unit of (1/Fsys). Refer to the following diagram

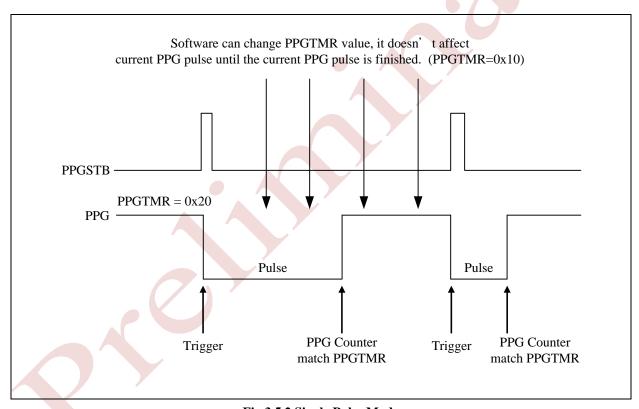


Fig 3.5.2 Single Pulse Mode

PPGTMR can be write any time even the current PPG pulse is active, but the current PPG pulse width will not be changed and it will be effective in the next PPG pulse.

DS-TM57PT46_PA46_E 54 Rev 1.0, 2016/08/08

3.5.2 Continuous Triggered Mode (CMP1, edge, debounce, PPG_DLY)

Another method to trigger PPG pulse is Continuous Triggered Mode which cooperate with CMP1. The positive and negative pin of CMP1 comparator is C1P and C1N, user can set CMP1EDG (R1D.6) to choose rising or falling trigger PPG pulse. In the Fig 3.5.3 we set the CMP1EDG to 0 (falling).

PPG1 also build in hardware debounce function. By setting DBNCE (R1D.5 \sim 0), if the output of CMP1 has Hi-Lo bounce within the time (DBNCE * 1/Fsys) , the bounce will be cancelled and keep the CMP1 value as previous until the Hi-Lo bounce disappear.

User can set PPGDLY[4:0] (R1A.7~4)to delay the PPG pulse output both Single Pulse Mode and Continuous Triggered Mode.

Note that there are always 6 Fsys clocks delay since CMP1 trigger PPG output even PPGDLY equals to zero in the Continuous Triggered Mode.

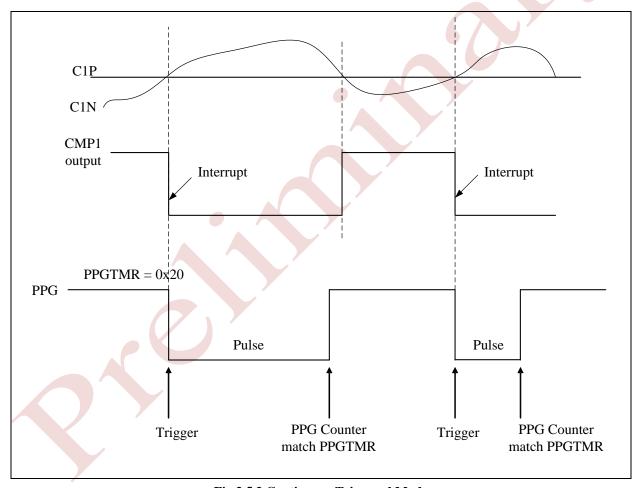


Fig 3.5.3 Continuous Triggered Mode

DS-TM57PT46_PA46_E 55 Rev 1.0, 2016/08/08

3.5.3 PPG Stop

PPG pulse will return to 1 when PPG counter reaches PPGTMR. In addition, there are 3 external events that generated by CMP2, CMP3, and CMP4 outputs falling to stop PPG pulse unconditionally and clear the C1PPGEN to '0' then it cannot be retriggered by CMP1 unless C1PPGEN to be set to '1' again.

The negative terminals of CMP2 and CMP3 are connected to outside voltage sources that the application want to observe, the positive terminals of CMP2 and CMP3 are connected to internal voltage divider that can be selected by CMP2RVS[4:0] and CMP3RVS[3:0]. Once the voltages of negative terminals larger than these internal reference voltages, the outputs of comparators will generate a falling edge to stop PPG pulse. Refer to Fig 3.5.4.

The negative terminal of CMP4 is directly connected to the output of OPA. The non-inverted terminal of OPA is connected to ground which means the OPA can only operate as an inverted amplifier with 2 feedback resistors. In other words, the OPA can only used to amplify a signal that all points below zero volt. Refer to Fig 3.5.5.

CMP4_TME is used to set the time duration that CMP4 must be then can generate a falling edge to stop PPG pulse. For example: if CMP4_TME = 011 (8 Fsys clocks, suppose that Fsys=8MHz), that means the CMP4 output low time should be longer than 1us to generate falling edge to stop PPG pulse.

In application, these 4 comparators can turn on hysteresis to prevent noise interfere the output of comparators. The typical value of hysteresis is about 30mV.

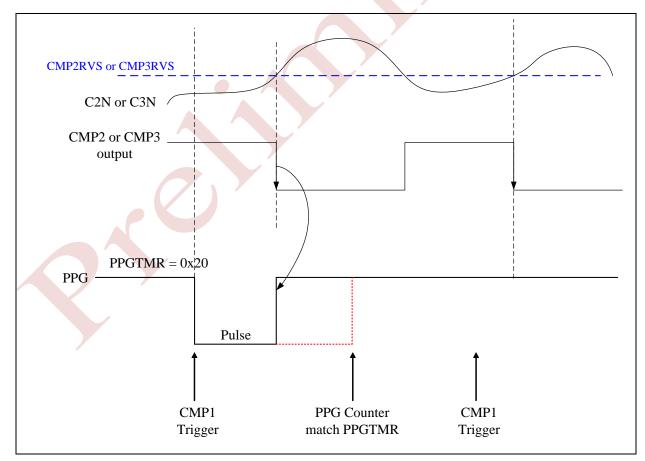


Fig 3.5.4 CMP2 and CMP3 stop PPG pulse

DS-TM57PT46_PA46_E 56 Rev 1.0, 2016/08/08

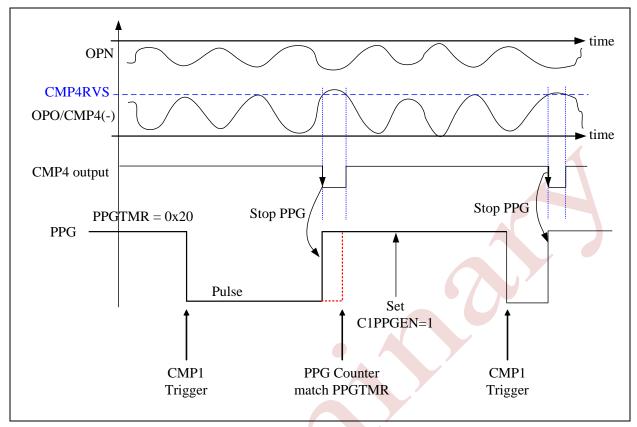
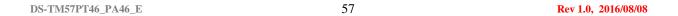
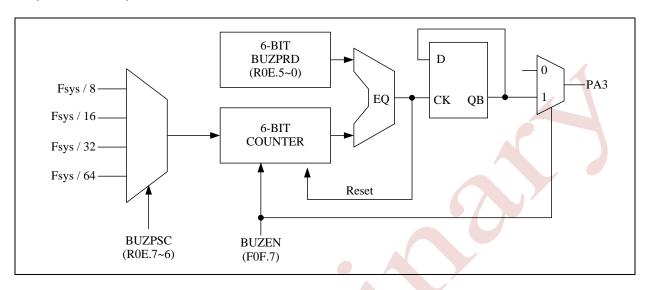
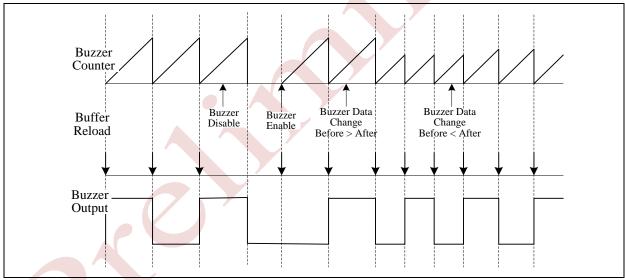



Fig 3.5.5 CMP4 and OPA stop PPG pulse


About the offset trimming of OPA and comparator please refer to corresponding chapters for details.



3.6 Buzzer Output

The Buzzer driver consists of 6-bit counter and a clock divider. It generates 50% duty square waveform with wide frequency range. To use the Buzzer function, user needs to set both the Buzzer enable control bit (BUZEN F0F.7)

Frequency calculation is as follows. F_{BZ} = (Fsys/BUZPSC) / (BUZPRD +1) /2

 F_{BZ} = (4 MHz/32) / (9+1) /2=6.25 KHz

Example: [CPU running in FAST mode, Fsys=4 MHz]

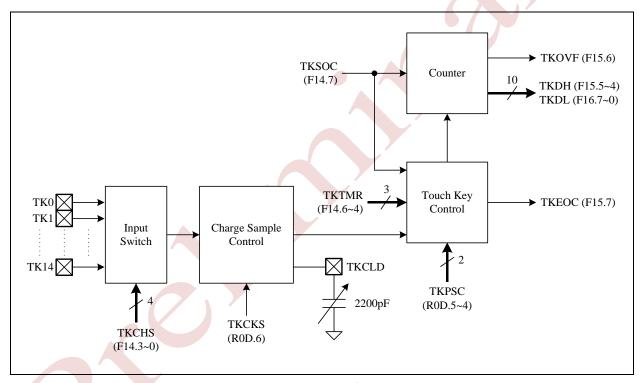
MOVLW <u>1</u>0001010B

MOVWF F0F; F0F.7 (BUZEN) =1, enable Buzzer counting and output to PA3

MOVLW <u>10 001001</u>B ; R0E.7~6 (BUZPSC) =Fsys/32

MOVWR R0E ; R0E.5~0 (BUZPRD) =9

DS-TM57PT46_PA46_E 58 Rev 1.0, 2016/08/08



3.7 Touch Key

The Touch Key offers an easy, simple and reliable method to implement finger touch applications. For most applications, only requires an external capacitor component on TKCLD pin. The TKCKS default is 4 MHz is sufficient for general touch plane.

Setting the TKSOC (F14.7) bit to start touch key conversion, the TKSOC bit will be cleared by H/W while end of conversion. "TKEOC=0" means conversion is in process, while "TKEOC=1" means the conversion is finish. After TKEOC's (F15.7) edge rising, user must wait at least 10 us for next conversion. The touch key counting value is stored into TKDATA[9:0] (TKDH, TKDL). If TKOVF=1, it means the conversion has exceeded in period time, reduce TKTMR (F14.6~4) or increase TKPSC (R0D.5~4) to fit the range of TKDATA[9:0]. On the other hand, if TKOVF=0, but TKDATA[9:0] is too small, increase TKTMR or reduce TKPSC to adapting the system board circumstances. The more detailed information, refer to touch key application note.

TK15 is the standard weight that using the on-chip capacitor for software to calibration.

Touch Key Block Diagram

DS-TM57PT46_PA46_E 59 Rev 1.0, 2016/08/08

♦ Example: Touch key channel=TK10 (PB3).

MOVLW xxxx0xxxB

MOVWR PBE ; disable PB3 push-pull output MOVWR PBM ; disable PB3 digital input

MOVLW xxxx1xxxB ; disable PB3 pull high

MOVWR PBPUN

MOVLW x0xxxxxxB ; Set PA6 as TKCLD for connecting capacitor

MOVWR PAE

MOVWR PAM ; disable PA6(CLD) digital input

MOVLW x1xxxxxxB ; disable PA6 pull high

MOVWR PAPUN

MOVLW 0<u>100</u> <u>1010</u>B

MOVWF F14 ; TKTMR=4, TKCHS=10 (TK10)

MOVLW <u>0</u> <u>1</u> <u>00</u> 0000B ; TKPD=0

MOVWF F13 ; TKCKS=1 (4 MHz), TKPSC=00 (div1=4 MHz)

:

:

BSF TKSOC ; touch key start conversion

NOP

NOP

NOP

BCF TKSOC

WAIT_TK:

BTFSS TKEOC ; wait touch key conversion finish

GOTO WAIT_TK

MOVFW TKDH ; read TKDATA[9:8] MOVFW TKDL ; read TKDATA[7:0]

R0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0D	TKPD	TKCKS	TKPSC		_	ADCKS		
R/W	R/W	R/W	R/W –		R/W	W	W	W
Reset	1	1	0	0	0	0	0	0

R0D.7 **TKPD**: Touch key power down

0: Touch key running1: Touch key power down

R0D.6 **TKCKS**: Touch key clock select

0: 2 MHz 1: 4 MHz

R0D.5~4 **TKPSC**: Touch key data prescaler, touch key data

00: divided by 1 01: divided by 2 10: divided by 4 11: divided by 8

F14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
MF14	TKSOC		TKTMR			TKCHS				
R/W	R/W		R/W			R/	W			
Reset	0	1	0	0		()			

F14.7 **TKSOC**: Touch key start of conversion, rising edge to start

H/W auto cleared while end of conversion

F14.6~4 **TKTMR**: Touch key conversion time

000: shortest

...

111: longest

F14.3~0 **TKCHS**: Touch key channel select

0000: TK0 (PA5)

0001: TK1 (PB0)

0010: TK2 (PB1)

0011: TK3 (PA1)

0100: TK4 (PD6)

0101: TK5 (PA3)

0110: TK6 (PA4)

0111: TK7 (PA2)

1000: TK8 (PA0)

1001: TK9 (PB2)

1010: TK10 (PB3)

1011: TK11 (PB4)

1100: TK12 (PD0)

1101: TK13 (PD5)

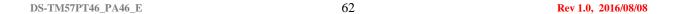
1110: TK14 (PD4)

1111: TK15 (Standard weight channel)

F15	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKCTL2	TKEOC	TKOVF	TKDH		TVOS1	TVOS2	TVOS3	TVOS4
R/W	R	R	R		R/W	R/W	R/W	R/W
Reset	1	0	0		0	0	0	0

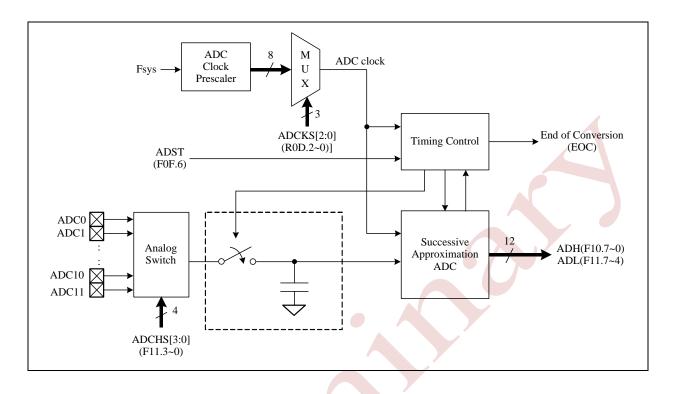
F15.7 **TKEOC**: Touch key end of conversion

0: conversion is in process1: end of conversion

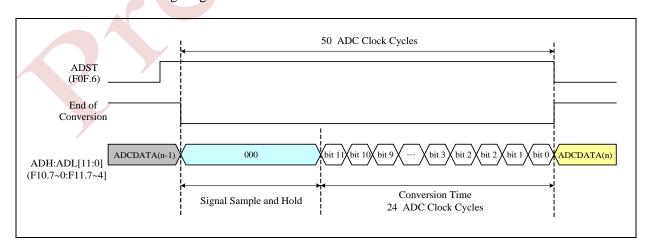

F15.6 **TKOVF**: Touch key counter overflow flag

0: not overflow1: overflow

F15.5~4 **TKDH**: Touch key data MSB [9~8]


F16	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKDL				TK	DL			
R/W				F	}			
Reset	0	0	0	0	0	0	0	0

F16.7~0 **TKDL**: Touch key data LSB [7~0]



3.8 ADC: 12-bit Analog-to-Digital Converter

The 12-bit ADC (Analog to Digital Converter) consists of a 12-channel analog input multiplexer, control register, clock generator, 12-bit successive approximation register, and output data register. To use the ADC, user needs to set ADCKS(R0D.2~0) to choose a proper ADC clock frequency, which must be less than 1 MHz. User then launches the ADC conversion by setting the ADST (F0F.6) control bit. After end of conversion, H/W automatic clears the ADST (F0F.6) bit. User can poll this bit to know the conversion status. The PAM (R12.7~0), PBM (R13.5~0), PDM (R14.7~0) control registers are used for ADC pin type setting, user can write the corresponding bit to "0" when the pin is used as an ADC input. The setting can disable the pin logical input path to save power consumption.

The A/D conversion timing diagram

DS-TM57PT46_PA46_E 63 Rev 1.0, 2016/08/08

Example:

[CPU running at Fast mode , Fsys=FIRC 8 MHz]

ADC clock frequency=1 MHz, ADC channel=ADC5 (PA2).

♦Example:

MOVLW xxxxx<u>101</u>B ; Fsys=8 MHz

MOVWR R0D ; ADC clock prescaler/8

MOVLW 11111<u>0</u>11B

MOVWR PAM ; Enable PA2 pin (ADC2) analog input

MOVLW 0000<u>0101</u>B

MOVWF F11 ; ADC channel select ADC5 (PA2 pin)

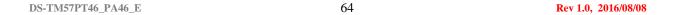
BSF ADST ; ADC start conversion

WAIT_ADC:

BTFSC ADST ; Wait ADC conversion

GOTO WAIT_ADC

MOVFW ADH ; Read ADC value [11:4]


MOVWF ADC_MSB

MOVFW F11 ; Read ADC value[3:0]

ANDLW F0H

MOVWF ADC_LSB

. . .

F10	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
ADH	ADH										
R/W		R									
Reset	0	0	0	0	0	0	0	0			

F10.7~0 **ADCDH**: ADC Output MSB[11:4]

F11	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
MF11		AI	DL		ADCHS				
R/W		F	}			R/	W		
Reset	0	0	0	0	0	0	0	0	

F11.7~4 **ADL**: ADC output LSB[3:0]

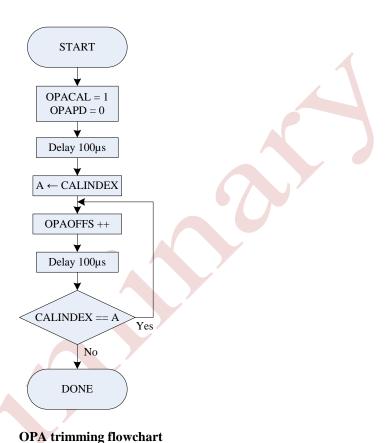
F11.3~0 **ADCHS**: ADC channel select

0000: ADC0 (PD0) 0001: ADC1 (PD2) 0010: ADC2 (PB3) 0011: ADC3 (PB2) 0100: ADC4 (PA0) 0101: ADC5 (PA2) 0110: ADC6 (PA4) 0111: ADC7 (PA3) 1000: ADC8 (PD6) 1001: ADC9 (PA1)

1010: ADC10 (PA5) 1011: ADC11 (PD7)

R0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0D	TKPD	TKCKS	TKPSC		-	ADCKS		
R/W	R/W	R/W	R/W	-	R/W	W	W	W
Reset	1	1	0	0	0	0	0	0

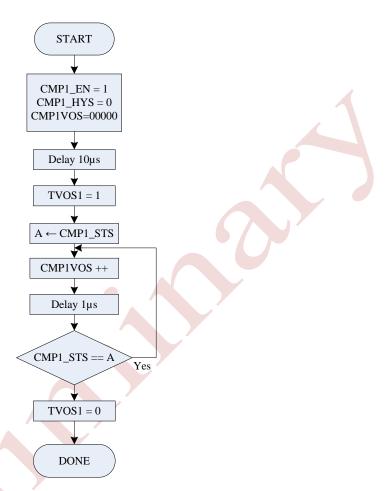
R0D.2~0 ADCKS: ADC clock selection


000: Fsys / 256 001: Fsys / 128 010: Fsys / 64 011: Fsys / 32 100: Fsys / 16 101: Fsys / 8 110: Fsys / 4 111: Fsys / 2

DS-TM57PT46_PA46_E 65 Rev 1.0, 2016/08/08

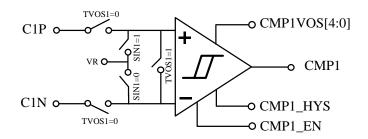
3.9 OPA/Comparators offset voltage trimming procedures

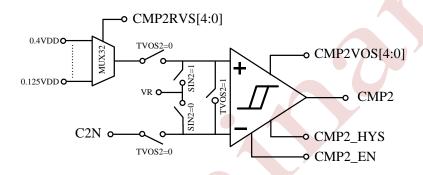
OPA must trim the offset voltage before use. The following flowchart states how to trim the offset voltage of the OPA. Note that the 100us delay time is required when OPA switch from power down mode to power on mode as well as every time the OPAOFFS is changed.

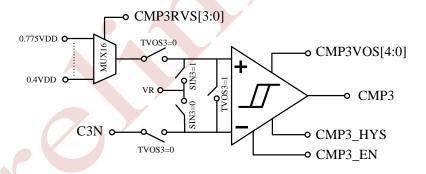


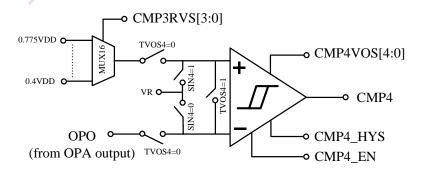
In general the trimming procedure needs to be performed once after power on.

DS-TM57PT46_PA46_E 66 Rev 1.0, 2016/08/08

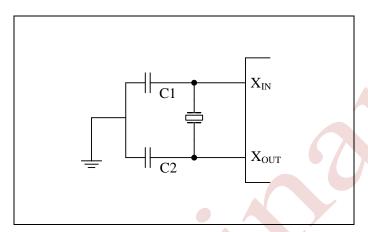

The comparators CMP1, CMP2, CMP3, and CMP4 must perform the trimming procedures before use. The following flowchart uses the name of CMP1, but the corresponding control registers of CMP2, CMP3, and CMP4 can be easily adapted.

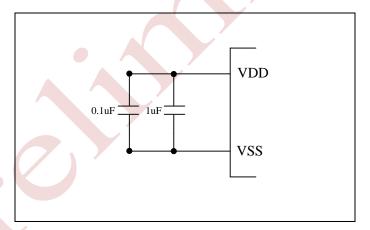



Comparator trimming flowchart



The block diagram of CMP1, CMP2, CMP3, and CMP4 is below:





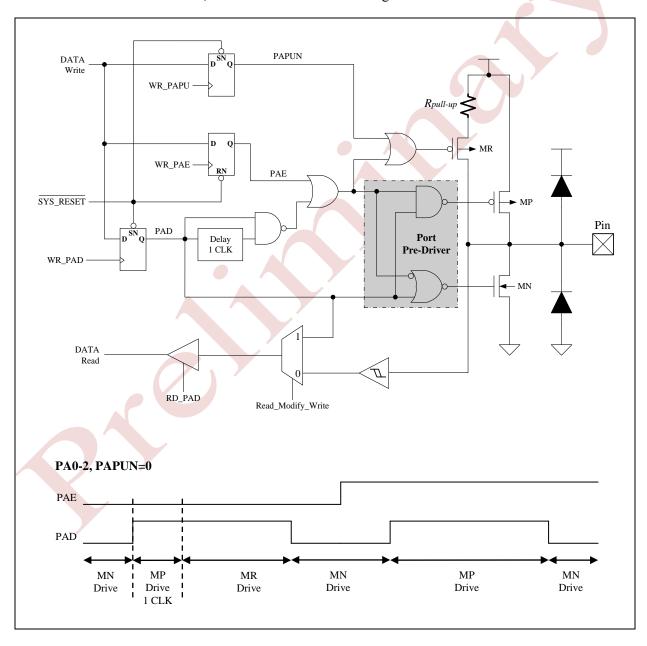
3.10 System Clock Oscillator

System clock can be operated in two different oscillation modes. Two oscillation modes are FIRC and SIRC, respectively. In the Fast Internal RC mode (FIRC), the on-chip oscillator generates 8 MHz system clock. Since power noise degrades the performance of Fast Internal Clock Oscillator, placing power supply bypass capacitors 1 uF and 0.1 uF very close to VDD/VSS pins to improve the stability of clock and the overall system. In the Slow Internal RC mode (SIRC), it provides a lower speed and accuracy of the oscillator for power saving purpose.

External Oscillator Circuit (Crystal or Ceramic)

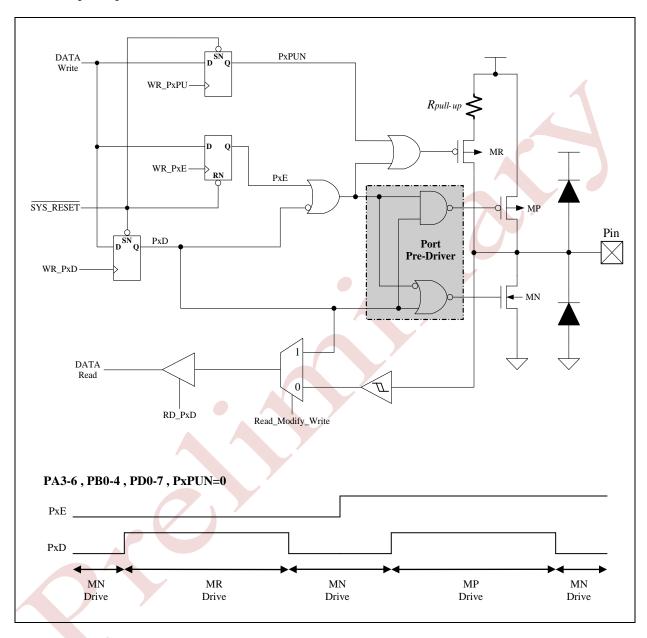
Fast Internal RC Mode

Note that TM57PT46/PA46 without XIN and XOUT pins.


DS-TM57PT46_PA46_E 69 Rev 1.0, 2016/08/08

4 I/O Port

4.1 PA0-2


These pins can be used as Schmitt-trigger input, CMOS push-pull output or "pseudo-open-drain" output. The pull-up resistor is assignable to each pin by S/W setting. To use the pin in Schmitt-trigger input mode, S/W needs to set the PAE=0 and PAD=1. To use the pin in pseudo-open-drain mode, S/W sets the PAE=0. The benefit of pseudo-open-drain structure is that the output rise time can be much faster than pure open-drain structure. S/W sets PAE=1 to use the pin in CMOS push-pull output mode. Reading the pin data (PAD) has different meaning. In "Read-Modify-Write" instruction, CPU actually reads the output data register. In the others instructions, CPU reads the pin state. The so-called "Read-Modify-Write" instruction includes BSF, BCF and all instructions using F-Plane as destination.

4.2 PA3-6, PB0-4, PD0-7

These pins are almost the same as PA0-2, except they do not support pseudo-open-drain mode. They can be used in pure open-drain mode, instead.

DS-TM57PT46_PA46_E 71 Rev 1.0, 2016/08/08

♦ Example: I/O mode selecting

MOVLW FFH
MOVWF PAD
MOVWF PDD
MOVLW 00H
MOVWR PAE
MOVWR PBE

MOVWR PDE ; Set all ports to be Schmitt-trigger input

♦ Example: Set PA0-2 as pseudo-open-drain mode

MOVLW xxxxx0000B

MOVWR PAE ; Set PA2-PA0 as pseudo-open-drain mode

MOVLW xxxxx000B

MOVWF PAD ; PA2~PA0 output low level

♦ Example: Set PA0-2 is CMOS push-pull output mode.

MOVLW xxxxx<u>111</u>B

MOVWR PAE ; Set PA2-PA0 as CMOS push-pull output mode

♦ Example: Read data from input port.

MOVFW PAD ; Read data from Port A MOVFW PBD ; Read data from Port B MOVFW PDD ; Read data from Port D

♦ Example: Write data to output port.

MOVLW 55H

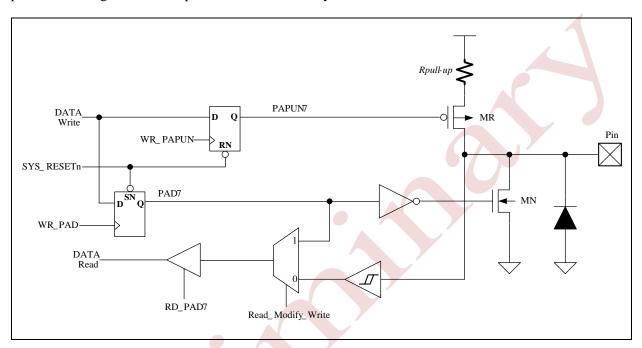
MOVWF PAD ; Write data 55H to Port A MOVWF PBD ; Write data 55H to Port B

♦ Example: Write one bit data to output port.

BCF PAD,0 BCF PBD.1

BCF PDD,2; Set PA0, PB1 and PD2 to be "0"

BSF PAD,3 BSF PBD,4


BSF PDD,7; Set PA3, PB4 and PD7 to be "1"

4.3 PA7

PA7 can be only used in Schmitt-trigger input mode. The pull-up resistor is controlled by PAPUN.7 bit and the default value is enabled (i.e. PAPUN.7=0) after system reset.

CAUTION: Before turning off the PA7 pull-up resistor (PAPUN.7=1), make sure the SYSCFG[7]: XRSTE bit is "0" that disable the external reset pin function. If XRSTE=1 and PAPUN.7=1, and the PA7 pin is in floating state, the chip will not work correctly.

Condition: SYSCFG[7] is set to "0". If SYSCFG[7] = "1", then PA7 pin is external reset pin function.

BTFSS PAD,7

GOTO LOOP_A ; If PA7=0.

GOTO LOOP_B ; If PA7=1.

DS-TM57PT46_PA46_E 73 Rev 1.0, 2016/08/08

F05	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAD	PAD7				PAD			
R/W	R/W				R/W			
Reset	1	1	1	1	1	1	1	1

F05.7 **PAD7:** PA7 data or pin mode control

0: PA7 is open-drain output mode and output low

1: PA7 is Schmitt-trigger input mode

F05.6~0 **PAD:** PA6~PA0 data

0: output low

1: output high or Schmitt-trigger input mode

F06	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBD		_				PBD		
R/W	R	R	R			R/W		
Reset	0	0	0	1	1	1	1	1

F06.4~0 **PBD:** PB4~PB0 data

0: output low

1: output high or Schmitt-trigger input mode

F07	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PDD				PĽ	DD			
R/W				R/	W			
Reset	1	1	1	1	1	1	1	1

F07.1~0 **PDD:** PD7~PD0 data

0: output low

1: output high or Schmitt-trigger input mode

R05	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAE				PA	ΛE			
R/W				V	V			
Reset	0	0	0	0	0	0	0	0

R05.7~0 **PAE**: PA6~PA0 Pin CMOS output enable

0 : For PA2-PA0, the pins are Pseudo-open-drain output or Schmitt-trigger input.

For PA3-PA7, the pins are open-drain output or Schmitt-trigger input

1: the pins are CMOS push-pull output except PA7. PA7 can only be open-drain output mode.

R06	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBE		_				PBE		
R/W	_	_	_			W		
Reset	_	_	_	0	0	0	0	0

R06.4~0 **PBE**: PB4~PB0 Pin CMOS output enable

0: the pins are open-drain output or Schmitt-trigger input

1: the pins are CMOS push-pull output.

R07	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PDE		PDE						
R/W		W						
Reset	0	0	0	0	0	0	0	0

R07.7~0 **PDE**: PD7~PD0 Pin CMOS output enable

0: the pins are open-drain output or Schmitt-trigger input

1: the pins are CMOS push-pull output.

R08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PAPUN		PAPUN							
R/W		W							
Reset	0	0	0	0	0	0	0	0	

R08.7~0 **PAPUN**: PA7~PA0 pin pull-high enable

0 : the pins are pull-high1: the pins are not pull-high

R09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBPUN	-	_	PBPUN					
R/W	-	_		W				
Reset	0	0	1	1	1	1	1	1

R09.5~0 **PBPUN**: PB5~PB0 Pin pull-high enable

0 : the pins are pull-high1: the pins are not pull-high.

R0A	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PDPUN				PDI	PUN			
R/W				V	V			
Reset	1	1	1	1	1	1	1	1

R0A.7~0 **PDPUN**: PD7~PD0 Pin pull-high enable

0 : the pins are pull-high1: the pins are not pull-high.

R11	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAM		PAM						
R/W		W						
Reset	1	1	1	1	1	1	1	1

R11.7~0 **PAM**: PA7~PA0 pin mode

0 : the pins disable I/O digital input1: the pins enable I/O digital input

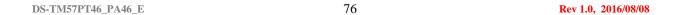
R12	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBM	_	_	_			PBM		
R/W	_	_	_			W		
Reset	_	_	_	1	1	1	1	1

R12.4~0 **PBM**: PB4~PB0 pin mode

0 : the pins disable I/O digital input1: the pins enable I/O digital input

DS-TM57PT46_PA46_E 75 Rev 1.0, 2016/08/08

R13	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PDM		PDM						
R/W		W						
Reset	1	1	1	1	1	1	1	1


R13.7~0 PDM: PD7~PD0 pin mode

0 : the pins disable I/O digital input1: the pins enable I/O digital input

R14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBWKEN	_	_	_			PBWKEN		
R/W	_	_	_			W		
Reset	_	_	_	0	0	0	0	0

R14.4~0 **PBWKEN:** PB5~PB0 individual pin low level wake up control

0: disable 1: enable

MEMORY MAP

F-Plane

Name	Address	R/W	Rst	Description			
(F00) INDF		Function related to: RAM W/R					
INDF	00.7~0	R/W	-	Not a physical register, addressing INDF actually point to the register whose address is contained in the FSR register			
(F01) TM0			Functi	on related to: Timer0			
TM0	01.7~0	R/W	0	Timer0 content			
(F02) PCL			Funct	tion related to: Program Counter			
PCL	02.7~0	R/W	0	Programming Counter LSB[7~0]			
(F03) STAT	US		Functi	on related to: STATUS			
GBIT1	03.7	R/W	0	General purpose bit 1			
GBIT0	03.6	R/W	0	General purpose bit 0			
RAMBK	03.5	R/W	0	SRAM Bank selection, 0: Bank0, 1: Bank1			
ТО	03.4	R	0	WDT timeout flag			
PD	03.3	R	0	Power-down mode flag			
Z	03.2	R/W	0	Zero flag			
DC	03.1	R/W	0	Decimal Carry flag or Decimal /Borrow flag			
С	03.0	R/W	0	Carry flag or /Borrow flag			
(F04) FSR			Functi	on related to: RAM W/R			
GBIT2	04.7	R/W	0	General purpose bit 2			
FSR	04.6~0	R/W	-	File Select Register, indirect address mode pointer			
(F05) PAD			Functi	on related to: Port A			
		R	,	PA7 pin or "data register" state			
PAD7	05.7	W	1	0: PA7 is open-drain output mode 1: PA7 is Schmitt-trigger input mode			
PAD	05.6~0	R	-	Port A pin or "data register" state			
PAD	03.0~0	W	FF	Port A output data register			
(F06) PBD			Functi	on related to: Port B			
PBD	06.4~0	R	-	Port B pin or "data register" state			
LDD	00.4~0	W	1F	Port B output data register			
(F07) PDD			Functi	on related to: Port D			
DDD	07.7.0	R	-	Port D pin or "data register" state			
PDD	07.7~0	W	FF	Port D output data register			

DS-TM57PT46_PA46_E 77 Rev 1.0, 2016/08/08

Name	Address	R/W	Rst	Description			
(F08) INTIE			Functi	on related to: Interrupt Enable			
				ADC interrupt enable			
ADCIE	08.7	R/W	0	0: disable			
				1: enable			
N/A	08.6	R/W	0	N/A			
				Timer1 interrupt enable			
TM1IE	08.5	R/W	0	0: disable			
				1: enable			
				Timer0 interrupt enable			
TM0IE	08.4	R/W	0	0: disable			
				1: enable			
				WKT interrupt enable			
WKTIE	08.3	R/W	0	0: disable			
				1: enable			
				INT2 (PA7) pin interrupt enable			
INT2IE	08.2	R/W	0	0: disable			
				1: enable			
				INT1 (PA1) pin interrupt enable			
INT1IE	08.1	R/W	0	0: disable			
				1: enable			
DIEGIE	00.0	D ATT	0	INTO (PA6) pin interrupt enable			
INT0IE	08.0	R/W	0	0: disable			
(E00) INTELE			E 4	1: enable			
(F09) INTIF		D	Functi	on related to: Interrupt Flag			
A D.CIE	00.7	R	-	ADC interrupt event pending flag, set by H/W while ADC complete			
ADCIF	09.7	W	7 0	0: clear this flag			
					1: no action		
		R	-	Comparators interrupt event pending flag, set by H/W while at least one of CMP1, CMP2, CMP3, and CMP4 output trigger PPG pulse to stop			
CMPIF	09.6			No action. This bit is just the combinational logic of (CMP1IF or CMP2IF			
			0	or CMP3IF or CMP4IF)			
		R		Timer1 interrupt event pending flag, set by H/W while Timer1 overflows			
TM1IF	09.5			0: clear this flag			
1141111	07.5	W	0	1: no action			
		R	- \	Timer0 interrupt event pending flag, set by H/W while Timer0 overflows			
TM0IF	09.4			0: clear this flag			
11/1011		W	0	1: no action			
		R	_	WKT interrupt event pending flag, set by H/W while WKT time out			
WKTIF	09.3			0: clear this flag			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	03.0	W	0	1: no action			
		R	_	INT2 interrupt event pending flag, set by H/W at INT2 pin's falling edge			
INT2IF	09.2			0: clear this flag			
		W	0	1: no action			
		R	-	INT1 interrupt event pending flag, set by H/W at INT1 pin's falling edge			
INT1IF 0	09.1			0: clear this flag			
		W	0	1: no action			
		-		INTO interrupt event pending flag, set by H/W at INTO pin's falling/rising			
INTEGER	00.0	R	-	edge			
INT0IF	09.0	***		0: clear this flag			
		W	0	1: no action			

Name	Address	R/W	Rst Description				
(F0A) TM1I	_	Function related to: Timer1					
TM1L	0a.7~0	R/W	0	(Read) Timer1 counter low byte.			
		10 11	Ů	(Write) Timer1 reload low byte			
(F0B) TM1H	I		Functi	Function related to: Timer1			
TM1H	0b.7~0	R/W	0	(Read) Timer1 counter high byte.			
(EQC) DIVA	DII		(Write) Timer1 reload high byte				
(F0C) PWM		D WI		on related to: PWM			
PWMDH	0c.7~0	R/W	0	PWM duty 8-bit MSB			
(F0D) MF0I		-		ion related to: PWM, Program Counter			
PCH	0d.7~4	R	0	Program Counter high byte, i.e. PC11~PC8			
N/A	0d.3~2	R/W	0	Not used.			
PWMDL	0d.1~0	R/W	0	PWM duty 2-bit LSB			
(F0E) PWM	1DH		Funct	ion related to: PWM1			
G1 57 4 77				CMP1 falling/rising interrupt enable			
CMP1IE	0e.7	R/W	0	0: disable			
				1: enable CMP2 falling interrupt enable			
CMP2IE	0e.6	R/W	0	0: disable			
CIVII ZIE	00.0	IX/ VV	U	1: enable			
				CMP3 falling interrupt enable			
CMP3IE	0e.5	R/W	0	0:disable			
				1: enable			
				CMP4 falling and remains low for CMP4_TME duration interrupt enable			
CMP4IE	0e.4	R/W	0	0: disable			
				1: enable			
CMP1IF	0e.3	R/W	0	CMP1 interrupt event pending flag, set by H/W when CMP1 output			
				falling/rising edge. Write '0' to clear.			
CMP2IF	0e.2	R/W	0	CMP2 interrupt event pending flag, set by H/W when CMP2 output falling edge. Write '0' to clear.			
				CMP3 interrupt event pending flag, set by H/W when CMP3 output falling			
CMP3IF	0e.1	R/W	0	edge. Write '0' to clear.			
C) (D) (T)	0 0	D 411		CMP4 interrupt event pending flag, set by H/W when CMP4 output falling			
CMP4IF	0e.0	R/W	0	edge and remains low level for CMP4_TME duration. Write '0' to clear.			
(F0F) MF0F	י		Funct	ion related to: Buzzer, ADC, CPU clock			
BUZEN	0f.7	R/W	0	Buzzer function, 1=enable, 0=disable			
ADST	0f.6	R/W	0	ADC start bit. 0 :H/W clear after end of conversion 1: ADC start			
ADSI	01.0	IV/ VV	U	conversion			
				Fast-clock Enable/Disable			
FASTSTP	0f.5	R/W	0	0: Enable			
				1: Disable System clock (Fave) selection			
CPUCKS	0f.4	R/W	0	System clock (Fsys) selection 0: Fast-clock			
CLOCKS	01.4	IN/ VV	U	1: Slow-clock			
PWMCLR	0f.3	R/W	1	PWM counter clear 0: Release 1: Clear and hold			
PWMCKS	0f.2	R/W	0	PWM0 clock source 0: Fsys 1: FIRC 16M			
OPAPD	0f.1	R/W	1	OPA power down 0: OPA is enabled 1: OPA is disabled			
OTTID	01.1	10/ 11	1	OPA offset calibration enable			
OPACAL	0f.0	R/W	0	0: Disable calibration, OPA in normal operating mode			
		,,		1: Enable calibration, OPA in offset voltage calibration mode			
(F10) ADCI	Н		Funct	ion related to: ADC			
ADCDH	10.7~0	R	-	ADC output data MSB[11:4]			



Name	Address	R/W	Rst	Description		
(F11) MF11			Funct	ion related to: ADC		
ADCDL	11.7~4	R	-	ADC output data LSB [3:0]		
ADCHS	11.3~0	R/W	0	ADC channel select 0000: ADC0		
(F12) MF12		<u> </u>	Func	tion related to: PWM0, PWM1, Timer0, Timer1		
CALINDEX	12.7	R	-	OPA calibration index, observing this bit toggle when OPA in calibration mode.		
TM1SET	12.6	R/W	0	Timer1 counter set 0: Release 1: Set to FFFFh and hold		
TM1CLR	12.5	R/W	0	Timer1 counter clear 0: Release 1: Clear to 0000H and hold		
TM1STP	12.4	R/W	0	Timer1 counter stop 0: Release 1: Stop counting		
TM0STP	12.3	R/W	0	Timer0 counter stop 0: Release 1: Stop counting		
C1PPGEN	12.2	R/W	0	Enable CMP1 output falling/rising to trigger PPG pulse. 0: disabled 1: enable		
PPGEN	12.1	R/W	0	PPG output enable. 0: disabled 1: enabled. PPGEN is cleared to '0' when PPGSTB from high to low which finish one PPG Single Pulse Mode.		
PPGSTB	12.0	R/W	0	Writing a '1' and a '0' to generate single PPG pulse with PPG_TMR width and the C1TGCNT will be cleared and start counting CMP1 toggle times.		
(F13) MF13			Func	tion related to: OPA, Touch Key		
CMP1_STS	13.7	R	-	CMP1 output status		
CMP2_STS	13.6	R	-	CMP2 output status		
CMP3_STS	13.5	R		CMP3 output status		
CMP4_STS	13.4	R	-	CMP4 output status		
OPAOFFS	13.3~0	R/W	0	OPA offset tuning bits. Totally 16 steps.		
(F14) TKCT				on related to: Touch Key		
TKSOC	14.7	R/W	0	Touch key start of conversion, rising edge to start		
TKTMR	14.6~4	R/W	100	Touch key conversion time. 000=shortest, 111=longest		
TKCHS	14.3~0	R/W	0	Touch key channel select, TKCHS[3:0]= 0000: TK0		
(F15) TKCT	L2		Functi	on related to: Touch Key		
TKEOC	15.7	R	1	Touch key end of conversion, 1: end of conversion 0: conversion is in process		
TKOVF	15.6	R	0	Touch key counter overflow		
TKDH	15.5~4	R	-	Touch key counter high byte TKDATA[9:8]		
TVOS1	15.3	R/W	0	CMP1 0: Normal mode 1: Trim offset mode		
TVOS2	15.2	R/W	0	CMP2 0: Normal mode 1: Trim offset mode		
TVOS3	15.1	R/W	0	CMP3 0: Normal mode 1: Trim offset mode		
TVOS4	15.0	R/W	0	CMP4 0: Normal mode 1: Trim offset mode		

Name	Address	R/W	Rst Description		
(F16) TKDL	ı		Funct	tion related to: Touch Key	
TKDL	16.7~0	R	ı	Touch key counter low byte TKDATA[7:0]	
(F17) DPL			Funct	tion related to: Table read	
DPL	17.7~0	R/W	00	Low byte of DPTR.DPTR will be increased automatically when TABRH is executed.	
(F18) MF18			Funct	tion related to: Table read, PPG	
DPH	18.3~0	R/W	0	Higher 4 bits of DPTR	
PPG_TMR9	18.7	R/W	0	The bit 8 (9 th bit, MSb) of PPG_TMR	
(F19) PPG_7	ΓMR		Funct	tion related to: PPG	
PPG_TMR	19.7~0	R/W	00	The lower 8 bits of PPG_TMR. PPG_TMR ranges from 0~511 in decimal.	
(F1A) C1TG	CNT		Funct	tion related to: PPG	
C1TGCNT	1a.7~0	R	00	CMP1 toggle counter. Set PPGSTB to 1 to clear this counter and start counting. The value will be held when reach 255.	
User Data Memory					
	20~27	R/W	ı	SRAM common area (8 bytes)	
SRAM	28~7f	R/W	-	SRAM Bank0 area (RAMBK=0, 88 bytes)	
	28~7f	R/W	-	SRAM Bank1 area (RAMBK=1, 88 bytes)	

Note that the Touch Key function is always be power down when the body is TM57PA46, and all registers related to Touch Key functions would not affect the internal Touch Key function which is disabled permanently!

R-Plane

Name	Address	R/W	Rst	Description		
(R02) TM0	CTL		Functi	ion related to: Timer0		
				Timer0 Capture Mode Level		
TM0CL	02.7	W	0	0: High level capture		
				1: Low level capture		
				Timer0 Mode		
				0: Timer / Counter Mode		
TM0CM	02.6	W	0	Clock source from TM0PSC (set R02.3~0)		
				TM0CKI (set R02.4)		
				1: Capture Mode		
				Clock source from CAPT pin Timer0 prescaler counting edge for TM0CKI pin		
TM0EDG	02.5	W	0	0: rising edge		
IMOEDG	02.3	VV		1: falling edge		
				Timer0 prescaler clock source		
TM0CKS	02.4	W	0	0: Instruction cycle		
IMOCIAS	02.1			1: TM0CKI pin (PA2 pin)		
				Timer0 prescaler. Timer0 prescaler clock source divided by		
				0000: /1		
				0001: /2		
				0010: /4		
TM0PSC	02.3~0	W	0	0011: /8		
TWIOFSC	02.3~0	, vv	0	0100: /16		
				0101: /32		
				0110: /64		
				0111: /128		
				1xxx: /256		
(R03) PWR	1		Functi	on related to: POWER DOWN		
PWRDN	03	W	-	Write this register to enter Power-down (STOP/IDLE) Mode		
(R04) WDT	1	ı	Functi	on related to: WDT		
WDTCLR	04	W	-	Write this register to clear WDT timer		
(R05) PAE			Functi	on related to: Port A		
			1	Each bit controls its corresponding pin, if the bit is		
	05.6~3	W	0	0: the pin is open-drain output or Schmitt-trigger input		
PAE				1: the pin is CMOS push-pull output		
	05.2	***	0	Each bit controls its corresponding pin, if the bit is		
	05.2~0	W	0	0: the pin is pseudo-open-drain output or Schmitt-trigger input		
(Dac) PDT				1: the pin is CMOS push-pull output		
(R06) PBE		l	Functi	ion related to: Port B		
DDE	06.4.0	77.7	0	Each bit controls its corresponding pin, if the bit is		
PBE	06.4~0	W	0	0: the pin is open-drain output or Schmitt-trigger input		
(D07) DDE			Euro of	1: the pin is CMOS push-pull output		
(R07) PDE			runcti			
PDE	07.7~0	W	0	Each bit controls its corresponding pin, if the bit is 0: the pin is open-drain output or Schmitt-trigger input		
LDE	07.7~0	l vv	U	1: the pin is CMOS push-pull output		
				1. the pin is Civios pusir-pun output		

DS-TM57PT46_PA46_E 82 Rev 1.0, 2016/08/08

Name	Address	R/W	Rst	Description				
(R08) PAPUN Function related to: Port A								
PAPUN	08.7~0	W	7F	Each bit controls its corresponding pin, if the bit is 0: the pin pull up resistor is enabled, except a. the pin's output data register (PAD) is 0 b. the pin's CMOS push-pull mode is chosen (PAE=1) c. the pin is working for FXT/SXT/PWMs/TM0OUT/TM1OUT/TCOUT/Buzzer output 1: the pin pull up resistor is disabled				
(R09) PBPUN			Functi	ion related to: Port B				
PBPUN	09.4~0	W	3F	Each bit controls its corresponding pin, if the bit is 0: the pin pull up resistor is enabled, except a. the pin's output data register (PBD) is 0 b. the pin's CMOS push-pull mode is chosen (PBE=1) c. the pin is working for FXT/SXT/PWMs/TM0OUT/TM1OUT/TCOUT/Buzzer output 1: the pin pull up resistor is disabled				
(R0A) PDPUN	V		Functi	ion related to: Port D				
PDPUN	0a.7~0	W	FF	Each bit controls its corresponding pin, if the bit is 0: the pin pull up resistor is enabled, except a. the pin's output data register (PDD) is 0 b. the pin's CMOS push-pull mode is chosen (PDE=1) c. the pin is working for FXT/SXT/PWMs/TM0OUT/TM1OUT/TCOUT/Buzzer output 1: the pin pull up resistor is disabled				
(R0B) MR0B			Functi	ion related to: PWM,TM0, TM1, INT1, TCOUT				
PWMOE	0b.7	W	0	0: PA0 as its function 1: enable PWM output to PA0 pin				
PWMPSC	0b.6~5	W	0	PWM clock source is divided by User code must set these 2 bits to '00' to prevent malfunction of PWM.				
ТСОЕ	0b.4	w	0	Instruction cycle (Fsys/2) output to PD6 0: disable 1: enable				
ТМ0ОЕ	0b.3	W	0	Timer0 overflow toggle output to PA5 0: disable 1: enable				
TM1OE	0b.2	W	0	Timer1 overflow toggle output to PD0 0: disable 1: enable				
TM1CKS	0b.1	W	0	Timer1 clock source 0: Fsys/2 (instruction cycle) 1: Fsys				
INT1EDG	0b.0	W	0	O: INT1 pin falling edge to trigger interrupt event 1: INT1 pin rising edge to trigger interrupt event				

DS-TM57PT46_PA46_E 83 Rev 1.0, 2016/08/08

Name	Address	R/W	Rst	Description				
(R0C) MR0C			Functi	ion related	to: WDT/WKT/Ti	mer0/Timer1/TCO	UT	
			WKT Period					
				7	VDD=5V	VDD=3V		
WKTPSC	0c.7~6	W	11	00	1.1 ms	1.4 ms		
WKIPSC	00.7~0	VV	11	01	2.3 ms	2.8 ms		
				10	36 ms	46 ms		
				11	145 ms	182 ms		
				WDT Peri	od			
				7	VDD=5V	VDD=3V		
WDTPSC	0c.5~4	W	01	00	145 ms	180 ms		
WDIFSC	00.5~4	VV	01	01	290 ms	364 ms		
				10	1160 ms	1456 ms		
				11	2320 ms	2913 ms		
					ble in STOP mode			
WDTSTP	0c.3	W	0		=0, this bit is don't o			
					unting WDT in STC			
				Timer1 M	counting WDT in S	TOP mode		
					oae Iode (source form T	M1DSC clock out)		
TM1CM	0c.2	W	0			CAPT pin), measure	e CAPT nin period	
TIVITCIVI	00.2	**	U	time	wode (source from	CAI 1 pm), measure	c CAI I pili period	
					uccessive rising or f	falling edges		
					k selection	7		
				00: 2 MHz	Z			
FIRCKS	0c.1~0	W	10	01: 4 MHz				
				10: 8 MHz				
(R0D) MR0D			E of	11: 16 MF		OC		
TKPD	0d.7	W	1		to: Touch Key/AD		or down	
		W			Touch Key power down 0: power up 1: power down Touch key PWM clock select, "TK-clock" is			
TKCKS	0d.6	**	1	0: 2 MHz				
THENDOG	015 4	W	00			aler. Touch key preso	caler divided by	
TKPSC	0d.5~4		00	0: TK-clo		• 1	3: TK-clock/8	
N/A	0d.3		0	Not used				
					k frequency selection	on		
				000: Fsys				
				001: Fsys / 128				
ADCKC	043.0	W	000	010: Fsys				
ADCKS	0d.2~0	VV	000	011: Fsys 100: Fsys				
				100: Tsys				
				110: Fsys				
	1			111: Fsys				
(R0E) BUZCT	ΓL		Functi	ion related				
					ock frequency select	tion		
				00: Fsys/8				
BUZPSC	0e.7~6	W	00	01: Fsys/1				
				10: Fsys/3				
DITABLE	00.5.0	117	0	-	11: Fsys/64			
BUZPRD	0e.5~0	W	0	Buzzer Pe	поа			

Name	Address	R/W	Rst	Description				
(R0F) Reserve	ed		Tenx	reserved				
Reserved	0f.7~0	_	-	Tenx reserved register. Users do not write it.				
(R10) PWMP	1		Functi	ion related to: PWM				
PWMPRD	10.7~0	W	FF	PWM Period				
(R11) PAM	1017 0			ion related to: Port A				
			1 uncu	Each bit control its corresponding pin				
PAM	11.7~0	W	FF	0: disable I/O digital input to save power when ADC channels are selected 1: enable I/O digital input				
(R12) PBM			Funct	tion related to: Port B				
				Each bit control its corresponding pin				
PBM	12.4~0	W	3F	0: disable I/O digital input to save power when ADC channels are selected 1: enable I/O digital input				
(R13) PDM			Funct	tion related to Port D				
(KIS) I DIVI			1 unc	Each bit control its corresponding pin				
PDM	13.7~0	W	FF	0: disable I/O digital input to save power when ADC channels are selected 1: enable I/O digital input				
(R14) PBWKI	EN		Funct	Function related to: Wake up				
NOISERJ	14.7	W	0	Enhance noise rejection 0: disable 1: enable				
PBWKEN	14.4~0	W	00	PB4~PB0 low level wakeup 0: disable 1: enable				
(R15)CMPCT	T,		Functi	ion related to: Comparator				
(2120) 01:22 02				CMP1:				
CMP1_EN	15.7	W	0	0: disable				
				1: enable				
				CMP2:				
CMP2_EN	15.6	W	0	0: disable				
				1: enable				
CMP3 EN	15.5	W	0	CMP3: 0: disable				
CIVII 3_LIV	13.3	VV	U	1: enable				
				CMP4:				
CMP4_EN	15.4	W	0	0: disable				
				1: enable				
				CMP1 hysteresis				
CMP1_HYS	15.3	W	0	0: OFF				
				1: ON				
CMP2_HYS	15.2	W	0	CMP2 hysteresis 0: OFF				
	13.2	**	U	1: ON				
				CMP3 hysteresis				
CMP3_HYS	15.1	W	0	0: OFF				
				1: ON				
				CMP4 hysteresis				
CMP4_HYS	15.0	W	0	0: OFF				
	<u> </u>			1: ON				

Name	Address	R/W	Rst	Description
(R16)CMP10			Functi	ion related to: CMP1 Offset Trim
(====) ================================				When TVOS1=1, VR input to trim offset voltage from
SIN1	16.7	W	0	0: negative terminal
				1: positive terminal
CMP1VOS	16.4~0	W	00	CMP1 offset voltage adjustment 00000~11111
(R17)CMP2O	T		Functi	ion related to: CMP2 Offset Trim
				When TVOS2=1, VR input to trim offset voltage from
SIN2	17.7	W	0	0: negative terminal
				1: positive terminal
CMP2VOS	17.4~0	W	00	CMP2 offset voltage adjustment 00000~11111
(R18)CMP30	T	1	Functi	ion related to: CMP3 Offset Trim
			_	When TVOS3=1, VR input to trim offset voltage from
SIN3	18.7	W	0	0: negative terminal
GI (DAYLOG	10.4.0	***	0.0	1: positive terminal
CMP3VOS	18.4~0	W	00	CMP3 offset voltage adjustment 00000~11111
(R19)CMP40	T	ı	Functi	ion related to: CMP4 Offset Trim
CINIA	10.7	W	_	When TVOS4=1, VR input to trim offset voltage from
SIN4	19.7	W	0	0: negative terminal 1: positive terminal
CMP4VOS	19.4~0	W	00	CMP4 offset voltage adjustment 00000~11111
	19.4~0			
(R1A)MR1A		l	runcu	ion related to: PPG, CMP3 PPG output delay selection
				0000: direct output without delay
PPG_DLY	1a.7~4	W	0	0001: 1 Fsys clock
110_221	14.7			
				1111: 15 Fsys clocks
CMD2DMC	1 . 2 . 0	337	0	CMP3 non-inverted terminal reference voltage selection.
CMP3RVS	1a.3~0	W	0	Ranges from 0.4VDD to 0.775VDD
(R1B)CMP2R	RVS		Functi	ion related to: CMP2
CMP2RVS	1b.4~0	W	00	CMP2 non-inverted terminal reference voltage selection.
				Ranges from 0.125VDD to 0.4VDD
(R1C)CMP40	JTL		Functi	ion related to: CMP4
				CMP4 low level duration select. When CMP4 outputs low remains N
				system clock (Fsys), CMP4 interrupt is generated if interrupt is enabled. 000: 1 Fsys
				000. 1 Fsys 001: 2 Fsys
				010: 4 Fsys
CMP4_TME	1c.7~5	W	000	011: 8 Fsys
				100: 16 Fsys
				101: 32 Fsys
				110: 64 Fsys
				111: 128 Fsys
CMP4RVS	1c.3~0	W	0	CMP4 non-inverted terminal reference voltage selection.
(D1D) (MD1(E 45	Ranges from 0.4VDD to 0.775VDD
(R1D)CMP10	/1L		runct	ion related to: CMP1
CMP1EDG	1d.6	W	0	CMP1 output trigger edge 0: falling
CIVIL LEDG	14.0	**	0	1: rising
				CMP1 debounce setting. Setting the number of Tsys (1/Fsys) time to
PPMCE	1150		0.0	check the bounce of CMP1 output. If the CMP1 output changes twice
DBNCE	1d.5~0	W	00	within the DBNCE time, the bounce will be ignored and keep the
				previous CMP1 output value.

INSTRUCTION SET

Each instruction is a 14-bit word divided into an Op Code, which specifies the instruction type, and one or more operands, which further specify the operation of the instruction. The instructions can be categorized as byte-oriented, bit-oriented and literal operations list in the following table.

For byte-oriented instructions, "f" or "r" represents the address designator and "d" represents the destination designator. The address designator is used to specify which address in Program memory is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If "d" is "0", the result is placed in the W register. If "d" is "1", the result is placed in the address specified in the instruction.

For bit-oriented instructions, "b" represents a bit field designator, which selects the number of the bit affected by the operation, while "f" represents the address designator. For literal operations, "k" represents the literal or constant value.

Field/Legend	Description				
f	F-Plane Register File Address				
r	R-Plane Register File Address				
b	Bit address				
k	Literal. Constant data or label				
d	Destination selection field, 0: Working register, 1: Register file				
W	Working Register				
Z	Zero Flag				
С	Carry Flag or /Borrow Flag				
DC	Decimal Carry Flag or Decimal /Borrow Flag				
PC	Program Counter				
TOS	Top Of Stack				
GIE	Global Interrupt Enable Flag (i-Flag)				
	Option Field				
()	Contents				
	Bit Field				
В	Before				
A	After				
←	Assign direction				

DS-TM57PT46_PA46_E 87 Rev 1.0, 2016/08/08

Mnemonic		Op Code	Cycle	Flag Affect	Description
		-		egister Instru	
ADDWF	f,d	00 0111 dfff ffff	1	C, DC, Z	Add W and "f"
ANDWF	f,d	00 0101 dfff ffff	1	Z	AND W with "f"
CLRF	f	00 0001 1fff ffff	1	Z	Clear "f"
CLRW		00 0001 0100 0000	1	Z	Clear W
COMF	f,d	00 1001 dfff ffff	1	Z	Complement "f"
DECF	f,d	00 0011 dfff ffff	1	Z	Decrement "f"
DECFSZ	f,d	00 1011 dfff ffff	1 or 2	-	Decrement "f", skip if zero
INCF	f,d	00 1010 dfff ffff	1	Z	Increment "f"
INCFSZ	f,d	00 1111 dfff ffff	1 or 2	-	Increment "f", skip if zero
<u>IORWF</u>	f,d	00 0100 dfff ffff	1	Z	OR W with "f"
MOVFW	f	00 1000 0fff ffff	1	-	Move "f" to W
MOVWF	f	00 0000 1fff ffff	1	-	Move W to "f"
MOVWR	r	00 0000 00rr rrrr	1	-	Move W to "r"
RLF	f,d	00 1101 dfff ffff	1	С	Rotate left "f" through carry
RRF	f,d	00 1100 dfff ffff	1	C	Rotate right "f" through carry
SUBWF	f,d	00 0010 dfff ffff	1	C, DC, Z	Subtract W from "f"
SWAPF	f,d	00 1110 dfff ffff	1		Swap nibbles in "f"
<u>TESTZ</u>	f	00 1000 1fff ffff	1	Z	Test if "f" is zero
XORWF	f,d	00 0110 dfff ffff	1	Z	XOR W with "f"
		Bit-Oriente	ed File Re	gister Instruc	tion
<u>BCF</u>	f,b	01 000b bbff ffff	1	-	Clear "b" bit of "f"
<u>BSF</u>	f,b	01 001b bbff ffff	1		Set "b" bit of "f"
<u>BTFSC</u>	f,b	01 010b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if clear
<u>BTFSS</u>	f,b	01 011b bbff ffff	1 or 2	ı	Test "b" bit of "f", skip if set
		Literal a	and Cont	rol Instruction	n
<u>ADDLW</u>	k	01 1100 kkkk kkkk	1	C, DC, Z	Add Literal "k" and W
<u>ANDLW</u>	k	01 1101 kkkk kkkk	1	Z	AND Literal "k" with W
<u>CALL</u>	k	10 kkkk kkkk kkkk	2	-	Call subroutine "k"
<u>CLRWDT</u>		00 0000 0000 0100	1	TO, PD	Clear Watch Dog Timer
<u>GOTO</u>	k	11 1010 kkkk kkkk	2	-	Jump to branch "k"
<u>IORLW</u>	k	01 1010 kkkk kkkk	1	Z	OR Literal "k" with W
<u>MOVLW</u>	k	01 1001 kkkk kkkk	1	-	Move Literal "k" to W
<u>NOP</u>		00 0000 0000 0000	1	-	No operation
<u>RET</u>		00 0000 0100 0000	2	-	Return from subroutine
<u>RETI</u>		00 0000 0110 0000	2	-	Return from interrupt
<u>RETLW</u>	k	01 1000 kkkk kkkk	2	-	Return with Literal in W
SLEEP		00 0000 0000 0011	1	TO, PD	Go into Power-down mode, Clock oscillation stops
XORLW	k	01 1111 kkkk kkkk	1	Z	XOR Literal "k" with W
TABRH		00 0000 0101 1000	2	-	Lookup ROM high data to W
TABRL		00 0000 0101 0000	2	-	Lookup ROM low data to W

Add Literal "k" and W **ADDLW**

Syntax ADDLW k Operands k:00h~FFh Operation $(W) \leftarrow (W) + k$ Status Affected C, DC, Z

OP-Code 01 1100 kkkk kkkk

Description The contents of the W register are added to the eight-bit literal 'k' and the result is

placed in the W register.

Cycle

Example ADDLW 0x15 B: W = 0x10A: W = 0x25

Add W and "f" **ADDWF**

ADDWF f [,d] Syntax Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation $(destination) \leftarrow (W) + (f)$

Status Affected C, DC, Z OP-Code 00 0111 dfff ffff

Description Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in

the W register. If 'd' is 1, the result is stored back in register 'f'.

Cycle

ADDWF FSR, 0 B: W = 0x17, FSR = 0xC2Example

A: W = 0xD9, FSR = 0xC2

ANDLW Logical AND Literal "k" with W

Syntax ANDLW k Operands k: 00h ~ FFh Operation $(W) \leftarrow (W) \text{ AND } k$ Z

Status Affected

OP-Code 01 1011 kkkk kkkk

Description The contents of W register are AND'ed with the eight-bit literal 'k'. The result is

placed in the W register.

Cycle

Example ANDLW 0x5F B: W = 0xA3

A : W = 0x03

ANDWF AND W with "f"

Syntax ANDWF f [,d] **Operands** $f: 00h \sim 7Fh, d: 0, 1$ Operation $(destination) \leftarrow (W) AND (f)$

Status Affected 7.

OP-Code 00 0101 dfff ffff

Description AND the W register with register 'f'. If 'd' is 0, the result is stored in the W

register. If 'd' is 1, the result is stored back in register 'f'.

Cycle

Example ANDWF FSR, 1 B : W = 0x17, FSR = 0xC2

A : W = 0x17, FSR = 0x02

Clear "b" bit of "f" **BCF**

Syntax BCF f [,b]

 $f: 00h \sim 3Fh, b: 0 \sim 7$ **Operands**

Operation $(f.b) \leftarrow 0$

Status Affected

OP-Code 01 000b bbff ffff

Description Bit 'b' in register 'f' is cleared.

Cycle

 $B : FLAG_REG = 0xC7$ Example BCF FLAG_REG, 7

 $A : FLAG_REG = 0x47$

BSF Set "b" bit of "f"

Syntax BSF f [,b]

Operands $f: 00h \sim 3Fh, b: 0 \sim 7$

Operation $(f.b) \leftarrow 1$

Status Affected

OP-Code 01 001b bbff ffff

Description Bit 'b' in register 'f' is set.

Cycle

Example BSF FLAG_REG, 7 $B : FLAG_REG = 0x0A$

 $A : FLAG_REG = 0x8A$

BTFSC Test "b" bit of "f", skip if clear(0)

BTFSC f [,b] **Syntax**

Operands $f: 00h \sim 3Fh, b: 0 \sim 7$

Operation Skip next instruction if (f.b) = 0

Status Affected

OP-Code 01 010b bbff ffff

Description If bit 'b' in register 'f' is 1, then the next instruction is executed. If bit 'b' in register

'f' is 0, then the next instruction is discarded, and a NOP is executed instead,

making this a 2nd cycle instruction.

Cycle 1 or 2

Example LABEL1 BTFSC FLAG, 1 B : PC = LABEL1

> A : if FLAG.1 = 0, PC = FALSETRUE GOTO SUB1

FALSE ... if FLAG.1 = 1, PC = TRUE

BTFSS Test "b" bit of "f", skip if set(1)

BTFSS f [,b] Syntax **Operands** $f: 00h \sim 3Fh, b: 0 \sim 7$

Operation Skip next instruction if (f.b) = 1

Status Affected

OP-Code 01 011b bbff ffff

Description If bit 'b' in register 'f' is 0, then the next instruction is executed. If bit 'b' in register

'f' is 1, then the next instruction is discarded, and a NOP is executed instead,

making this a 2nd cycle instruction.

Cycle 1 or 2

B : PC = LABEL1LABEL1 BTFSS FLAG, 1 Example

> A: if FLAG.1 = 0, PC = TRUETRUE GOTO SUB1

> if FLAG.1 = 1, PC = FALSEFALSE ...

CALL Call subroutine "k"

Syntax CALL k
Operands k: 000h ~ FFFh

Operation: TOS \leftarrow (PC) + 1, PC.11 \sim 0 \leftarrow k

Status Affected -

OP-Code 10 kkkk kkkk kkkk

Description Call Subroutine. First, return address (PC+1) is pushed onto the stack. The 12-bit

immediate address is loaded into PC bits <11:0>. CALL is a two-cycle

instruction.

Cycle 2

Example LABEL1 CALL SUB1 B: PC = LABEL1

A : PC = SUB1, TOS = LABEL1 + 1

CLRF Clear "f"

SyntaxCLRF fOperands $f: 00h \sim 7Fh$ Operation $(f) \leftarrow 00h, Z \leftarrow 1$

Status Affected Z

OP-Code 00 0001 1fff ffff

Description The contents of register 'f' are cleared and the Z bit is set.

Cycle 1

Example $CLRF FLAG_REG = 0x5A$

A: $FLAG_REG = 0x00$, Z = 1

CLRW Clear W

Syntax CLRW Operands -

Operation (W) \leftarrow 00h, Z \leftarrow 1

Status Affected Z

OP-Code 00 0001 0100 0000

Description W register is cleared and Z bit is set.

Cycle 1

Example CLRW B: W = 0x5A

A: W = 0x00, Z = 1

CLRWDT Clear Watchdog Timer

Syntax CLRWDT

Operands -

Operation WDT/WKT Timer ← 00h

Status Affected TO, PD

OP-Code 00 0000 0000 0100

Description CLRWDT instruction clears the Watchdog/Wakeup Timer

Cycle 1

Example CLRWDT B: WDT counter = ?

A: WDT counter = 0x00

COMF	Complement "f"

Syntax COMF f [,d] **Operands** $f: 00h \sim 7Fh, d: 0, 1$ Operation $(destination) \leftarrow (f)$

Status Affected

OP-Code 00 1001 dfff ffff

Description The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W.

If 'd' is 1, the result is stored back in register 'f'.

Cycle

Example COMF REG1, 0 B : REG1 = 0x13

A : REG1 = 0x13, W = 0xEC

DECF Decrement "f"

Syntax DECF f [,d] Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation $(destination) \leftarrow (f) - 1$ Status Affected Z

OP-Code 00 0011 dfff ffff

Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the Description

result is stored back in register 'f'.

Cycle

Example DECF CNT, 1 B: CNT = 0x01, Z = 0

A: CNT = 0x00, Z = 1

DECFSZ Decrement "f", Skip if 0

DECFSZ f [,d] Syntax Operands $f: 00h \sim 7Fh, d: 0, 1$

Operation (destination) \leftarrow (f) - 1, skip next instruction if result is 0

Status Affected

OP-Code 00 1011 dfff ffff

The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W Description

register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, then a NOP is executed instead, making

it a 2 cycle instruction.

Cycle 1 or 2

LABEL1 DECFSZ CNT, 1 Example B : PC = LABEL1GOTO LOOP A:CNT=CNT-1

> CONTINUE if CNT = 0, PC = CONTINUE

if $CNT \neq 0$, PC = LABEL1 + 1

GOTO Unconditional Branch

Syntax GOTO k Operands k: 000h ~ FFFh Operation $PC.11 \sim 0 \leftarrow k$ Status Affected

OP-Code 11 kkkk kkkk kkkk

GOTO is an unconditional branch. The 12-bit immediate value is loaded into PC Description

bits <11:0>. GOTO is a two-cycle instruction.

Cycle

LABEL1 GOTO SUB1 Example B : PC = LABEL1

A: PC = SUB1

INCF Increment "f"

Syntax INCF f [,d] **Operands** $f:00h \sim 7Fh$

Operation $(destination) \leftarrow (f) + 1$

Status Affected Ζ

OP-Code 00 1010 dfff ffff

Description The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W

register. If 'd' is 1, the result is placed back in register 'f'.

Cycle

INCF CNT, 1 B : CNT = 0xFF, Z = 0Example

A: CNT = 0x00, Z = 1

Increment "f", Skip if 0 **INCFSZ**

INCFSZ f [,d] Syntax Operands f:00h ~ 7Fh, d:0, 1

Operation (destination) \leftarrow (f) + 1, skip next instruction if result is 0

Status Affected

OP-Code 00 1111 dfff ffff

The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W Description

register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead, making it a 2

cycle instruction.

Cycle 1 or 2

Example LABEL1 INCFSZ CNT, 1 B : PC = LABEL1

GOTO LOOP A:CNT=CNT+1

if CNT = 0, PC = CONTINUECONTINUE if CNT \neq 0, PC = LABEL1 + 1

IORLW Inclusive OR Literal with W

Syntax IORLW k Operands k: 00h ~ FFh Operation $(W) \leftarrow (W) OR k$

Status Affected

OP-Code 01 1010 kkkk kkkk

Description The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is

placed in the W register.

Cycle

Example IORLW 0x35 B : W = 0x9A

A: W = 0xBF, Z = 0

IORWF Inclusive OR W with "f"

Syntax IORWF f [,d] **Operands** $f: 00h \sim 7Fh, d: 0, 1$ $(destination) \leftarrow (W) OR k$ Operation

Status Affected Z

OP-Code 00 0100 dfff ffff

Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the Description

W register. If 'd' is 1, the result is placed back in register 'f'.

Cycle

IORWF RESULT, 0 B: RESULT = 0x13, W = 0x91Example

A: RESULT = 0x13, W = 0x93, Z = 0

MOVFW Move "f" to W

SyntaxMOVFW fOperands $f:00h \sim 7Fh$ Operation $(W) \leftarrow (f)$

Status Affected -

OP-Code 00 1000 0fff ffff

Description The contents of register 'f' are moved to W register.

Cycle 1

Example MOVFW FSR B : FSR = 0xC2, W = ?

A: FSR = 0xC2, W = 0xC2

MOVLW Move Literal to W

 $\begin{tabular}{lll} Syntax & MOVLW & & \\ Operands & k:00h \sim FFh \\ Operation & (W) \leftarrow k \\ \end{tabular}$

Status Affected

OP-Code 01 1001 kkkk kkkk

Description The eight-bit literal 'k' is loaded into W register. The don't cares will assemble as

0's.

Cycle 1

Example MOVLW 0x5A B: W = ?

A:W=0x5A

MOVWF Move W to "f"

SyntaxMOVWF fOperands $f:00h \sim 7Fh$ Operation $(f) \leftarrow (W)$ Status Affected-

OP-Code 00 0000 1fff ffff

Description Move data from W register to register 'f'.

Cycle 1

Example MOVWF REG1 B : REG1 = 0xFF, W = 0x4F

A : REG1 = 0x4F, W = 0x4F

MOVWR Move W to "r"

Syntax MOVWR r Operands $r: 00h \sim 3Fh$ Operation $(r) \leftarrow (W)$

Status Affected -

OP-Code 00 0000 00rr rrrr

Description Move data from W register to register 'r'.

Cycle 1

Example MOVWR REG1 B : REG1 = 0xFF, W = 0x4F

A : REG1 = 0x4F, W = 0x4F

NOP No Operation

Syntax NOP Operands -

Operation No Operation

Status Affected -

OP-Code 00 0000 0000 0000 Description No Operation

Cycle 1 Example NOP

RET Return from Subroutine

Syntax RET Operands -

Operation $PC \leftarrow TOS$

Status Affected

OP-Code 00 0000 0100 0000

Description Return from subroutine. The stack is POPed and the top of the stack (TOS) is

loaded into the program counter. This is a two-cycle instruction.

Cycle 2

Example RET A: PC = TOS

RETI Return from Interrupt

Syntax RETI

Operands - Operation $PC \leftarrow TOS, GIE \leftarrow 1$

Status Affected -

OP-Code 00 0000 0110 0000

Description Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the

PC. Interrupts are enabled. This is a two-cycle instruction.

Cycle 2

Example A : PC = TOS, GIE = 1

RETLW Return with Literal in W

Syntax RETLW k
Operands $k: 00h \sim FFh$ Operation $PC \leftarrow TOS, (W) \leftarrow k$

Status Affected -

OP-Code 01 1000 kkkk kkkk

Description The W register is loaded with the eight-bit literal 'k'. The program counter is

loaded from the top of the stack (the return address). This is a two-cycle instruction.

Cycle 2

Example CALL TABLE B: W = 0x07

: A: W = value of k8

TABLE ADDWF PCL, 1

RETLW k1
RETLW k2

RETLW kn

Rotate Left "f" through Carry **RLF**

Syntax RLF f [,d] **Operands** f:00h ~ 7Fh, d:0, 1 Operation Register f Status Affected

OP-Code 00 1101 dfff ffff

Description The contents of register 'f' are rotated one bit to the left through the Carry Flag. If

'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in

register 'f'.

Cycle

B: REG1 = $1110\ 0110$, C = 0Example RLF REG1, 0

A: REG1 = 1110 0110 W = 1100 1100, C = 1

RRF Rotate Right "f" through Carry

Syntax RRF f [,d] Operands f:00h ~ 7Fh, d:0, 1

Operation

C Status Affected

OP-Code 00 1100 dfff ffff

The contents of register 'f' are rotated one bit to the right through the Carry Flag. Description

If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back

in register 'f'.

1

Cycle

RRF REG1, 0 $B : REG1 = 1110 \ 0110, C = 0$ Example

A : REG1 = 1110 0110 $= 0111\ 0011, C = 0$

SLEEP Go into Power-down mode, Clock oscillation stops

Syntax SLEEP Operands Operation Status Affected TO, PD OP-Code

00 0000 0000 0011

Description Go into Power-down mode with the oscillator stops.

Cycle

Example **SLEEP**

A: REG1 = 0xFF, W = 0x02, C = 0, Z = 0

SUBWF	Subtract W from "	f''

202112	202202000 11 22 222 2	
Syntax	SUBWF f [,d]	
Operands	f:00h ~ 7Fh, d:0, 1	
Operation	$(destination) \leftarrow (f) - (W)$	
Status Affected	C, DC, Z	
OP-Code	00 0010 dfff ffff	
Description	Subtract (2's complement method	d) W register from register 'f'. If 'd' is 0, the result
	is stored in the W register. If 'd' is	s 1, the result is stored back in register 'f'.
Cycle	1	
Example	SUBWF REG1, 1	B: REG1 = $0x03$, W = $0x02$, C = ?, Z = ?
		A: REG1 = $0x01$, W = $0x02$, C = 1 , Z = 0
	SUBWF REG1, 1	B: REG1 = $0x02$, W = $0x02$, C = ?, Z = ?
		A: REG1 = $0x00$, W = $0x02$, C = 1, Z = 1
	SUBWF REG1, 1	B: REG1 = $0x01$, W = $0x02$, C = ?, Z = ?

SWAPF Swap Nibbles in "f"

Syntax	SWAPF f [,d]
Operands	f: 00h ~ 7Fh, d: 0, 1
Operation	$(destination, 7\sim 4) \leftarrow (f.3\sim 0), (destination.3\sim 0) \leftarrow (f.7\sim 4)$
Status Affected	-
OP-Code	00 1110 dfff ffff
Description	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is
	placed in W register. If 'd' is 1, the result is placed in register 'f'.
Cycle	1
Example	SWAPF REG, 0 B: REG1 = $0xA5$
	A : REG1 = 0xA5, W = 0x5A

TESTZ Test if "f" is zero

Syntax	TESTZ f		
Operands	f:00h~7Fh		
Operation	Set Z flag if (f) is 0		
Status Affected	Z		
OP-Code	00 1000 1fff ffff		
Description	If the content of register	f' is 0, Zero flag is set to 1.	
Cycle	1		
Example	TESTZ REG1	B : REG1 = 0, Z = ?	
_		A: REG1 = 0 , Z = 1	

XORLW Exclusive OR Literal with W

Syntax	XORLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) \text{ XOR } k$	
Status Affected	Z	
OP-Code	01 1111 kkkk kkkk	
Description	The contents of the W re	egister are XOR'ed with the eight-bit literal 'k'. The result
	is placed in the W registe	er.
Cycle	1	
Example	XORLW 0xAF	B:W=0xB5
		A: W = 0x1A

DS-TM57PT46_PA46_E 97 Rev 1.0, 2016/08/08

XORWF Exclusive OR W with "f"

XORWF f [,d] **Syntax** $f: 00h \sim 7Fh, d: 0, 1$ **Operands**

Operation $(destination) \leftarrow (W) XOR (f)$

Status Affected Z

OP-Code 00 0110 dfff ffff

Description Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is

stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

Cycle

XORWF REG, 1 B : REG = 0xAF, W = 0xB5Example

A : REG = 0x1A, W = 0xB5

TABRL Return DPTR low byte to W

TABRL Syntax

Operands

Operation (W) \leftarrow ROM[DPTR] low byte content, Where DPTR={DPH[max:8],DPL[7:0]}

After TABRL is executed, DPTR ← DPTR+1 automatically

Status Affected

OP-Code 00 0000 0101 0000

Description The W register is loaded with low byte of ROM[DPTR]. This is a two-cycle

instruction.

Cycle 2 Example

MOVLW (TAB1&0xFF)

MOVWF **DPL** ; Where DPL is F-plane register

MOVLW (TAB1>>8)&0xFF

MOVWF DPH ; Where DPH is F-plane register

; DPTR=0234H

TABRH W = 0x37

TABRL ; W=0x89, DPTR=0235H

TABRH W = 0x22

TABRL ; W=0x77, DPTR=0236H

ORG 0234H ;ROM data 14 bits

TAB1:

.DT 0x3789, 0x2277

TABRH Return DPTR high byte to W

TABRH **Syntax**

Operands

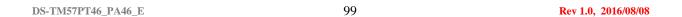
Operation (W) \leftarrow ROM[DPTR] high byte content, Where DPTR={DPH[max:8],DPL[7:0]}

Status Affected

OP-Code 00 0000 0101 1000

Description The W register is loaded with high byte of ROM[DPTR]. This is a two-cycle

instruction.


Cycle 2

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings $(T_A=25$ °C)

Parameter	Rating	Unit
Supply voltage	V_{SS} -0.3 to V_{SS} +6.5	
Input voltage	V_{SS} -0.3 to V_{DD} +0.3	V
Output voltage	V_{SS} -0.3 to V_{DD} +0.3	
Output current high per 1 PIN	-25	
Output current high per all PIN	-80	
Output current low per 1 PIN	+30	mA
Output current low per all PIN	+150	
Maximum operating voltage	5.5	V
Operating temperature	-40 to +85	°C
Storage temperature	-65 to +150	°C

2. DC Characteristics ($T_A=25$ °C, $V_{DD}=1.1V$ to 5.5V)

Parameter	Symbol	(Conditions	Min	Тур	Max	Unit							
	***	FAST mode, 25°C, Fsys=16 MHz		3.0	_	5.5								
On a matin a Walter as		FAST mode, 25°C, Fsys=8 MHz		2.3	_	5.5	V							
Operating Voltage	V_{DD}	FAST mode, 25°C, Fsys=4 MHz		1.9	_	5.5	V							
		SLOW 1	node, 25°C, SIRC	1.5	_	5.5								
		All Inputs,	V _{DD} =5V	$0.6V_{DD}$	_	-	V							
Input High	1 7	except PA7	V _{DD} =3V	$0.6V_{DD}$	_	- 1	V							
Voltage	V_{IH}	PA7	V _{DD} =5V	$0.7V_{DD}$	_	_	V							
		r A/	V _{DD} =3V	$0.7V_{DD}$	-	1	V							
Input Low Voltage	V	All Inputs	V _{DD} =5V	_	A	$0.2V_{DD}$	V							
input Low voltage	V_{IL}	All Inputs	$V_{DD}=3V$	_	_	$0.2V_{DD}$	V							
I/O Port Source	I_{OH}	All Outputs	$V_{DD} = 5V, V_{OH} = 0.9V_{DD}$	4	8	_	mA							
Current	IOH	An Outputs	$V_{DD} = 3V, V_{OH} = 0.9V_{DD}$	2	4	_	ША							
I/O Port Sink	Ţ	All Outputs	$V_{DD} = 5V, V_{OL} = 0.1V_{DD}$	10	20	-	mA							
Current	I_{OL}	An Outputs	$V_{DD} = 3V, V_{OL} = 0.1V_{DD}$	5	10	_	ША							
Input Leakage Current (pin high)	$I_{\rm ILH}$	All Inputs	$V_{IN} = V_{DD}$	7	_	1	μA							
Input Leakage Current (pin low)	I_{ILL}	All Inputs	V _{IN} =0V	_	_	-1	μπ							
	I _{DD}	FAST mode, LVR enable, WDT enable	V _{DD} =5V, FIRC=8 MHz	_	2.8	_	mA							
			V _{DD} =3V, FIRC=8 MHz	_	1.3	_								
		SLOW mode,	V _{DD} =5 V, SIRC	_	139	_								
Supply Current		oly Current Ipp	LVR enable	V _{DD} =3 V, SIRC	_	44	_							
Supply Cultent		STOP mode,	V _{DD} =5V	_	1.0	_	4							
			LVR enable	V _{DD} =3V	_	0.4	_	μA						
									STOP mode,	$V_{DD}=5V$	_	_	0.1	
									LVR disable	$V_{DD}=3V$	_	_	0.1	
System Clock	Fsys	$V_{DD} > LVR_{th}$	$V_{DD}=3.0V$	_	_	12	MHz							
Frequency	1.838	V _{DD} > L V K _{th}	$V_{DD}=2.2V$	_	_	8	WITIZ							
LVR Reference	V	T 050G		_	2.1	_	V							
Voltage	V_{LVR}		$T_A=25$ °C	_	3.0	_	V							
LVR Hysteresis Voltage	V _{HYST}	T _A =25°C		_	±0.1	_	V							
Low Voltage Detection time	t_{LVR}		$T_A=25$ °C	100	_	_	μs							
		V _{IN} =0 V Port	V _{DD} =5V		62									
Pull-Up Resistor	R_{P}	A, B, D	V _{DD} =3V	_	113	_	ΚΩ							
1 un-op Resistor	Νр	V _{IN} =0 V PA7	V _{DD} =5V		53	1277								
		VIN-U V FA/	V _{DD} =3V	_	109									

DS-TM57PT46_PA46_E 100 Rev 1.0, 2016/08/08

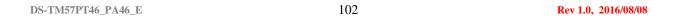
3. Clock Timing ($T_A = -40$ °C to +85°C)

Parameter	Condition	Min	Тур	Max	Unit
Internal RC Frequency	$25^{\circ}\text{C}, V_{DD} = 3 \sim 5.5\text{V}$	7.75	8	8.25	
	25°C, V_{DD} =2.6 ~ 3V	7.6	8	8.4	MHz
	-40 °C ~ 85 °C, $V_{DD}=2.6$ ~ 5.5 V	7.5	8	8.5	

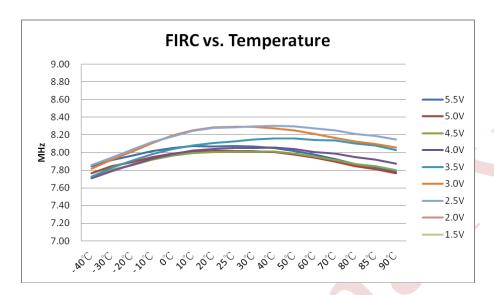
4. Reset Timing Characteristics (T_A = -40°C to +85°C, V_{DD} =3V to 5V)

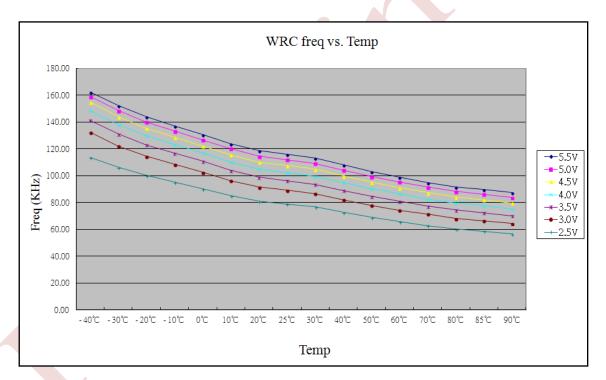
Parameter	Conditions	Min	Тур	Max	Unit	
RESET Input Low width	Input V_{DD} =5 V ±10 %	3	-	-	μs	
WDT wakeup time	V_{DD} =5V, WDTPSC=00	-	19	_	****	
wD1 wakeup time	V _{DD} =3V, WDTPSC=00	4	24	_	ms	
CDI Latart un tima	$V_{DD}=5V$	- /	19	_	ms	
CPU start up time	V _{DD} =3V	-	24	_	ms	

5. OPA Electrical Characteristics (VDD=5V TA = 25°C)

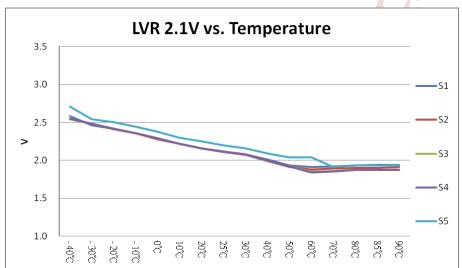

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
VOS1	Input Offset Voltage(Without calibration)				±10	mv
VOS2	Input Offset Voltage(By calibration)				±2	mv
AVOL	Large Signal Voltage Gain		60	80		dB
GBW	Gain Band Width Product	RL=1MΩ CL=100pF	0.6	2.2		MHz
CMRR	Common Mode Rejection Ratio		60	80		dB
PSRR	Power Supply Rejection Ratio		60	80		dB
SR	Slew Rate at Unity Gain	No load	0.6	1.8		V/µs

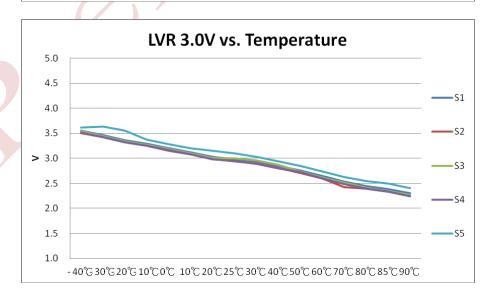
DS-TM57PT46_PA46_E 101 Rev 1.0, 2016/08/08


6. COMPARATOR Electrical characteristics (VDD=5V TA=25°C)

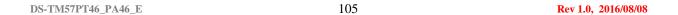

Symbol	Parameter	VDD	Condition	Min.	Тур.	Max.	Unit
	Operation Voltage	-	-	3	-	5.5	V
	Reference Voltage for Comparator	5V	-40~85 °C (±5%)	Typ5%	0.775* VDD	Typ. +5%	V
	Analog		By calibration	-2	-	+2	mV
Vos	Comparator Input Offset Voltage	5V	Without calibration SVOSn[4:0]=10000	-15mV	-	+15mV	mV
Vcm	Analog Comparator Common Mode Voltage Range	-	-	0		VDD -1	v
tpd	Analog Comparator Response Time	-	Analog Comparator Hysteresis Disable and With 10mV overdrive			2	uS
Vhys	Analog Comparator Hysteresis Width	5V	Analog Comparator Hysteresis Enable	20	40	60	mV
	Power Consumption	5V	One Comparator		160		uA

7. Characteristic Graphs



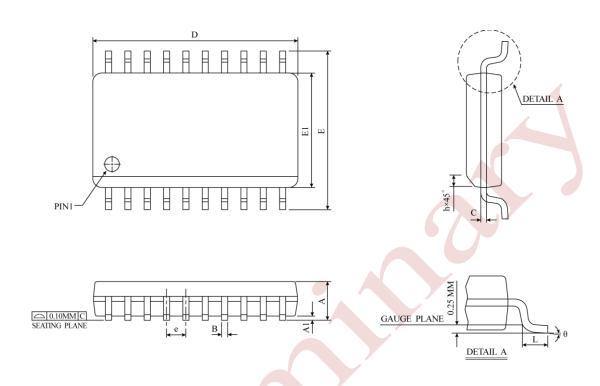


DS-TM57PT46_PA46_E 103 Rev 1.0, 2016/08/08



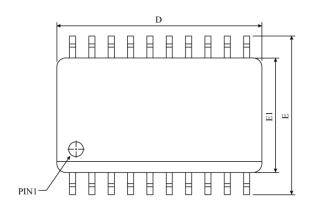
PACKAGING INFORMATION

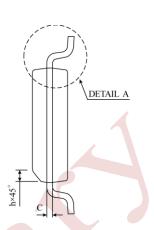
The ordering information:

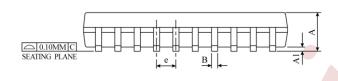

Ordering number	Package
TM57PT46-OTP	Wafer / Dice blank chip
TM57PT46-COD	Wafer / Dice with code
TM57PT46-OTP-20	SOP 18-pin (300mil)
TM57PT46-OTP-21	SOP 20-pin (300mil)
TM57PT46-OTP-05	DIP 20-pin (300mil)
TM57PT46-OTP-22	SOP 24-pin (300mil)
TM57PA46-OTP	Wafer/Dice blank chip
TM57PA46-COD	Wafer/Dice with code
TM57PA46-OTP-20	SOP 18-pin (300mil)
TM57PA46-OTP-21	SOP 20-pin (300mil)
TM57PA46-OTP-05	DIP 20-pin (300mil)
TM57PA46-OTP-22	SOP 24-pin (300mil)

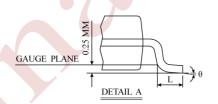
Package Information

• SOP-18 (300mil) Package Dimension


CVMDOL	DI	MENSION IN M	ſΜ	DIMENSION IN INCH			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
A	2.35	2.50	2.65	0.0926	0.0985	0.1043	
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.23	0.28	0.32	0.0091	0.0108	0.0125	
D	12.60	12.80	13.00	0.4961	0.5040	0.5118	
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910	
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992	
e		1.27 BSC			0.050 BSC		
h	0.25	0.50	0.75	0.0100	0.0195	0.0290	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	MS-013 (AC)						


 $\underline{\mathbb{A}}$ * NOTES : DIMENSION " D " DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.


DS-TM57PT46_PA46_E 106 Rev 1.0, 2016/08/08

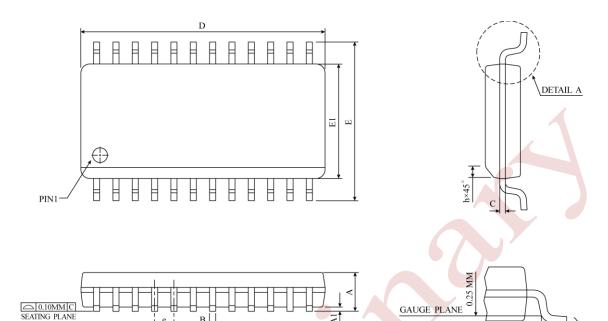


• SOP-20 (300mil) Package Dimension

SYMBOL	DI	MENSION IN M	ſМ	DIMENSION IN INCH		
STMBOL	MIN	NOM	MAX	MIN	NOM	MAX
A	2.35	2.50	2.65	0.0926	0.0985	0.1043
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118
В	0.33	0.42	0.51	0.0130	0.0165	0.0200
С	0.23	0.28	0.32	0.0091	0.0108	0.0125
D	12.60	12.80	13.00	0.4961	0.5040	0.5118
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992
e		1.27 BSC		0.050 BSC		
h	0.25	0.50	0.75	0.0100	0.0195	0.0290
L	0.40	0.84	1.27	0.0160	0.0330	0.0500
θ	0°	4°	8°	0°	4°	8°
JEDEC	MS-013 (AC)					

*NOTES: DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL


NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

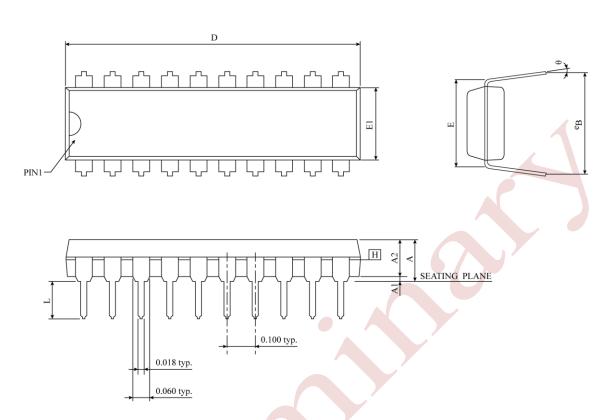
DS-TM57PT46_PA46_E 107 Rev 1.0, 2016/08/08

DETAIL A

• SOP-24 (300mil) Package Dimension

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH			
STMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
A	2.35	2.50	2.65	0.0926	0.0985	0.1043	
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.23	0.28	0.32	0.0091	0.0108	0.0125	
D	15.20	15.40	15.60	0.5985	0.6063	0.6141	
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910	
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992	
e		1.27 BSC		0.050 BSC			
h	0.25	0.50	0.75	0.0100	0.0195	0.0290	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	MS-013 (AD)						

*NOTES: DIMENSION " D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.


MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL

NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

DS-TM57PT46_PA46_E 108 Rev 1.0, 2016/08/08

• DIP-20 (300 mil) Package Dimension

CVMDOL	DI	MENSION IN M	IM	DIMENSION IN INCH			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
A	-	-	4.445	-	-	0.175	
A1	0.381	-	-	0.015	-	-	
A2	3.175	3.302	3.429	0.125	0.130	0.135	
D	25.705	26.061	26.416	1.012	1.026	1.040	
Е	7.620	7.747	7.874	0.300	0.305	0.310	
E1	6.223	6.350	6.477	0.245	0.250	0.255	
L	3.048	3.302	3.556	0.120	0.130	0.140	
e _B	8.509	9.017	9.525	0.335	0.355	0.375	
θ	0°	7.5°	15°	0°	7.5°	15°	
JEDEC	MS-001 (AD)						

NOTES:

- "D" FE1" DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS, MOLD FLASH OR PROTRUSIONS SHALL NOTEXCEED .010 INCH.
- 2. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.
- 3. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.
- 4. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.
- 5. DATUM PLANE III COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.

DS-TM57PT46_PA46_E 109 Rev 1.0, 2016/08/08