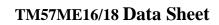
十速 TM57ME16/18 DATA SHEET Rev 0.96

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. **Tenx** does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. **Tenx** products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses tenx products for any such unintended or unauthorized application, Buyer shall indemnify and hold tenx and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that tenx was negligent regarding the design or manufacture of the part.


AMENDMENT HISTORY


Version	Date	Description			
V0.90	Jun, 2013	New release			
V0.91	Aug, 2013	 Modify EV board Modify Pin Assignment diagram Modify Pin Summary Modify program code 			
V0.92	Oct, 2014	Add packaging information			
V0.93	Feb, 2015	Change the operating voltage			
V0.94	May, 2016	Remark: DS- TM57ME16_E change Doc No. to DS- TM57ME16/18_E 1. SIRC frequency select 2. Add device TM57ME18			
V0.95	Nov, 2017	Add Characteristic Graphs of Fsys vs. LVR			
V0.96	May, 2018	Add package TSSOP-8			

CONTENTS

AME	ENDMENT HISTORY	2
FEA'	TURES	5
BLO	OCK DIAGRAM	7
PIN	ASSIGNMENT	8
PIN	DESCRIPTION	8
PIN	SUMMARY	9
	CTIONAL DESCRIPTION	
	CPU Core	
	 1.1 Clock Scheme and Instruction Cycle 1.2 RAM Addressing Mode	
2.	Chip Operation Mode	19
	 2.1 Reset	20 21 21 21 22 24
3.	Peripheral Functional Block	
	 3.1 Watchdog (WDT) / Wakeup (WKT) Timer	31 36 39 43
4.	I/O Port	45
	 4.1 PA0-2 4.2 PA3-4 4.3 PA7 	47
MEN	MORY MAP	51
F-]	Plane	51
R-	Plane	53
INST	FRUCTION SET	56

ELE	CTRICAL CHARACTERISTICS	69
1.	Absolute Maximum Ratings	69
2.	DC Characteristics	70
3.	Clock Timing	71
4.	Reset Timing Characteristics	71
5.	Characteristic Graphs	72
PAC	KAGING INFORMATION	75

FEATURES

- 1. ROM: 1K x 14 bits MTP
- 2. RAM: 48 x 8 bits
- 3. STACK: 5 Levels
- 4. I/O Ports: Two bit-programmable I/O ports (Max. 6 pins)
- 5. Two Independent Timers
 - Timer0
 - 8-bit timer0 with divided by 1 ~ 256 pre-scale option / counter / interrupt / stop function
 - T2
 - 15-bit T2 with 4 interrupt interval time options
 - IDLE mode wake-up timer or used as one simple 15-bit time base
 - Clock source: Slow-clock (SIRC) or Fsys/128
- 6. One 8-bit PWM with pre-scale / period-adjustment / buffer-reload / interrupt / clear and hold function
- 7. Min. Operating Voltage (power on) and Speed: VDD can be lowest to 1.5V when the Fsys is 4 MHz
- 8. PA1 ~ PA4 individual pin low level wake up
- 9. System Oscillation Sources (Fsys)
 - Fast-clock
 - FIRC (Fast Internal RC): 1 MHz / 2 MHz / 4 MHz
 - Slow-clock
 - SIRC (Slow Internal RC)
 - $V_{\text{DD}}=3V,\,\text{SIRC}=110$ KHz / 27.5 KHz / 6.88 KHz / 1.72 KHz

10. Power Saving Operation Modes

- FAST Mode: Slow-clock can be disabled or enabled, Fast-clock keeps CPU running
- SLOW Mode: Fast-clock stops, Slow-clock keeps CPU running
- IDLE Mode: Fast-clock and CPU stop. Slow-clock, T2 or Wake-up Timer keep running
- STOP Mode: All Clocks stop, T2 and Wake-up Timer stop

11. Dual System Clock

• FIRC + SIRC

12. Reset Sources

- Power On Reset
- Watchdog Reset
- Low Voltage Reset
- External pin Reset

13. 1-Level Low Voltage Reset

- TM57ME16: 1.2V (can be disabled)
- TM57ME18: 1.6V (can be disabled)

14. Operation Voltage: Low Voltage Reset Level to 4.2V

15. Operating Temperature Range: -40°C to +85°C

16. Interrupts

- Two External Interrupt Pins
 - One pins are falling edge triggered
 - One pin is rising or falling edge triggered
- Timer0 / T2 / Wake-up Timer Interrupts
- PWM0 Interrupt

17. Watchdog (WDT) / Wake-up (WKT) Timer

- Clocked by built-in RC oscillator with 4 adjustable Reset / Interrupt time options $V_{DD} = 3V$, WDT/WKT = 150 ms / 75 ms / 37.5 ms / 18.75 ms
- Watchdog timer can be disabled/enabled in Power-down mode

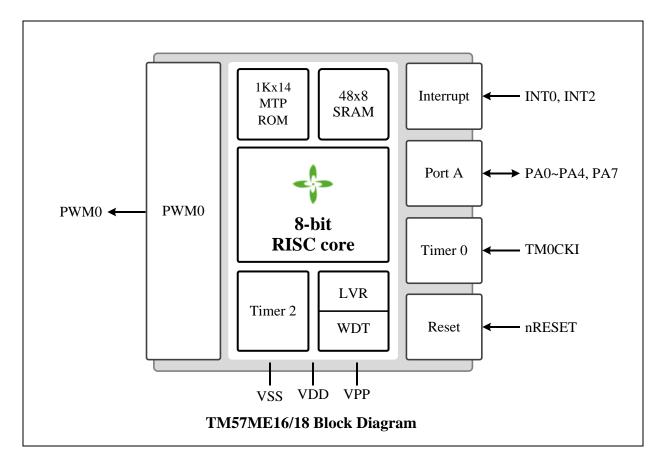
18. I/O Port Modes

- Pseudo-Open-Drain Output (PA2 ~ PA0)
- Open-Drain Output
- CMOS Push-Pull Output
- Schmitt Trigger Input with pull-up resistor option

19. High-Sink IO (PA0)

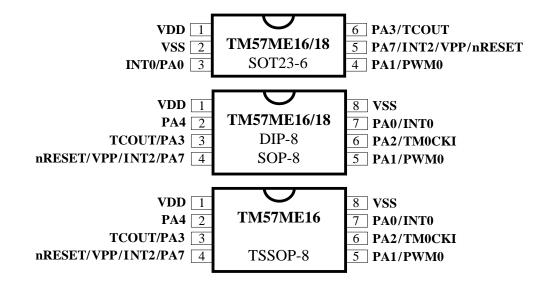
20. Table Read Instruction: 14-bit ROM data lookup table

21. Instruction set: 39 Instructions


22. Package Types

- SOT23-6
- 8-pin DIP (300 mil)
- 8-pin SOP (150 mil)
- TSSOP-8

23. Supported EV board on ICE: EV board EV2771



BLOCK DIAGRAM

PIN ASSIGNMENT

PIN DESCRIPTION

Name	In/Out	Pin Description			
PA0–PA2	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "pseudo-open-drain" output. Pull-up resistors are assignable by software.			
PA3–PA4	I/O	it-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or pen-drain output. Pull-up resistors are assignable by software.			
PA7	I/O	Bit-programmable I/O port for Schmitt-trigger input or open-drain output. Pull-up resistor is assignable by software.			
nRESET	Ι	External active low reset			
TCOUT	0	Instruction cycle clock output. The instruction clock frequency is system clock frequency divided by two (Fsys/2)			
VDD, VSS	Р	Power Voltage input pin and ground			
VPP	Ι	MTP programming high voltage input			
INT0, INT2	Ι	External interrupt input			
PWM0	0	PWM0 output			
TM0CKI	Ι	Timer0's input in counter mode			

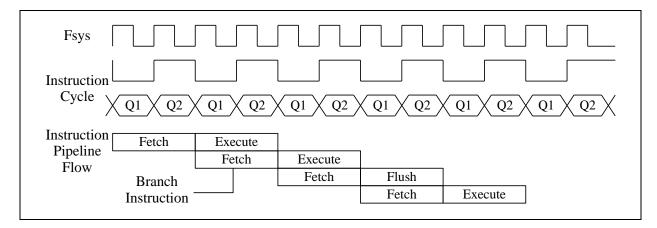
PIN SUMMARY

×					G	PIO				A	ltern	ate I	Function	
				In	put		Ou	tput		set				
DIP-8/SOP-8/TSSOP-8	SOT23-6	Pin Name	Typ e	Weak Pull-up	Ext. Interrupt	0.D	P.O.D	P.P	High Sink	Function After Reset	PWM	Touch Key	ADC	MISC
1	1	VDD	Р											
2		PA4	I/O	0		0		0		PA4				
3	6	PA3/TCOUT	I/O	0		0		0		PA3				TCOUT
4	5	PA7/INT2/ nRESET/VPP	I/O	0	0	0				SYS				nRESET
5	4	PA1/PWM0	I/O	0			0	0		PA1	0			
6		PA2/TM0CKI	I/O	0			0	0		PA2				TM0CKI
7	3	PA0/INT0	I/O	0	0		0	0	0	PA0				
8	2	VSS	Р											

Symbol : P.P. = Push-Pull Output

P.O.D. = Pseudo Open Drain

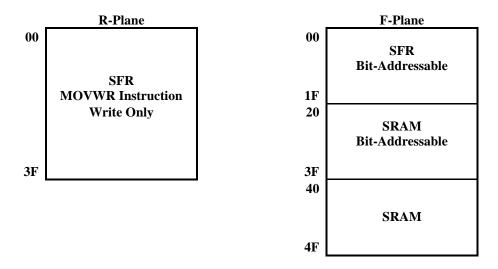
O.D. = Open Drain SYS = by SYSCFG bit



FUNCTIONAL DESCRIPTION

1. CPU Core

1.1 Clock Scheme and Instruction Cycle


The system clock is internally divided by two to generate Q1 state and Q2 state for each instruction cycle. The Programming Counter (PC) is updated at Q1 and the instruction is fetched from program ROM and latched into the instruction register in Q2. It is then decoded and executed during the following Q1-Q2 cycle. Branch instructions take two cycles since the fetch instruction is 'flushed' from the pipeline, while the new instruction is being fetched and then executed.

1.2 RAM Addressing Mode

There are two Data Memory Planes in CPU, R-Plane and F-Plane. The registers in R-Plane are writeonly. The "MOVWR" instruction copy the W-register's content to R-Plane registers by direct addressing mode. The lower locations of F-Plane are reserved for the SFR. Above the SFR is General Purpose Data Memory, implemented as static RAM. F-Plane can be addressed directly or indirectly. Indirect Addressing is made by INDF register. The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR (F04.6~0) register (FSR is a pointer). The first half of F-Plane is bit-addressable, while the second half of F-Plane is not bitaddressable.

♦ Example: Write immediate data into R-Plane register

MOVLW	AAH	; Move immediate AAH into W register
MOVWR	05H	; Move W value into R-Plane location 05H

◊Example: Write immediate data into F-Plane register

MOVLW	55H	; Move immediate 55H into W register
MOVWF	20H	; Move W value into F-Plane location 20H

Example: Move F-Plane location 20H data into W register

MOVFW	20H	; To get a content of F-Plane location 20H to W
-------	-----	---

Example: Clear all user SRAM data by indirectly addressing mode

LOOD	MOVLW MOVWF	20H FSR	; W = 20H (SRAM start address) ; Set start address of user SRAM into FSR register
LOOP:			
	MOVLW	00H	
	MOVWF	INDF	; Clear user SRAM data
	INCF	FSR, 1	; Increment the FSR for next address
	MOVLW	50H	; $W = 50H$ (SRAM end address)
	XORWF	FSR, 0	; Check the FSR is end address of user SRAM?
	BTFSS	STATUS, Z	; Check the Z flag

; If Z = 0, goto LOOP label ; If Z = 1, exit LOOP

1.3 Programming Counter (PC) and Stack

The Programming Counter is 10-bit wide capable of addressing a 1K x 14 MTP ROM. As a program instruction is executed, the PC will contain the address of the next program instruction to be executed. The PC value is normally increased by one except the followings. The Reset Vector (000h) and the Interrupt Vector (001h) are provided for PC initialization and Interrupt. For CALL / GOTO instructions, PC loads 10 bits address from instruction word. For RET / RETL / RETLW instructions, PC retrieves its content from the top level STACK. For the other instructions updating PC [7:0], the PC [9:8] keeps unchanged. Therefore, the data of a lookup table must be located with the same PC [9:8]. The STACK is 10-bit wide and 5-level in depth. The CALL instruction and hardware interrupt will push STACK level in order. While the RET / RETL/ RETLW instructions pop the STACK level in order.

For table lookup, the device offers the powerful table read instructions TABRL, TABRH to return the 14-bit ROM data into W register by setting the DPTR = {DPH, DPL} registers in F-Plane.

START:	ORG GOTO	000H START	; Reset Vector ; Goto user program address
LOOP:	MOVLW MOVWF	00H INDEX	; Set lookup table's address (INDEX)
LUUI.	MOVFW CALL	INDEX TABLE	; Move INDEX value to W register ; To Lookup data (W = 55H when INDEX = 00H)
	INCF	INDEX, 1	; Increment the INDEX for next address
	GOTO	LOOP	; Goto LOOP label
TADIE.	ORG	X00H	; X = 1, 2, 3
TABLE:	ADDWF	PCL, 1	; (Addr = X00H) Add the W with PCL, the result ; back in PCL
	RETLW	55H	; $W = 55H$ when return
	RETLW	56H	; $W = 56H$ when return
	RETLW	58H	; $W = 58H$ when return

♦ Example: To look up the MTP data located "TABLE"

Note: TM57ME16/18 defines 256 ROM addresses as one page, so that TM57ME16/18 has four pages, 000H~0FFH, 100H~1FFH, 200H~2FFH, and 300H~3FFH. On the other words, PC[9:8] can be defined as page. A lookup table must be located at the same page to avoid getting wrong data. Thus, the lookup table has maximum 255 data for above example with starting a lookup table at X00H (X = 1, 2, 3). If a lookup table has fewer data, it needs not setting the starting address at X00H, but only confirms all lookup table data are located at the same page.

 \Diamond Example: To look up the MTP data located "TABLE" by TABRL and TABRH instructions

	ORG	000H	; Reset Vector
	GOTO	START	; Goto user program address
START:			
	MOVLW	(TABLE >>8) & 0xff	; Get high byte address of TABLE label
	MOVWF	DPH	; DPH (F17.1 \sim 0) = 02H
	MOVLW	(TABLE) & 0xff	; Get low byte address of TABLE label
	MOVWF	DPL	; DPL (F04.7~0) = 80H
LOOP:			
	TABRL		; W = 86H when DTPR = $\{DPH, DPL\} = 0280H$
	TABRH		; $W = 19H$ when $DTPR = \{DPH, DPL\} = 0280H$
	INCF	DPL, 1	; Increment the DPL for next address
	GOTO	LOOP	; Goto LOOP label
	ORG	280H	
TABLE:			
	DT	0x1986	; 14-bit ROM data
	DT	0x3719	; 14-bit ROM data

1.4 ALU and Working (W) Register

The ALU is 8-bit wide and capable of addition, subtraction, shift and logical operations. In two-operand instructions, typically one operand is the W register, which is an 8-bit non-addressable register used for ALU operations. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either W register or a file register. Depending on the instruction executed, the ALU may affect the values of Carry (C), Digit Carry (DC), and Zero (Z) Flags in the STATUS register. The C and DC flags operate as a / Borrow and / Digit Borrow, respectively, in subtraction.

Note: /Borrow represents inverted of Borrow register.

/Digit Borrow represents inverted of Digit Borrow register.

1.5 STATUS Register (F-Plane 03H)

This register contains the arithmetic status of ALU, the reset status, and the voltage status. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. It is recommended, therefore, that only BCF, BSF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect those bits.

STATUS	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Reset Value	-	0	-	0	0	0	0	0	
R/W	_	R/W	_	R	R	R/W	R/W	R/W	
Bit		Description							
7	Not Used	Not Used							
6	GB0: Gene	GB0: General Purpose Bit 0							
5	Not Used								
4	0: after P	FO : Time Out Flag 0: after Power On Reset, LVR Reset, or CLRWDT / SLEEP instructions 1: WDT time out occurs							
3	0: after P	PD: Power Down Flag 0: after Power On Reset, LVR Reset, or CLRWDT instruction 1: after SLEEP instruction							
2		ult of a logi	c operation is operation is constructed as a constructed by the constr						
	DC: Decim	nal Carry Fla	g or Decima	l /Borrow F	lag				
		ADD in	struction		SUB instruction				
1	0: no carry 1: a carry from the low nibble bits of the result				0: a borrow from the low nibble bits of the result occurs				
	occurs				1: no borrow				
	C: Carry Fl	lag or / Borr	ow Flag						
0		ADD in	struction			SUB in	struction		
U U	0: no carry				0: a borrow occurs from the MSB				
	1: a carry o	ccurs from t	he MSB		1: no borro	W			

♦ Example: Write immediate data into STATUS register

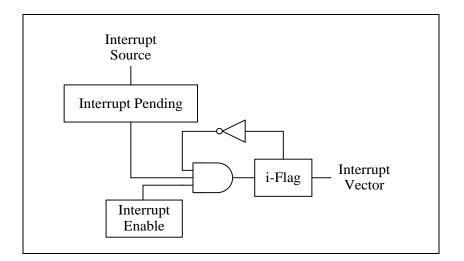
MOVLW	00H	
MOVWF	STATUS	; Clear STATUS register

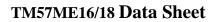
♦ Example: Bit addressing set and clear STATUS register

BSF	STATUS, 0	; Set C = 1
BCF	STATUS, 0	; Clear $C = 0$

♦ Example: Determine the C flag by BTFSS instruction

BTFSS	STATUS, 0	; Check the C flag
GOTO	LABEL_1	; If $C = 0$, goto LABEL_1 label
GOTO	LABEL_2	; If C = 1, goto LABEL_2 label




1.6 Interrupt

The TM57ME16/18 has 1 level, 1 vector and 6 interrupt sources. Each interrupt source has its own enable control bit. An interrupt event will set its individual pending flag; no matter its interrupt enable control bit is 0 or 1. Because TM57ME16/18 has only 1 vector, there is no interrupt priority register. The interrupt priority is determined by F/W.

If the corresponding interrupt enable bit has been set (INTIE), it would trigger CPU to service the interrupt. CPU accepts interrupt in the end of current executed instruction cycle. In the mean while, a "CALL 001" instruction is inserted to CPU, and i-flag is set to prevent recursive interrupt nesting.

The i-flag is cleared in the instruction after the "RETI" instruction. That is, at least one instruction in main program is executed before service the pending interrupt. The interrupt event is level triggered. F/W must clear the interrupt event register while serving the interrupt routine.

Example: Setup INT0 (PA0) interrupt request with rising edge trigger

	ORG GOTO	000H START	; Reset Vector ; Goto user program address
	ORG GOTO	001H INT	; All interrupt vector ; If INT0 (PA0) input occurred rising edge
START:	ORG	002H	
	MOVLW	xxxxxxx0B	
	MOVWR	PAE	; Disable INT0 (PA0) CMOS push-pull output ; mode
	MOVLW	xxxxxxx 0 B	
	MOVWR	PAPUN	; Enable INTO (PA0) input pull-up resistor
	MOVLW	xxxxxxx 1 B	
	MOVWF	PAD	; Release INT0 (PA0), it becomes Schmitt-trigger ; input mode with input pull-up resistor
	MOVLW	000 <u>1</u> x0xxB	
	MOVWR	R0B	; Set INT0 interrupt trigger as rising edge
	MOVLW	1111111 0 B	
	MOVWF	INTIF	; Clear INT0 interrupt request flag
	MOVLW	0000000 <u>1</u> B	
	MOVWF	INTIE	; Enable INTO interrupt
MAIN:			
	GOTO	MAIN	
INT:			
	MOVWF	40H	; Store W data to SRAM 40H
	MOVFW	STATUS	; Get STATUS data
	MOVWF	41H	; Store STATUS data to SRAM 41H
	BTFSS	INTOIF	; Check INT0IF bit
	GOTO	EXIT_INT	; $INT0IF = 0$, exit interrupt subroutine
			; INT0 interrupt service routine
	MOVLW MOVWF	1111111 0 B INTIF	; Clear INT0 interrupt request flag
EXIT_INT		4477	
	MOVFW	41H	; Get SRAM 41H data
	MOVWF	STATUS	; Restore STATUS data
	MOVFW	40H	; Restore W data
	RETI		; Return from interrupt

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	PWM0IE	T2IE	—	TM0IE	WKTIE	INT2IE	-	INT0IE
R/W	R/W	R/W	_	R/W	R/W	R/W	_	R/W
Reset	0	0	—	0	0	0	_	0

F08.7	PWM0IE : PWM0 interrupt enable
	0: disable
	1: enable
F08.6	T2IE : T2 interrupt enable
	0: disable
	1: enable
F08.4	TM0IE: Timer0 interrupt enable
	0: disable
	1: enable
F08.3	WKTIE: Wakeup Timer interrupt enable
	0: disable
	1: enable
F08.2	INT2IE : INT2 (PA7) pin interrupt enable
	0: disable
	1: enable
F08.0	INTOIE : INTO (PA0) pin interrupt enable
	0: disable
	1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	PWM0IF	T2IF	_	TM0IF	WKTIF	INT2IF	_	INT0IF
R/W	R/W	R/W	_	R/W	R/W	R/W	_	R/W
Reset	0	0	_	0	0	0	_	0

F09.7	PWM0IF : PWM0 interrupt event pending flag
	This bit is set by H/W while PWM0 overflows, write 0 to this bit will clear this flag

- F09.6 **T2IF**: T2 interrupt event pending flag This bit is set by H/W while T2 overflows, write 0 to this bit will clear this flag
- F09.4 **TM0IF**: Timer0 interrupt event pending flag This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag
- F09.3 **WKTIF**: WKT interrupt event pending flag This bit is set by H/W while WKT time out, write 0 to this bit will clear this flag
- F09.2 **INT2IF**: INT2 interrupt event pending flag This bit is set by H/W at INT2 pin's falling edge, write 0 to this bit will clear this flag
- F09.0 **INTOIF**: INTO interrupt event pending flag This bit is set by H/W at INTO pin's falling/rising edge, write 0 to this bit will clear this flag

R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B		—		INT0EDG	TCOE	_	WKTPSC	
R/W	—	—	-	W	W	—	W	
Reset	-	—	-	0	0	—	0	0

R0B.4 **INT0EDG:** INT0 (PA0) trigger edge select

0: INTO (PA0) pin falling edge to trigger interrupt event

1: INT0 (PA0) pin rising edge to trigger interrupt event

2. Chip Operation Mode

2.1 Reset

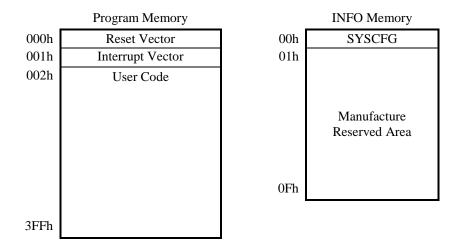
The TM57ME16/18 can be RESET in four ways.

- Power-On-Reset
- Low Voltage Reset (LVR)
- External Pin Reset (PA7)
- Watchdog Reset (WDT)

After Power-On-Reset, all system and peripheral control registers are then set to their default hardware Reset values. The clock source, LVR level and chip operation mode are selected by the SYSCFG register value. The Low Voltage Reset features static reset when supply voltage is below a threshold level. There are one threshold levels can be selected. The LVR's operation mode is defined by the SYSCFG register.

The External Pin Reset and Watchdog Reset can be disabled or enabled by the SYSCFG register. These two resets also set all the control registers to their default reset value.

2.2 System Configuration Register (SYSCFG)


The System Configuration Register (SYSCFG) is located at MTP INFO area. The SYSCFG determines the option for initial condition of MCU. It is written by MTP Writer only. User can select clock source, LVR threshold voltage and chip operation mode by SYSCFG register. The default value of SYSCFG is 0000h. The 13th bit of SYSCFG is code protection selection bit. If this bit is 1, the data in MTP will be protected, when user reads MTP.

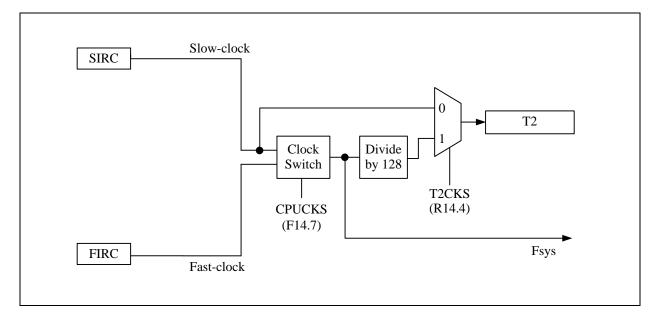
Bit	13~0					
Default Value		00_0000_0000_0000				
Bit		Description				
13	PROTE	PROTECT: Code Protection Selection				
	0	Disable				
	1	Enable				
12-11	Reserve	ed				
10	LVR: L	ow Voltage Reset Mode				
	0	LVR disable				
	1	TM57ME16: LVR = 1.2V, always enable				
	1	TM57ME18: LVR = 1.6V, always enable				
9		Reserved				
8	CLKS:	Power on Clock source Selection				
	0	CPU Clock runs Fast-clock after Power On or Reset				
	1	CPU Clock runs Slow-clock after Power On or Reset				
7	XRSTE : External Pin (PA7) Reset Enable					
	0	Disable, PA7 as IO pin				
	1	Enable				
6	WDTE	: WDT Reset Enable				
	0	Disable				
	1	Enable				
5	FIRC:]	Fast Internal RC Frequency Clock Source Selection				
	0	FIRC clock = 4 MHz when FIRCKS (R19.7 \sim 6) = "10"				
	1	FIRC clock = 2 MHz when FIRCKS (R19.7 \sim 6) = "10"				
4-0	Reserve	ed				

2.3 MTP ROM

The MTP Program ROM of this device is 1K words, with an extra INFO area to store the SYSCFG and manufacture data. The MTP ROM can be written multi-times and can be read as long as the PROTECT bit of SYSCFG is not set. The SYSCFG can be read no matter PROTECT is set or cleared, but can be written only when PROTECT is cleared or MTP ROM is blank. That is, unprotect the PROTECT bit can be done only if the Program ROM area is blank. The tenx certified writer can do the above actions with the sophisticated software.

2.4 Power-Down Mode

The Power-down mode includes IDLE Mode and STOP Mode. It is activated by SLEEP instruction. During the Power-down mode, the system clock and peripherals stop to minimize power consumption, whether the WDT / WKT / T2 Timer are working or not depend on F/W setting. The Power-down mode can be terminated by Reset, or enabled Interrupts (External pins and WKT / T2 interrupts) or PA1-4 pins low level wake up.


R03	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWRDN	PWRDN							
R/W		W						
Reset	-	-	—	-	-	-	-	-

R03.7~0 **PWRDN:** Write this register to enter Power-down (STOP / IDLE) Mode

2.5 Dual System Clock

TM57ME16/18 is designed with dual-clock system. There are two kinds of clock source, SIRC (Slow Internal RC) Clock and FIRC (Fast Internal RC) Clock. Each clock source can be applied to CPU kernel as system clock. When in IDLE mode, only Slow-clock can be configured to keep oscillating to provide clock source to T2 block. Refer to the Figure as below.

FAST Mode:

After power on or reset, if SYSCFG [8] is cleared, TM57ME16/18 enters FAST mode, otherwise enters SLOW mode. In FAST mode, firmware can also enable or disable the Slow-clock for the T2 system operating.

In this mode, the program is executed using Fast-clock as CPU clock (Fsys). The Timer0 block and PWM0 block are driven by Fast-clock. T2 can be driven by Slow-clock or Fast-clock by setting T2CKS (R14.4). If T2CKS is cleared and SLOWEN (F14.5) is set, T2 can be driven by Slow-clock in FAST mode.

SLOW Mode:

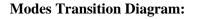
After power on or reset, if SYSCFG [8] is set, TM57ME16/18 enters SLOW mode. In this mode, Fastclock is stopped and Slow-clock is enabled for power saving. All peripheral blocks (Timer0, PWM0, T2, etc...) clock sources are Slow-clock in the SLOW mode.

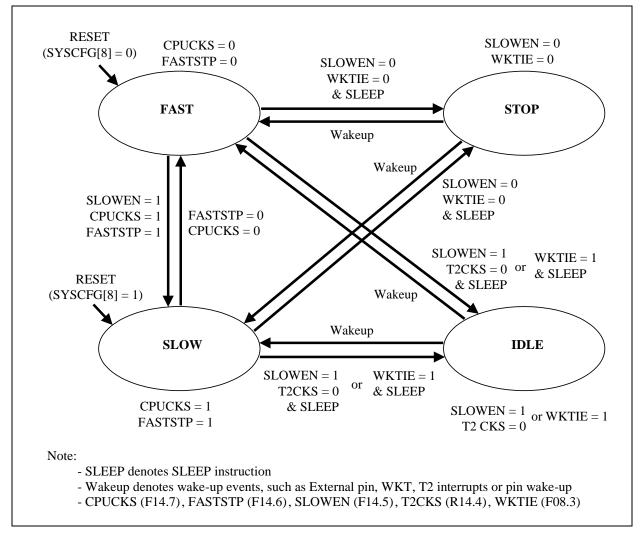
IDLE Mode:

When SLOWEN (F14.5) is set and T2CKS (R14.4) is cleared, the TM57ME16/18 will enter the "IDLE Mode" after executing the SLEEP instruction. In this mode, the Slow-clock will continue running to provide clock to T2 block. CPU stops fetching code and all blocks are stop except T2 related circuits.

Another way to keep clock oscillation in IDLE mode is setting WKTIE = 1 (F08.3) before executing the SLEEP instruction. In such condition, the WKT keeps working and wakes up CPU periodically.

T2 and WKT / WDT are independent and have their own control registers. It is possible to keep both T2 and WKT working and wake-up in the IDLE mode, which is useful for low power mode Touch Key detection.


STOP Mode:


When SLOWEN (F14.5) and WKTIE (F08.3) are cleared, all blocks will be turned off and the TM57ME16/18 will enter the "STOP Mode" after executing the SLEEP instruction. STOP mode is similar to IDLE mode. The difference is all clock oscillators either Fast-clock or Slow-clock are stopped and no clocks are generated.

2.6 Dual System Clock Modes Transition

TM57ME16/18 is operated in one of four modes: FAST Mode, SLOW Mode, IDLE Mode, and STOP Mode.

CPU Mode & Clock Functions Table:

Mode	Oscillator	Fsys	Fast-clock	Slow-clock	TM0/PWM0	WKT	T2	Wakeup event
FAST	FIRC	Fast-clock	Run	Run/Stop	Run	Run/Stop	Run	Х
SLOW	SIRC	Slow-clock	Stop	Run	Run	Run/Stop	Run	Х
IDLE	SIRC	Stop	Stop	Run	Stop	Run/Stop	Run	WKT/T2/IO
IDLE	SIKC	Stop	Stop	Run/Stop	Stop	Run	Run/Stop	WK1/12/10
STOP	Stop	Stop	Stop	Stop	Stop	Stop	Stop	IO

FAST Mode transits to SLOW Mode:

The following steps are suggested to be executed by order when FAST mode transits to SLOW mode:

- (1) Enable Slow-clock (SLOWEN = 1)
- (2) Switch system clock source to Slow-clock (CPUCKS = 1)
- (3) Stop Fast-clock (FASTSTP = 1)
- Note: Stop Fast-clock (FASTSTP = 1) is optional. If R11.3 (PWMCKS) is set, FASTSTP must be cleared. Otherwise FIRC 8M will not oscillate.

♦ Example: Switch operating mode from FAST mode to SLOW mode with SIRC

BSF	SLOWEN	; Enable Slow-clock
BSF	CPUCKS	; Switch system clock source to Slow-clock
BSF	FASTSTP	; Stop Fast-clock

SLOW Mode transits to FAST Mode:

Slow-clock can be enabled by the SLOWEN (F14.5) or the CPUCKS (F14.7) bits. The following steps are suggested to be executed by order when SLOW mode transits to FAST mode:

- (1) Enable Fast-clock (FASTSTP = 0)
- (2) Switch system clock source to Fast-clock (CPUCKS = 0)
- (3) Stop Slow-clock (SLOWEN = 0)
- Note: Stop Slow-clock (SLOWEN = 0) is optional. Slow-clock can keep oscillating to provide T2 counter block in FAST mode.

♦ Example: Switch operating mode from SLOW mode to FAST mode

BCF	FASTSTP	; Enable Fast-clock
BCF	CPUCKS	; Switch system clock source to Fast-clock
BCF	SLOWEN	; Stop Slow-clock

IDLE Mode Setting:

The IDLE mode can be configured by following setting in order:

- (1) Switch T2 clock source to Slow-clock (T2CKS = 0)
- (2) Enable Slow-clock (SLOWEN = 1)
- (3) Execute SLEEP instruction

IDLE mode can be woken up by interrupts (XINT, WKT or T2) or PA1-4 pins low level wake up.

Example: Switch operating mode to IDLE mode (T2 clock source is Slow-clock divided by 32768)

MOVLW	000 <u>000</u> 00B	; T2 clock source is Slow-clock divided by 32768
MOVWR	R14	; Slow-clock source is SIRC
BSF	SLOWEN	; Stop Fast-clock
SLEEP		; Enter IDLE mode

STOP Mode Setting:

The STOP mode can be configured by following setting in order:

- (1) Stop Slow-clock (SLOWEN = 0)
- (2) Disable WDT / WKT (WKTIE = 0)
- (3) Execute SLEEP instruction

STOP mode can be woken up by interrupt (XINT) or PA1-4 pins low level wake up.

 \diamond Example: Switch operating mode to STOP mode

BCF	SLOWEN	; Stop Slow-clock
BCF	WKTIE	; Disable WKT / WDT
SLEEP		; Enter STOP mode

IO setting notes in STOP/IDLE mode:

F14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF14	CPUCKS	FASTSTP	SLOWEN	_	HSNK	T2CLR	TM0STP	PWM0CLR
R/W	R/W	R/W	R/W	—	R/W	R/W	R/W	R/W
Reset	1/0	0	1	-	0	0	0	1

F14.7 CPUCKS: System clock (Fsys) selection, the reset value depends on SYSCFG [8].
0: Fast-clock
1: Slow-clock
If SLOWM (SYSCFG [8]) = 1, the reset value is 1, otherwise is 0
F14.6 FASTSTP: Fast-clock & FIRC 8M Enable / Disable
0: Fast-clock & FIRC 8M enable
1: Fast-clock & FIRC 8M disable

F14.5 **SLOWEN:** Slow-clock Enable / Disable 0: Slow-clock is disabled, except CPUCKS = 1 1: Slow-clock is enabled

R11	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM0CTL			-	—	PWMCKS	PWM0OE	PWM0PSC	
R/W			-	—	W	W	W	
Reset	-	-	-	-	0	0	0	0

R11.3 **PWMCKS: PWM Clock source select**

0: Fsys

1: FIRC 8MHz

R14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR14		_	-	T2CKS	T2I	PSC		—
R/W	_	_	_	W	V	N	_	—
Reset	—	-	_	0	0	0	—	—

R14.4 **T2CKS**: T2 clock source selection 0: Slow-clock 1: Fsys/128

R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	—	_	_	INT0EDG	TCOE	-	WKTPSC	
R/W	—	—	—	W	W	—	W	
Reset	—			0	0	—	0	0

R0B.1~0 WKTPSC: WDT / WKT pre-scale option or SIRC frequency select

WDT / WKT pre-scale select @ 3V:

00: 18.75 ms

01: 37.5 ms

10: 75 ms

11: 150 ms

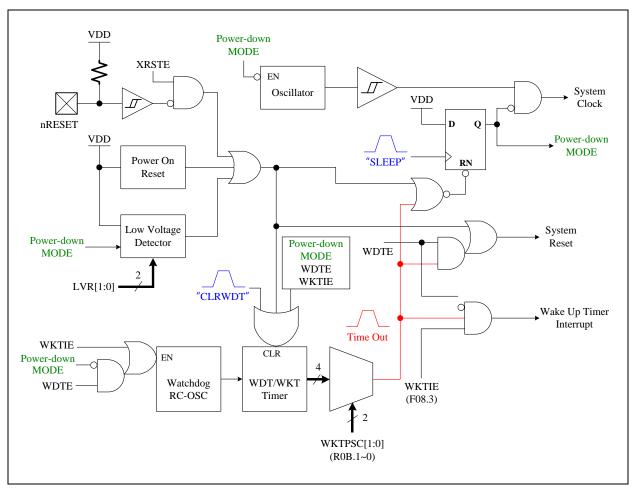
SIRC frequency select @ 3V: 00: 110 KHz 01: 27.5 KHz 10: 6.88 KHz 11: 1.72 KHz

R19	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FIRCKS	FIRCKS		_	—	—	_	_	—
R/W	W		—	—	_	_	_	—
Reset	1	0	—	—	_	_	_	—

R19.7~6 **FIRCKS:** FIRC clock source selection

00: 1 MHz

01: 2 MHz


10: 4 or 2 MHz (4 MHz if SYSCFG [5] = 0, 2 MHz if SYSCFG [5] = 1) 11: 4 MHz

3. Peripheral Functional Block

3.1 Watchdog (WDT) / Wakeup (WKT) Timer

The WDT and WKT share the same internal RC Timer which clock source is from SIRC. The overflow period of WDT / WKT can be selected from 18.75 ms to 150 ms. The WDT / WKT timer is cleared by the CLRWDT instruction. If the Watchdog Reset is enabled (SYSCFG [6], WDTE = 1), the WDT generates the chip reset signal, otherwise, the WKT only generates overflow time out interrupt. The WDT / WKT works in both normal mode and IDLE mode. During IDLE mode, user can further choose to enable or disable the WDT/WKT by "WKTIE" (F08.3). If WKTIE is cleared in IDLE mode (no matter WDTE is 1 or 0), the internal RC Timer stops for power saving. In other words, user keeps the WDT / WKT alive in IDLE mode by setting WKTIE = 1. If the WDTE is set and WKTIE is cleared, WDT / WKT timer will be cleared and stopped for power saving in IDLE mode. If the WDTE and WKTIE are set, WDT / WKT timer keeps counting in IDLE / normal mode. Refer to the following table and figure.

WDT / WKT Block Diagram

Mode	WDTE	WKTIE	Watchdog RC Oscillator
	0	0	Stop
Normal Mode	0	1	
	1	0	Run
	1	1	
	0	0	Stop
Power-down Mode	0	1	Run
Power-down Mode	1	0	Stop
	1	1	Run

The WDT and WKT's behavior in different Mode are shown as below table.

F03	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STATUS	_	GB0	_	ТО	PD	Z	DC	С
R/W	—	R/W	—	R	R	R/W	R/W	R/W
Reset	_	0	_	0	0	0	0	0

F03.4 **TO:** WDT time out flag, read-only 0: after Power On Reset, LVR Reset, or CLRWDT / SLEEP instructions 1: WDT time out occurs

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	PWM0IE	T2IE		TM0IE	WKTIE	INT2IE		INT0IE
R/W	R/W	R/W	_	R/W	R/W	R/W	_	R/W
Reset	0	0	—	0	0	0	—	0

F08.3 **WKTIE:** Wakeup Timer interrupt enable 0: disable

1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	PWM0IF	T2IF		TM0IF	WKTIF	INT2IF		INT0IF
R/W	R/W	R/W	_	R/W	R/W	R/W	_	R/W
Reset	0	0	-	0	0	0	—	0

F09.3 **WKTIF**: WKT interrupt event pending flag This bit is set by H/W while WKT time out, write 0 to this bit will clear this flag

R04	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WDTCLR		WDTCLR						
R/W				v	V			
Reset	-	-	-	-	—	_	-	-

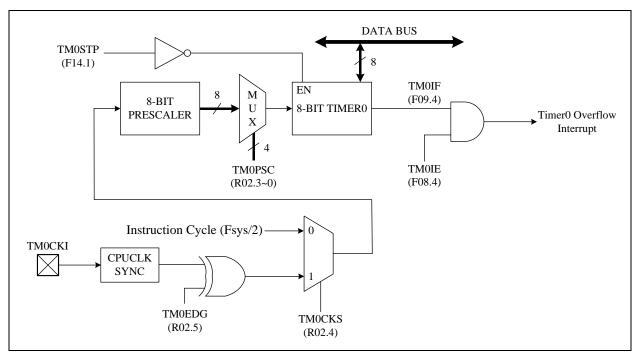
R04.7~0 WDTCLR: Write this register to clear WDT/WKT

R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	—	—		INT0EDG	TCOE		WKT	TPSC
R/W	_	_	_	W	W	_	V	V
Reset	—	-	—	0	0	—	0	0

R0B.1~0 WKTPSC: WDT / WKT pre-scale option or SIRC frequency select

WDT/WKT pre-scale select @ 3V: 00: 18.75 ms 01: 37.5 ms 10: 75 ms 11: 150 ms SIRC frequency select @ 3V: 00: 110 KHz

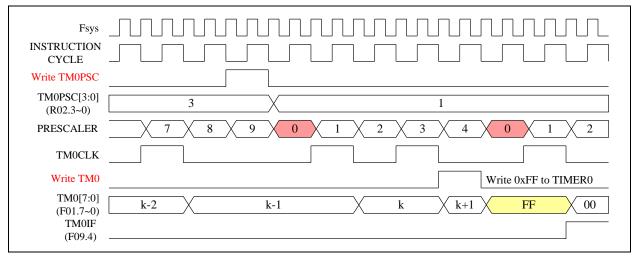
01: 27.5 KHz


10: 6.88 KHz 11: 1.72 KHz

DS-TM57ME16_18_E

3.2 Timer0: 8-bit Timer / Counter with Pre-scale (PSC)

The Timer0 is an 8-bit wide register of F-Plane. It can be read or written as any other register of F-Plane. Besides, Timer0 increases itself periodically and automatically rolls over based on the pre-scaled clock source, which can be the instruction cycle or TM0CKI (PA2) rising / falling input. The Timer0's increasing rate is determined by the TM0PSC [3:0] (R02.3~0) bits in R-Plane. The Timer0 can generate interrupt flag TM0IF (F09.4) when it rolls over. It generates Timer0 interrupt if the TM0IE (F08.4) bit is set. Timer0 can be stopped counting if the TM0STP (F14.1) bit is set.



Timer0 Block Diagram

Timer Mode:

When the Timer0 prescaler (TM0PSC) is written, the internal 8-bit prescaler will be cleared to 0 to make the counting period correct at the first Timer0 count. TM0CLK is the internal signal that causes the Timer0 to increase by 1 at the end of TM0CLK. TM0WR is also the internal signal that indicates the Timer0 is directly written by instruction; meanwhile, the internal 8-bit prescaler will be cleared. When Timer0 counts from FFh to 00h, TM0IF (Timer0 Interrupt Flag) will be set to 1 and generate interrupt if TM0IE (Timer0 Interrupt Enable) is set. The following timing diagram describes the Timer0 works in pure Timer mode.

Timer0 works in Timer mode (TM0CKS = 0)

The equation of Timer0 interrupt timer value is as following:

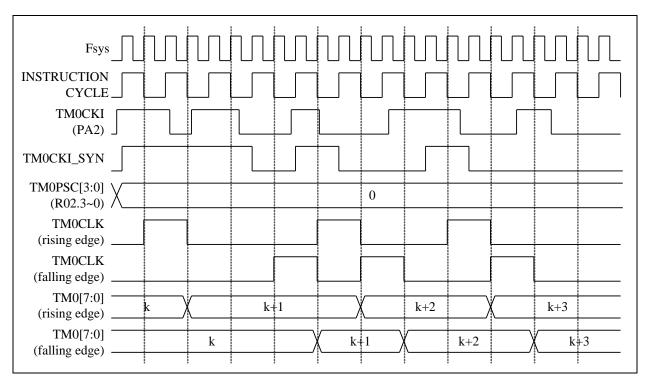
Timer0 interrupt interval cycle time = Instruction cycle time / TM0PSC / 256

◊Example: Setup Timer0 work in Timer mode, Fsys = Fast-clock = FIRC 4 MHz

; Setup Timer0 clock sou MOVLW MOVWR	rce and divider 00x <u>00101</u> B TM0CTL	; TM0CKS = 0, Timer0 clock is instruction cycle ; TM0PSC = 0101b, divided by 32
; Setup Timer0		
BSF	TM0STP	; Timer0 stops counting
CLRF	TM0	; Clear Timer0 content
; Enable Timer0 and inter	rupt function	
MOVLW	111 <u>0</u> 1111B	
MOVWF	INTIF	; Clear Timer0 request interrupt flag
BSF	TM0IE	; Enable Timer0 interrupt function
BCF	TM0STP	; Enable Timer0 counting

Timer0 clock source is Fsys/2 = 4 MHz / 2 = 2 MHz, Timer0 divided by 32

Timer0 interrupt frequency = 2 MHz / 32 / 256 = 244.14 Hz



Counter Mode:

If TM0CKS = 1, then Timer0 counter source clock is from TM0CKI (PA2) pin. TM0CKI signal is synchronized by instruction cycle that means the high/low time durations of TM0CKI must be longer than one instruction cycle time to guarantee each TM0CKI's change will be detected correctly by the synchronizer. The following timing diagram describes the Timer0 works in Counter mode.

Timer0 works in Counter mode (TM0CKS = 1) for TM0CKI

♦ Example: Setup Timer0 works in Counter mode

; Setup Tir	ner0 clock sou	rce and divider	
	MOVLW	00 <u>110000</u> B	; TM0EDG = 1, counting edge is falling edge
	MOVWR	TM0CTL	; TM0CKS = 1, Timer0 clock is TM0CKI (PA2) ; TM0PSC = 0000b, divided by 1
; Setup Tir	mer0		
	BSF	TM0STP	; Timer0 stops counting
	CLRF	TM0	; Clear Timer0 content
; Enable T	imer0 and read	l Timer0 counter	
	BCF	TM0STP	; Enable Timer0 counting
	BSF	TM0STP	; Timer0 stops counting
	MOVFW	TM0	; Read Timer0 content

F01	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0		TM0						
R/W				R/	W			

F01.7~0 **TM0:** Timer0 content

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	PWM0IE	T2IE		TM0IE	WKTIE	INT2IE		INT0IE
R/W	R/W	R/W	—	R/W	R/W	R/W	—	R/W
Reset	0	0	—	0	0	0	—	0

F08.4 **TM0IE**: Timer0 interrupt enable 0: disable

1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	PWM0IF	T2IF		TM0IF	WKTIF	INT2IF		INT0IF
R/W	R/W	R/W	—	R/W	R/W	R/W	—	R/W
Reset	0	0	-	0	0	0	_	0

F09.4 **TM0IF**: Timer0 interrupt event pending flag This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

F14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF14	CPUCKS	FASTSTP	SLOWEN	_	HSNK	T2CLR	TM0STP	PWM0CLR
R/W	R/W	R/W	R/W	_	R/W	R/W	R/W	R/W
Reset	1/0	0	1	_	0	0	0	1

F14.1 **TM0STP**: Timer0 counter stop

0: Timer0 is counting

1: Timer0 stop counting

R02	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0CTL		—	TM0EDG	TM0CKS		TMC	PSC	
R/W	—	_	W	W		v	V	
Reset	—	—	0	0	0	0	0	0

R02.5 TM0EDG: TM0CKI (PA2) edge selection for Timer0 Prescaler count

0: TM0CKI (PA2) rising edge for Timer0 Prescaler count

1: TM0CKI (PA2) falling edge for Timer0 Prescaler count

R02.4 TM0CKS: Timer0 Prescaler clock select

0: Instruction Cycle as Timer0 Prescaler clock

1: TM0CKI (PA2) as Timer0 Prescaler clock

R02.3~0 **TM0PSC:** Timer0 Prescale

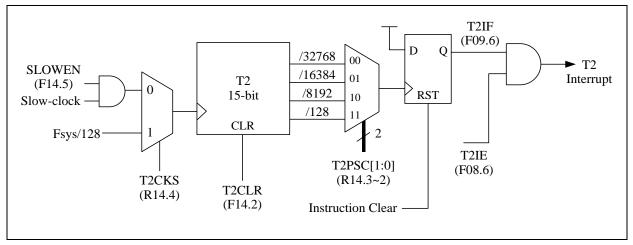
0000: divided by 1

0001: divided by 2 0010: divided by 4

- 0010: divided by 4 0011: divided by 8
- 0011: divided by 8
- 0100: divided by 16

0101: divided by 32

0110: divided by 64


0111: divided by 128 1xxx: divided by 256

DS-TM57ME16_18_E

3.3 T2: 15-bit Timer

The T2 is a 15-bit counter and the clock sources are from either Fsys/128 or Slow-clock. The clock source is used to generate time base interrupt and T2 counter block clock. It is selected by T2CKS (R14.4). The T2's 15-bit content cannot be read by instructions. It generates interrupt flag T2IF (F09.6) with the clock divided by 32768, 16384, 8192, or 128 depends on the T2PSC [1:0] (R14.3~2) bits. The following figure shows the block diagram of T2.

T2 Block Diagram

◊Example: CPU is running at FAST mode, Fsys = Fast-clock = FIRC 2 MHz,

T2 clock source is Fsys/128

; Setup FI	RC frequency MOVLW MOVWR	000000 <u>01</u> B FIRCKS	; FIRC is 2 MHz
; Setup T2	clock source a	and divider	
	MOVLW	000 <u>101</u> xxB	; T2CKS = 1, T2 clock source is Fsys/128
	MOVWR	R14	; T2PSC = 01b, divided by 16384
	BSF	T2CLR	; T2CLR = 1, clear T2 counter
; Enable T	2 interrupt fun	ction	
	MOVLW	1 <u>0</u> 111111B	
	MOVWF	INTIF	; Clear T2 request interrupt flag
	BSF	T2IE	; Enable T2 interrupt function

T2 clock source is Fsys/128 = 2 MHz / 128 = 15625 Hz, T2 divided by 16384

T2 interrupt frequency = 15625 Hz / 16384 = 0.95 Hz

T2 interrupt period = 1 / 0.95 Hz = 1.05s

DS-TM57ME16_18_E

♦ Example: CPU is running at SLOW mode, Fsys = Slow-clock = SIRC, T2 clock source is SIRC

; Setup CPU runs at SLO	OW mode	
MOVLW	000000 <u>00</u> B	
MOVWR	R0B	; Slow-clock is 110K @3V
BSF	SLOWEN	; Enable Slow-clock
BSF	CPUCKS	; Switch system clock source to Slow-clock
BSF	FASTSTP	; Stop Fast-clock
; Setup T2 clock source	and divider	
MOVLW	000 <u>000</u> 00B	; T2CKS = 0, T2 clock source is Slow-clock
MOVWR	R14	; $T2PSC = 00b$, divided by 32768
BSF	T2CLR	; $T2CLR = 1$, clear T2 counter
; Enable T2 interrupt fur	nction	
MOVLW	1 <u>0</u> 111111B	
MOVWF	INTIF	; Clear T2 request interrupt flag
BSF	T2IE	; Enable T2 interrupt function

T2 clock source is Slow-clock = 110 KHz @3V, T2 divided by 32768

T2 interrupt frequency = 110K Hz / 32768 = 3.35 Hz

T2 interrupt period = 1 / 3.35 Hz = 298ms

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	PWM0IE	T2IE		TM0IE	WKTIE	INT2IE		INT0IE
R/W	R/W	R/W	_	R/W	R/W	R/W	_	R/W
Reset	0	0	—	0	0	0	—	0

F08.6 **T2IE**: T2 interrupt enable

0: disable

1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	PWM0IF	T2IF		TM0IF	WKTIF	INT2IF		INTOIF
R/W	R/W	R/W	_	R/W	R/W	R/W	_	R/W
Reset	0	0	-	0	0	0	-	0

F09.6 **T2IF**: T2 interrupt event pending flag

This bit is set by H/W while T2 overflows, write 0 to this bit will clear this flag

F14.2

F14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF14	CPUCKS	FASTSTP	SLOWEN		HSNK	T2CLR	TM0STP	PWM0CLR
R/W	R/W	R/W	R/W	_	R/W	R/W	R/W	R/W
Reset	1/0	0	1	—	0	0	0	1

F14.5 **SLOWEN:** Slow-clock Enable / Disable 0: Slow-clock is disabled, except CPUCKS = 1

1: Slow-clock is enabled

T2CLR: T2 counter clear

0: T2 is counting

1: T2 is cleared immediately, this bit is auto cleared by H/W

R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	_	_	_	INT0EDG	TCOE	_	WKT	TPSC
R/W	_	_	_	W	W	_	W	
Reset	-	—	-	0	0	—	0	0

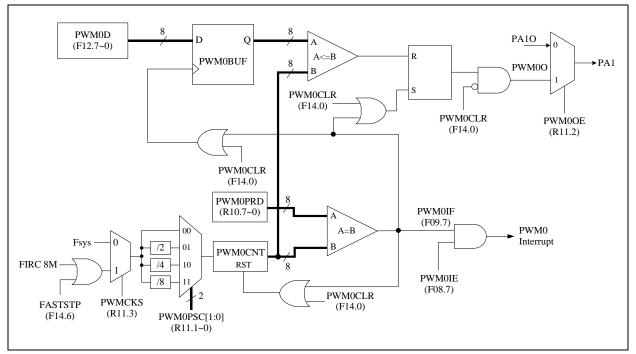
R0B.1~0 WKTPSC: WDT / WKT pre-scale option or SIRC frequency select

WDT / WKT pre-scale select @3V: 00: 18.75 ms 01: 37.5 ms 10: 75 ms

11: 150 ms

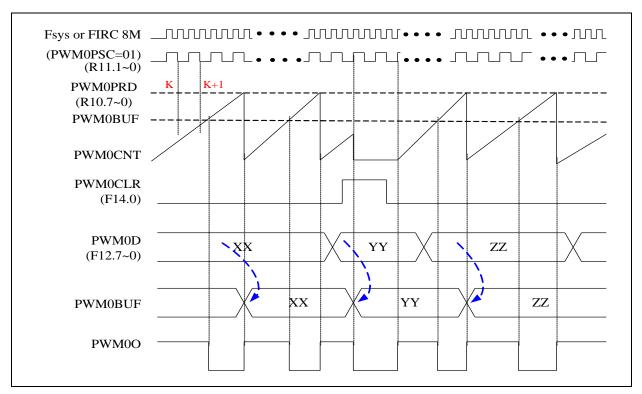
SIRC frequency select @3V: 00: 110 KHz 01: 27.5 KHz 10: 6.88 KHz 11: 1.72 KHz

R14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR14	—	-	-	T2CKS	T2PSC			—
R/W	_	_	_	W	V	V	_	_
Reset	—	-	-	0	()	—	—


- R14.4 **T2CKS**: T2 clock source selection 0: Slow-clock 1: Fsys/128
- R14.3~2 **T2PSC**: T2 prescaler. T2 clock source 00: divided by 32768 01: divided by 16384 10: divided by 8192 11: divided by 128

3.4 PWM0: 8-bit PWM

The chip has a built-in 8-bit PWM generator. The source clock comes from Fsys or FIRC 8 MHz divided by 1, 2, 4, and 8. If PWM source clock is select to FIRC 8 MHz, FASTSTP (F14.6) must be cleared. Otherwise FIRC 8 MHz will not oscillate at slow mode. The PWM0 duty cycle can be changed with writing to PWM0D (F12.7~0). Writing to PWM0D will not change the current PWM0 duty until the current PWM0 period completes. When finish current PWM0 period, the new value of PWM0D will be updated to the PWM0BUF.


The PWM0 will be output to PA1 if PWM00E (R11.2) is set. With I/O mode setting, the PWM0 output can be set as CMOS push-pull or open-drain output mode. When PAE[1] (R05.1) is set, the output is CMOS push-pull output mode, otherwise is open-drain output mode. Also, the PWM0 period complete will generate an interrupt when PWM0IE (F08.7) is set. Setting the PWM0CLR (F14.0) bit will clear the PWM0 counter and load the PWM0D to PWM0BUF, PWM0CLR bit must be cleared so that the PWM0 counter can count. Figure shows the block diagram of PWM0.

PWM0 Block Diagram

Figure shows the PWM0 waveforms. When PWM0CLR (F14.0) bit is set or PWM0BUF equals to zero, the PWM0 output is cleared to '0' no matter what its current status is. Once the PWM0CLR bit is cleared and PWM0BUF is not zero, the PWM0 output is set to '1' to begin a new PWM cycle. PWM0 output will be '0' when PWM0CNT greater than or equals to PWM0BUF. PWM0CNT keeps counting up when equals to PWM0PRD (R10.7~0), the PWM0 output is set to '1' again.

PWM0 Timing Diagram

◊Example: CPU is running at FAST mode, Fsys = Fast-clock = FIRC 4 MHz

; Setup PW	M0 prescaler,	period, and duty	
_	BSF	PWM0CLR	; $PWMOCLR = 1$, $PWM0$ clear and hold
	MOVLW	0000 0101 B	; $PWM0OE = 1$, $PWM0$ output to PA1 pin
	MOVWR	PWM0CTL	; PWM0PSC = 01b, divided by 2 (Fsys/2)
	MOVLW	FFH	
	MOVWR	PWM0PRD	; Set PWM0 period = $FFH + 1 = 256$
	MOVLW	80H	
	MOVWF	PWM0D	; Set PWM0 duty $= 80H = 128$
	BCF	PWM0CLR	; $PWM0CLR = 0$, $PWM0$ is running
; Enable PV	VM0 interrupt	function	
,	MOVLW	0 1111111B	
	MOVWF	INTIF	; Clear PWM0 request interrupt flag
	BSF	PWM0IE	; Enable PWM0 interrupt function
	_ ~ ~		, Pr 100000

PWM0 output duty = PWM0D / (PWM0PRD + 1) = 128 / (255 + 1) = 1 / 2Fsys = 4 MHz, PWM0 divided by 2 PWM0 output/interrupt frequency = 4 MHz / 2 / (255 + 1) = 7812.5 Hz

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	PWM0IE	T2IE		TM0IE	WKTIE	INT2IE	-	INTOIE
R/W	R/W	R/W	_	R/W	R/W	R/W	_	R/W
Reset	0	0	—	0	0	0	_	0

F08.7 **PWM0IE**: PWM0 interrupt enable

0: disable

1: enable

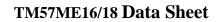
F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	PWM0IF	T2IF	—	TM0IF	WKTIF	INT2IF	_	INT0IF
R/W	R/W	R/W	—	R/W	R/W	R/W	_	R/W
Reset	0	0	—	0	0	0	—	0

F09.7 **PWM0IF**: PWM0 interrupt event pending flag

This bit is set by H/W while PWM0 overflows, write 0 to this bit will clear this flag

F12	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM0D		PWM0D								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

F12.7~0 PWM0D: PWM0 duty


F14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF14	CPUCKS	FASTSTP	SLOWEN		HSNK	T2CLR	TM0STP	PWM0CLR
R/W	R/W	R/W	R/W	_	R/W	R/W	R/W	R/W
Reset	1/0	0	1	—	0	0	0	1

F14.6 FASTSTP: Fast-clock & FIRC 8M Enable / Disable 0: Fast-clock & FIRC 8M enable 1: Fast-clock & FIRC 8M disable

F14.0 **PWM0CLR**: PWM0 clear and hold 0: PWM0 is running 1: PWM0 is cleared and hold

R10	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM0PRD		PWM0PRD								
R/W		W								
Reset	1	1	1	1	1	1	1	1		

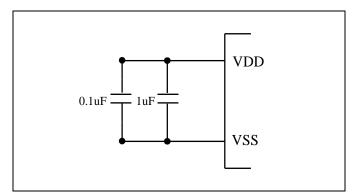
R10.7~0 **PWM0PRD**: PWM0 period data

R11	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM0CTL		_	—	-	PWMCKS	PWM0OE	PWM	0PSC
R/W	_	_	_	-	W	W	V	V
Reset	_	_	_	_	0	0	0	0

R11.3 PWMCKS: PWM Clock source select 0: Fsys 1: FIRC 8 MHz R11.2 PWM00E: PWM0 positive output to PA1 pin 0: disable

1: enable

R11.1~0 **PWM0PSC**: PWM0 prescaler, PWM0 clock select 00: Fsys divided by 1 01: Fsys divided by 2


10: Fsys divided by 4

11: Fsys divided by 8

3.5 System Clock Oscillator

System clock can be operated in two different oscillation modes. Two oscillation modes are FIRC and SIRC respectively. In the Fast Internal RC mode (FIRC), the on-chip oscillator generates 4/2/1 MHz system clock. Since power noise degrades the performance of Fast Internal Clock Oscillator, placing power supply bypass capacitors 1 uF and 0.1 uF very close to VDD / VSS pins to improve the stability of clock and the overall system. In the Slow Internal RC mode (SIRC), it provides a lower speed and accuracy of the oscillator for power saving purpose.

Fast Internal RC Mode

3.6 FIRC and SIRC Clock Frequency Selection

The FIRC frequency is selected by FIRCKS (R19.7~6), while the SIRC frequency is selected by WKTPSC (R0B.1~0). Consider the Fsys safety and integrity, it is recommended to change FIRCKS in SLOW Mode and change WKTPSC in FAST Mode.

R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	_	_	_	INT0EDG	TCOE	_	WKT	TPSC
R/W	—	—	—	W	W	—	v	V
Reset	-	-	-	0	0	-	0	0

R0B.1~0 WKTPSC: WDT / WKT pre-scale option or SIRC frequency select WDT / WKT pre-scale select @ 3V: 00: 18.75 ms

01: 37.5 ms

10: 75 ms

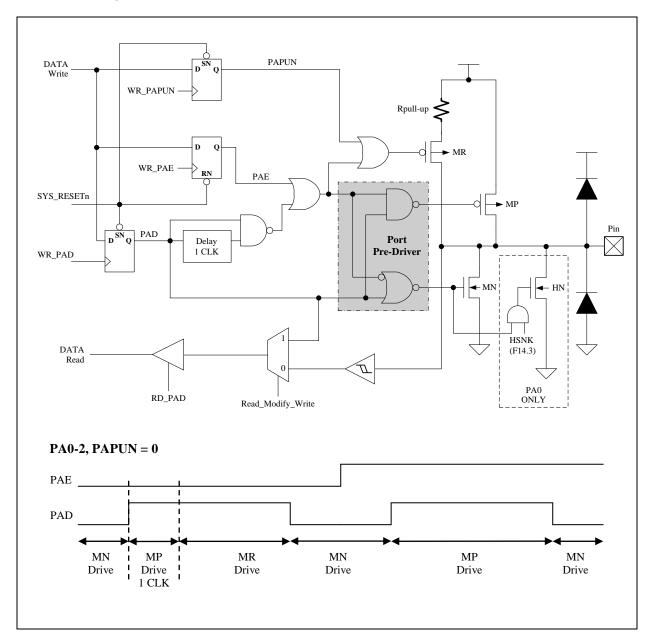
11: 150 ms

SIRC frequency select @ 3V: 00: 110 KHz 01: 27.5 KHz 10: 6.88 KHz 11: 1.72 KHz

R19	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FIRCKS	FIR	CKS	—	—	—			—
R/W	V	W		—	—	—	_	—
Reset	1	1 0		—	_	_	-	_

R19.7~6 **FIRCKS:** FIRC clock source selection

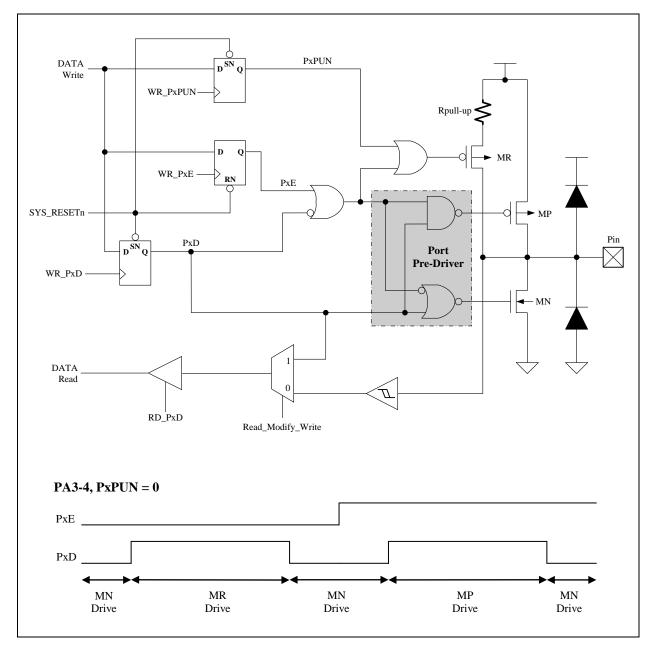
00: 1 MHz 01: 2 MHz


10: 4 or 2 MHz (4 MHz if SYSCFG [5] = 0, 2 MHz if SYSCFG [5] = 1) 11: 4 MHz

4. I/O Port

4.1 PA0-2

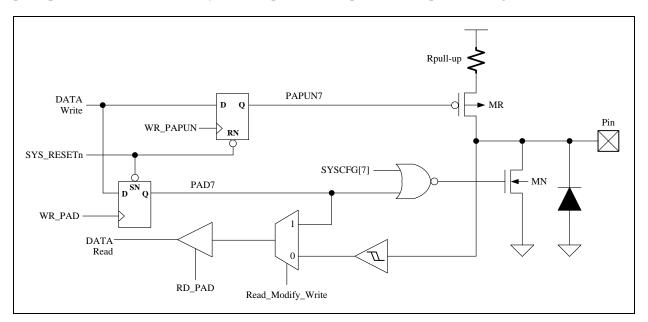
These pins can be used as Schmitt-trigger input, CMOS push-pull output or "pseudo-open-drain" output. PA0 have got extra High Sink output. When HSNK (F14.3) is cleared, PA0 is the same with the other PA1-2. When HSNK is set, PA0 is High Sink output enable. The pull-up resistor is assignable to each pin by S/W setting. To use the pin in Schmitt-trigger input mode, S/W needs to set the PAE = 0 and PAD = 1. To use the pin in pseudo-open-drain mode, S/W sets the PAE = 0. The benefit of pseudo-open-drain structure is that the output rise time can be much faster than pure open-drain structure. S/W sets PAE = 1 to use the pin in CMOS push-pull output mode. Reading the pin data (PAD) has different meaning. In "Read-Modify-Write" instruction, CPU actually reads the output data register. In the other instructions, CPU reads the pin state. The so-called "Read-Modify-Write" instruction includes BSF, BCF and all instructions using F-Plane as destination.


PAE0-2	PAD0-2	PAPUN0-2	PIN STATE	Pull-up	Mode
0	0	Х	Low	No	pseudo-open-drain output
0	1	0	High	YES	pseudo-open-drain output or input with pull-high
0	1	1	Hi-Z	No	pseudo-open-drain output or input without pull-high
1	0	Х	Low	No	CMOS push-pull output
1	1	Х	High	No	CMOS push-pull output

How to control PA0-2 status can be concluded as following list.

4.2 PA3-4

These pins are almost the same as PA0-2, except they do not support pseudo-open-drain mode. They can be used in pure open-drain mode, instead.


PAE3-4	PAD3-4	PAPUN3-4	PIN STATE	Pull-up	Mode
0	0	X	Low	No	open-drain output
					open-drain output
0	1	0	High	Yes	or
					input with pull-high
					open-drain output
0	1	1	Hi-Z	No	or
					input without pull-high
1	0	Х	Low	No	CMOS push-pull output
1	1	Х	High	No	CMOS push-pull output

How to control PA3-4 status can be concluded as following list.

4.3 PA7

PA7 can be used in Schmitt-trigger input or open-drain output which is set by the PAD [7] (F05.7) bit. When the PAD [7] bit is set, PA7 is assigned as Schmitt-trigger input mode, otherwise is assigned as open-drain output mode and output low. The pull-up resistor connected to this pin default, and can be disabled by S/W. In open-drain output mode, the pull-up resistor will not be disabled automatically. The pull-up resistor can be disabled by S/W in open-drain output mode for power saving.

How to control PA7 status can be concluded as following list.

SYSCFG [7]	PAD7	PAPUN7	PN STATE	Pull-up	MODE
0	0	0	Low	Yes	open-drain output with pull-high (not suggested to use this mode)
0	0	1	Low	No	open-drain output without pull-high
0	1	0	High	Yes	input with pull-high
0	1	1	Hi-Z	No	input without pull-high
1	Х	0	High	Yes	reset input with pull-high
1	Х	1	Hi-Z	No	reset input without pull-high

F05	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAD	PAD7	_				PAD		
R/W	R/W	—				R/W		
Reset	1	-	_	1	1	1	1	1

F05.7 **PAD7:** PA7 data or pin mode control 0: PA7 is open-drain output mode and output low

1: PA7 is Schmitt-trigger input mode **PAD:** PA4~PA0 data

F05.4~0 **PAD:** PA4~PA0 da 0: output low

1: output high or Schmitt-trigger input mode

R05	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAE	_	_	_			PAE		
R/W	_	_	_			W		
Reset	—	_	—	0	0	0	0	0

R05.4~3 **PAE:** PA4~PA3 pin mode control

0: the pin is open-drain output or Schmitt-trigger input

1: the pin is CMOS push-pull output

R05.2~0 **PAE:** PA2~PA0 pin mode control 0: the pin is pseudo-open-drain output or Schmitt-trigger input

1: the pin is CMOS push-pull output

R08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAPUN	PAPUN7	_	_			PAPUN		
R/W	W	—	-			W		
Reset	0	-	—	1	1	1	1	1

- R08.7 **PAPUN7:** PA7 pull-up resistor enable 0: the pin pull-up resistor is enabled 1: the pin pull-up resistor is disabled
- R08.4~0 PAPUN: PA4~PA0 pull-up resistor is distorted
 0: the pin pull-up resistor is enabled, except
 a: the pin's output data register (PAD) is 0
 b: the pin's CMOS push-pull mode is chosen (PAE = 1)
 1: the pin pull-up resistor is disabled

R13	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAWKEN	_	_	_		PAW	KEN		_
R/W	_	_	_		V	V		_
Reset	—	-	—	0	0	0	0	—

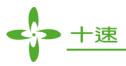

R13.4~1 **PAWKEN:** PA4~PA1 individual pin low level wake up control

0: disable

1: enable

F14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF14	CPUCKS	FASTSTP	SLOWEN		HSNK	T2CLR	TM0STP	PWM0CLR
R/W	R/W	R/W	R/W	_	R/W	R/W	R/W	R/W
Reset	1/0	0	1	—	0	0	0	1

F14.3 **HSNK**: PA0 output PIN High-Sink 0: disable 1: enable


MEMORY MAP

F-Plane

Name	Address	R/W	Rst	Description
(F00) INDF				Function related to: RAM W/R
INDF	00.7~0	R/W	-	Not a physical register, addressing INDF actually point to the register whose address is contained in the FSR register
(F01) TM0				Function related to: Timer0
TM0	01.7~0	R/W	0	Timer0 content
(F02) PCL				Function related to : PROGRAM COUNT
PCL	02.7~0	R/W	0	Programming Counter LSB [7~0]
(F03) STATU		1		Function related to: STATUS
-	03.7	-	-	Reserved
GB0	03.6	R/W	0	General purpose bit 0
-	03.5	-	-	Reserved
ТО	03.4	R	0	WDT timeout flag
PD	03.3	R	0	Power-down mode flag
Z	03.2	R/W	0	Zero flag
DC	03.1	R/W	0	Decimal Carry flag or Decimal /Borrow flag
С	03.0	R/W	0	Carry flag or /Borrow flag
(F04) FSR				Function related to: RAM W/R / Table Read
DPL	04.7~0	R/W	-	Table read low address, data ROM pointer (DPTR) low byte
FSR	04.6~0	R/W	-	File Select Register, indirect address mode pointer
(F05) PAD				Function related to: Port A
		R	-	PA7 pin or "data register" state
PAD7	05.7	W	1	0: PA7 is open-drain output mode
		vv	1	1: PA7 is Schmitt-trigger input mode
PAD	05.4~0	R	-	Port A pin or "data register" state
FAD	03.4~0	W	1F	Port A output data register
(F08) INTIE				Function related to: Interrupt Enable
				PWM0 interrupt enable
PWM0IE	08.7	R/W	0	0: disable
				1: enable
				T2 interrupt enable
T2IE	08.6	R/W	0	0: disable
				1: enable
-	08.5	-	-	Reserved
				Timer0 interrupt enable
TM0IE	08.4	R/W	0	0: disable
				1: enable
				Wakeup Timer interrupt enable
WKTIE	08.3	R/W	0	0: disable
				1: enable
				INT2 (PA7) pin interrupt enable
INT2IE	08.2	R/W	0	0: disable
				1: enable
-	08.1	-	-	Reserved
				INT0 (PA0) pin interrupt enable
INTOIE	08.0	R/W	0	0: disable
				1: enable

Name	Address	R/W	Rst	Description
(F09) INTI	F			Function related to: Interrupt Flag
		R	-	PWM0 interrupt event pending flag, set by H/W while PWM0 overflows
PWM0IF	09.7		0	0: clear this flag
		W	0	1: no action
		R	-	T2 interrupt event pending flag, set by H/W while T2 overflows
T2IF	09.6	W	0	0: clear this flag
		•••	v	1: no action
-	09.5	-	-	Reserved
		R	-	Timer0 interrupt event pending flag, set by H/W while Timer0 overflows
TM0IF	09.4	W	0	0: clear this flag 1: no action
		R		
WKTIF	09.3	ĸ	-	WKT interrupt event pending flag, set by H/W while WKT time out 0: clear this flag
WKII	09.3	W	0	1: no action
		R	-	INT2 interrupt event pending flag, set by H/W at INT2 pin's falling edge
INT2IF	09.2		0	0: clear this flag
		W	0	1: no action
-	09.1	-	-	Reserved
		R	-	INT0 interrupt event pending flag, set by H/W at INT0 pin's falling / rising edge
INT0IF	09.0	W	0	0: clear this flag
		w	0	1: no action
(F12) PWM				Function related to: PWM0
PWM0D	1	R/W	0	PWM0 duty
(F14) MF14	1			Function related to: CPUCLK / T2 / TM0 / PWM0
				System clock (Fsys) selection, the reset value depends on SYSCFG [8].
CPUCKS	14.7	R/W	1/0	0: Fast-clock
				1: Slow-clock If $CLKS(SYSCEC[8]) = 1$ the reset value is 1, otherwise is 0.
				If CLKS (SYSCFG [8]) = 1, the reset value is 1, otherwise is 0 Fast-clock & FIRC 8M Enable / Disable
FASTSTP	14.6	R/W	0	0: Fast-clock & FIRC 8M enable
1101011	11.0	10,11	Ŭ	1: Fast-clock & FIRC 8M disable
				Slow-clock Enable / Disable
SLOWEN	14.5	R/W	1	0: Slow-clock is disabled, except CPUCKS = 1
				1: Slow-clock is enabled
-	14.4	-	-	Reserved
110111	14.2	D 777-		PA0 output PIN High-Sink
HSNK	14.3	R/W	0	0: disable 1: enable
				T2 counter clear
T2CLR	14.2	R/W	0	0: T2 is counting
12000	11.2			1: T2 is cleared immediately, this bit is auto cleared by H/W
		1		Timer0 counter stop
TM0STP	14.1	R/W	0	0: Timer0 is counting
				1: Timer0 stops counting
DUD 60 ~~ -	14.0	D /~		PWM0 clear and hold
PWM0CLR	14.0	R/W	1	0: PWM0 is running
(E17) DDI		I		1: PWM0 is cleared and hold Function related to: Table Read
(F17) DPH DPH	17.1~0	R/W	0	Table read high address, data ROM pointer (DPTR) high byte
User Data N		11/ 11		
SRAM	20~4F	R/W	_	Internal RAM
511111	20 41	1. 11		

R-Plane

Name	Address	R/W	Rst	Description
(R02) TM0CTL			-	Function related to: Timer0
TM0EDG	02.5	W	0	TM0CKI (PA2) edge selection for Timer0 Prescaler count 0: TM0CKI (PA2) rising edge for Timer0 Prescaler count 1: TM0CKI (PA2) falling edge for Timer0 Prescaler count
TM0CKS	02.4	w	0	Timer0 Prescaler clock select 0: Instruction Cycle (Fsys/2) as Timer0 Prescaler clock 1: TM0CKI (PA2) as Timer0 Prescaler clock
TM0PSC	02.3~0	W	0	Timer0 Prescale 0000: divided by 1 0001: divided by 2 0010: divided by 4 0011: divided by 8 0100: divided by 16 0101: divided by 32 0110: divided by 64 0111: divided by 128 1xxx: divided by 256
(R03) PWRDN				Function related to: POWER DOWN
PWRDN	03	W	-	Write this register to enter Power-down (STOP / IDLE) Mode
(R04) WDTCLR	2			Function related to: WDT
WDTCLR	04	W	-	Write this register to clear WDT/WKT timer
(R05) PAE				Function related to: Port A
PAE	05.4~3	w	0	PA4~PA3 I/O mode control Each bit controls its corresponding pin, if the bit is 0: the pin is open-drain output or Schmitt-trigger input 1: the pin is CMOS push-pull output
	05.2~0	w	0	PA2~PA0 I/O mode control Each bit controls its corresponding pin, if the bit is 0: the pin is pseudo-open-drain output or Schmitt-trigger input 1: the pin is CMOS push-pull output
(R08) PAPUN				Function related to: Port A
PAPUN7	08.7	w	0	PA7 pull-up control, if the bit is 0: the pin pull-up resistor is enabled 1: the pin pull-up resistor is disabled
PAPUN	08.4~0	W	7F	 PA4~PA0 pull-up control Each bit controls its corresponding pin, if the bit is 0: the pin pull-up resistor is enabled, except a. the pin's output data register (PAD) is 0 b. the pin's CMOS push-pull mode is chosen (PAE = 1) 1: the pin pull-up resistor is disabled

Name	Address	R/W	Rst	Description
(R0B) MR0B				Function related to: INT0 / TCOUT / WKT
INT0EDG	0b.4	w	0	INT0 pin (PA0) edge interrupt event 0: falling edge to trigger 1: rising edge to trigger
TCOE	0b.3	W	0	Enable Instruction Cycle (Fsys/2) output to PA3 pin (TCOUT) 0: disable 1: enable
-	0b.2	-	-	Reserved
WKTPSC	0b.1~0	W	00	WDT / WKT pre-scale option or SIRC frequency selections WDT/WKT pre-scale select @3V 00: 18.75 ms 01: 37.5 ms 10: 75 ms 11: 150 ms SIRC frequency select @3V: 00: 110 KHz 01: 27.5 KHz 10: 6.88 KHz 11: 1.72 KHz
(R10) PMW0PR	D			Function related to: PWM0
PWM0PRD	10.7~0	W	FF	PWM0 period data
(R11) PWM0CT	Ľ			Function related to: PWM0
PWMCKS	11.3	W	0	PWM Clock source select, 0: Fsys 1: FIRC 8 MHz
PWM0OE	11.2	W	0	PWM0 positive output to PA1 pin 0: disable 1: enable
PWM0PSC	11.1~0	w	0	PWM0 prescaler, PWM0 clock select00: Fsys divided by 101: Fsys divided by 210: Fsys divided by 411: Fsys divided by 8

Name	Address	R/W	Rst	Description
(R13) PAWKEN				Function related to: Port A / WAKE UP
PAWKEN	13.4~1	w	0	PA4~PA1 individual pin low level wake up control Each bit controls its corresponding pin, if the bit is 0: disable 1: enable
(R14) MR14				Function related to: T2 / CPUCLK
T2CKS T2PSC	14.4 14.3~2	w w	0	T2 clock source selection 0: Slow-clock 1: Fsys/128 T2 prescaler. T2 clock source 00: divided by 32768 01: divided by 16384 10: divided by 8192 11: divided by 128
(R19) FIRCKS				Function related to: CPUCLK
FIRCKS	19.7~6	W	10	FIRC clock source selection 00: 1 MHz 01: 2 MHz 10: 4 or 2 MHz (4 MHz if SYSCFG [5] = 0, 2 MHz if SYSCFG [5] = 1) 11: 4 MHz

INSTRUCTION SET

Each instruction is a 14-bit word divided into an Op Code, which specifies the instruction type, and one or more operands, which further specify the operation of the instruction. The instructions can be categorized as byte-oriented, bit-oriented and literal operations list in the following table.

For byte-oriented instructions, "f" or "r" represents the address designator and "d" represents the destination designator. The address designator is used to specify which address in Program memory is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If "d" is "0", the result is placed in the W register. If "d" is "1", the result is placed in the address specified in the instruction.

For bit-oriented instructions, "b" represents a bit field designator, which selects the number of the bit affected by the operation, while "f" represents the address designator. For literal operations, "k" represents the literal or constant value.

Field / Legend	Description
f	F-Plane Register File Address
r	R-Plane Register File Address
b	Bit address
k	Literal. Constant data or label
d	Destination selection field, 0: Working register, 1: Register file
W	Working Register
Z	Zero Flag
С	Carry Flag or /Borrow Flag
DC	Decimal Carry Flag or Decimal /Borrow Flag
PC	Program Counter
TOS	Top Of Stack
GIE	Global Interrupt Enable Flag (i-Flag)
[]	Option Field
()	Contents
	Bit Field
В	Before
А	After
\leftarrow	Assign direction

Mnemonie	c	Op Code	Cycle	Flag Affect	Description
		Byte-Orient	ed File R	egister Instru	ction
ADDWF	f,d	00 0111 dfff ffff	1	C, DC, Z	Add W and "f"
ANDWF	f,d	00 0101 dfff ffff	1	Z	AND W with "f"
CLRF	f	00 0001 1fff ffff	1	Z	Clear "f"
CLRW		00 0001 0100 0000	1	Z	Clear W
COMF	f,d	00 1001 dfff ffff	1	Z	Complement "f"
DECF	f,d	00 0011 dfff ffff	1	Z	Decrement "f"
DECFSZ	f,d	00 1011 dfff ffff	1 or 2	-	Decrement "f", skip if zero
INCF	f,d	00 1010 dfff ffff	1	Z	Increment "f"
INCFSZ	f,d	00 1111 dfff ffff	1 or 2	-	Increment "f", skip if zero
IORWF	f,d	00 0100 dfff ffff	1	Z	OR W with "f"
MOVFW	f	00 1000 0fff ffff	1	-	Move "f" to W
MOVWF	f	00 0000 1 fff ffff	1	-	Move W to "f"
MOVWR	r	00 0000 00rr rrrr	1	-	Move W to "r"
RLF	f,d	00 1101 dfff ffff	1	С	Rotate left "f" through carry
RRF	f,d	00 1100 dfff ffff	1	С	Rotate right "f" through carry
SUBWF	f,d	00 0010 dfff ffff	1	C, DC, Z	Subtract W from "f"
SWAPF	f,d	00 1110 dfff ffff	1	-	Swap nibbles in "f"
TESTZ	f	00 1000 1 fff ffff	1	Z	Test if "f" is zero
XORWF	f,d	00 0110 dfff ffff	1	Z	XOR W with "f"
		Bit-Oriente	ed File Re	egister Instruc	tion
BCF	f,b	01 000b bbff ffff	1	-	Clear "b" bit of "f"
<u>BSF</u>	f,b	01 001b bbff ffff	1	-	Set "b" bit of "f"
<u>BTFSC</u>	f,b	01 010b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if clear
<u>BTFSS</u>	f,b	01 011b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if set
		Literal	and Cont	rol Instruction	n
ADDLW	k	01 1100 kkkk kkkk	1	C, DC, Z	Add Literal "k" and W
<u>SUBLW</u>	k	01 1101 kkkk kkkk	1	C, DC, Z	Subtract W from Literal "k"
ANDLW	k	01 1011 kkkk kkkk	1	Z	AND Literal "k" with W
<u>CALL</u>	k	10 kkkk kkkk kkkk	2	-	Call subroutine "k"
<u>CLRWDT</u>		00 0000 0000 0100	1	TO, PD	Clear Watch Dog Timer
<u>GOTO</u>	k	11 kkkk kkkk kkkk	2	-	Jump to branch "k"
IORLW	k	01 1010 kkkk kkkk	1	Z	OR Literal "k" with W
MOVLW	k	01 1001 kkkk kkkk	1	-	Move Literal "k" to W
NOP		00 0000 0000 0000	1	-	No operation
<u>RET</u>		00 0000 0100 0000	2	-	Return from subroutine
<u>RETI</u>		00 0000 0110 0000	2	-	Return from interrupt
<u>RETLW</u>	k	01 1000 kkkk kkkk	2	-	Return with Literal in W
<u>SLEEP</u>		00 0000 0000 0011	1	TO, PD	Go into Power-down mode, Clock oscillation stops
<u>TABRH</u>		00 0000 0101 1000	2	-	Lookup ROM high data to W
TABRL		00 0000 0101 0000	2	-	Lookup ROM low data to W
XORLW	k	01 1111 kkkk kkkk	1	Z	XOR Literal "k" with W

ADDLW	Add Literal "k" and	I W
Syntax	ADDLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) + k$	
Status Affected	C, DC, Z	
OP-Code	01 1100 kkkk kkkk	
Description	The contents of the W reg placed in the W register.	gister are added to the eight-bit literal 'k' and the result is
Cycle	1	
Example	ADDLW 0x15	$\mathbf{B}:\mathbf{W}=0\mathbf{x}10$
		A: W = 0x25

ADDWF	Add W and "f"	
Syntax	ADDWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	$(destination) \leftarrow (W) + (f)$	
Status Affected	C, DC, Z	
OP-Code	00 0111 dfff ffff	
Description	Add the contents of the W	V register with register 'f'. If 'd' is 0, the result is stored in
-	the W register. If 'd' is 1,	the result is stored back in register 'f'.
Cycle	1	-
Example	ADDWF FSR, 0	B: W = 0x17, FSR = 0xC2
-		A: W = 0xD9, FSR = 0xC2

ANDLW	Logical AND Litera	al ''k'' with W
Syntax	ANDLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) AND k$	
Status Affected	Z	
OP-Code	01 1011 kkkk kkkk	
Description	The contents of W regis placed in the W register.	ter are AND'ed with the eight-bit literal 'k'. The result is
Cycle	1	
Example	ANDLW 0x5F	$\mathbf{B}: \mathbf{W} = 0\mathbf{x}\mathbf{A}3$
-		A: W = 0x03

ANDWF	AND W with "f"	
Syntax	ANDWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	$(destination) \leftarrow (W) AND$	(f)
Status Affected	Z	
OP-Code	00 0101 dfff ffff	
Description	AND the W register with	register 'f'. If 'd' is 0, the result is stored in the W
-	register. If 'd' is 1, the resul	t is stored back in register 'f'.
Cycle	1	
Example	ANDWF FSR, 1	B: W = 0x17, FSR = 0xC2
-		A: W = 0x17, FSR = 0x02

BCF	Clear "b" bit of "f"		
Syntax	BCF f [,b]		
Operands	f : 00h ~ 3Fh, b : 0 ~ 7		
Operation	$(f.b) \leftarrow 0$		
Status Affected	-		
OP-Code	01 000b bbff ffff		
Description	Bit 'b' in register 'f' is cleared.		
Cycle	1		
Example	BCF FLAG_REG, 7	$B : FLAG_REG = 0xC7$ A : FLAG_REG = 0x47	

BSF	Set "b" bit of "f"		
Syntax	BSF f [,b]		
Operands	f : 00h ~ 3Fh, b : 0 ~ 7		
Operation	$(f.b) \leftarrow 1$		
Status Affected	-		
OP-Code	01 001b bbff ffff		
Description	Bit 'b' in register 'f' is set.		
Cycle	1		
Example	BSF FLAG_REG, 7	$B : FLAG_REG = 0x0A$	
-		$A : FLAG_REG = 0x8A$	

Test "b" bit of "f", skip if clear(0)
BTFSC f [,b]
f : 00h ~ 3Fh, b : 0 ~ 7
Skip next instruction if $(f.b) = 0$
-
01 010b bbff ffff
If bit 'b' in register 'f' is 1, then the next instruction is executed. If bit 'b' in register
'f' is 0, then the next instruction is discarded, and a NOP is executed instead,
making this a 2nd cycle instruction.
1 or 2
LABEL1 BTFSC FLAG, 1 $B : PC = LABEL1$
TRUE GOTO SUB1 $A: if FLAG.1 = 0, PC = FALSE$
FALSE if $FLAG.1 = 1$, $PC = TRUE$

BTFSS	Test "b" bit of "f", skip if set(1)
Syntax	BTFSS f [,b]
Operands	f : 00h ~ 3Fh, b : 0 ~ 7
Operation	Skip next instruction if $(f.b) = 1$
Status Affected	-
OP-Code	01 011b bbff ffff
Description	If bit 'b' in register 'f' is 0, then the next instruction is executed. If bit 'b' in register
	'f' is 1, then the next instruction is discarded, and a NOP is executed instead,
	making this a 2nd cycle instruction.
Cycle	1 or 2
Example	LABEL1 BTFSS FLAG, 1 $B : PC = LABEL1$
	TRUE GOTO SUB1 $A: if FLAG.1 = 0, PC = TRUE$
	FALSE if $FLAG.1 = 1$, $PC = FALSE$

CALL	Call subroutine ''k''	
Syntax	CALL k	
Operands	k : 000h ~ FFFh	
Operation	Operation: TOS \leftarrow (PC) + 1, PC.11~0 \leftarrow k	
Status Affected	-	
OP-Code	10 kkkk kkkk	
Description	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The 12-bit immediate address is loaded into PC bits <11:0>. CALL is a two-cycle instruction.	
Cycle	2	
Example	LABEL1 CALL SUB1 B : $PC = LABEL1$ A : $PC = SUB1$, TOS = LABEL1 + 1	

CLRF	Clear "f"	
Syntax	CLRF f	
Operands	f : 00h ~ 7Fh	
Operation	(f) \leftarrow 00h, Z \leftarrow 1	
Status Affected	Z	
OP-Code	00 0001 1fff ffff	
Description	The contents of register 'f' a	re cleared and the Z bit is set.
Cycle	1	
Example	CLRF FLAG_REG	$B : FLAG_REG = 0x5A$
-		A : $FLAG_REG = 0x00, Z = 1$

CLRW	Clear W	
Syntax	CLRW	
Operands	-	
Operation	(W) \leftarrow 00h, Z \leftarrow 1	
Status Affected	Z	
OP-Code	00 0001 0100 0000	
Description	W register is cleared an	d Z bit is set.
Cycle	1	
Example	CLRW	B: W = 0x5A
-		A: W = 0x00, Z = 1

CLRWDT	Clear Watchdog	Гimer
Syntax	CLRWDT	
Operands	-	
Operation	WDT/WKT Timer ←	00h
Status Affected	TO, PD	
OP-Code	00 0000 0000 0100	
Description	CLRWDT instruction	clears the Watchdog/Wakeup Timer
Cycle	1	
Example	CLRWDT	B: WDT counter = ?
-		A : WDT counter = $0x00$

COMF	Complement "f"	
Syntax	COMF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) $\leftarrow (\bar{f})$	
Status Affected	Z	
OP-Code	00 1001 dfff ffff	
Description	The contents of register 'f'	are complemented. If 'd' is 0, the result is stored in W.
	If 'd' is 1, the result is store	d back in register 'f'.
Cycle	1	
Example	COMF REG1, 0	B: REG1 = 0x13
		A: REG1 = 0x13, W = 0xEC

DECF	Decrement "f"	
Syntax	DECF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (f) - 1	
Status Affected	Z	
OP-Code	00 0011 dfff ffff	
Description	Decrement register 'f'. If result is stored back in r	G'd' is 0, the result is stored in the W register. If 'd' is 1, the egister 'f'.
Cycle	1	0
Example	DECF CNT, 1	B : CNT = 0x01, Z = 0
		A : CNT = 0x00, Z = 1

DECFSZ	Decrement "f", Skip if 0	
Syntax	DECFSZ f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (f) - 1, skip next instr	uction if result is 0
Status Affected	-	
OP-Code	00 1011 dfff ffff	
Description	register. If 'd' is 1, the result is placed	ented. If 'd' is 0, the result is placed in the W back in register 'f'. If the result is 1, the next s 0, then a NOP is executed instead, making
Cycle	1 or 2	
Example	LABEL1 DECFSZ CNT, 1 B	: PC = LABEL1
	GOTO LOOP A CONTINUE	: $CNT = CNT - 1$ if $CNT = 0$, $PC = CONTINUE$ if $CNT \neq 0$, $PC = LABEL1 + 1$

Unconditional Branch	
GOTO k	
k : 000h ~ FFFh	
$PC.11 \sim 0 \leftarrow k$	
-	
11 kkkk kkkk kkkk	
GOTO is an unconditional br	anch. The 12-bit immediate value is loaded into PC
bits <11:0>. GOTO is a two-c	ycle instruction.
2	•
LABEL1 GOTO SUB1	B : PC = LABEL1 A : PC = SUB1
	GOTO k k : 000h ~ FFFh PC.11~0 \leftarrow k - 11 kkkk kkkk kkkk GOTO is an unconditional br bits <11:0>. GOTO is a two-c 2

INCF	Increment "f"	
Syntax	INCF f [,d]	
Operands	f : 00h ~ 7Fh	
Operation	$(destination) \leftarrow (f) + 1$	
Status Affected	Z	
OP-Code	00 1010 dfff ffff	
Description	The contents of register 'f' are i register. If 'd' is 1, the result is	incremented. If 'd' is 0, the result is placed in the W placed back in register 'f'.
Cycle	1	
Example	INCF CNT, 1	B: CNT = 0xFF, Z = 0
		A : CNT = 0x00, Z = 1
INCFSZ	Increment ''f'', Skip if 0	
C		

Syntax	INCFSZ f [,d]
Operands	f : 00h ~ 7Fh, d : 0, 1
Operation	$(destination) \leftarrow (f) + 1$, skip next instruction if result is 0
Status Affected	
OP-Code	00 1111 dfff ffff
Description	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead, making it a 2 cycle instruction.
Cycle	1 or 2
Example	LABEL1 INCFSZ CNT, 1 $B : PC = LABEL1$
	GOTO LOOP $A: CNT = CNT + 1$
	CONTINUE if CNT = 0, PC = CONTINUE
	if $CNT \neq 0$, $PC = LABEL1 + 1$

IORLW	Inclusive OR Liter	al with W
Syntax	IORLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) OR k$	
Status Affected	Z	
OP-Code	01 1010 kkkk kkkk	
Description	The contents of the W r placed in the W register	egister are OR'ed with the eight-bit literal 'k'. The result is
Cycle	1	
Example	IORLW 0x35	$\mathbf{B}: \mathbf{W} = 0\mathbf{x}9\mathbf{A}$
-		$\mathbf{A}: \mathbf{W} = 0\mathbf{x}\mathbf{B}\mathbf{F}, \mathbf{Z} = 0$

IORWF	Inclusive OR W with '	'f''
Syntax	IORWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (W) OR k	
Status Affected	Z	
OP-Code	00 0100 dfff ffff	
Description	Inclusive OR the W register	with register 'f'. If 'd' is 0, the result is placed in the
-	W register. If 'd' is 1, the result is placed back in register 'f'.	
Cycle	1	
Example	IORWF RESULT, 0	B : RESULT = 0x13, W = 0x91
-		A : RESULT = $0x13$, W = $0x93$, Z = 0

MOVFW	Move "f" to W	
Syntax	MOVFW f	
Operands	f : 00h ~ 7Fh	
Operation	$(W) \leftarrow (f)$	
Status Affected	-	
OP-Code	00 1000 Offf ffff	
Description	The contents of register '	f' are moved to W register.
Cycle	1	U U
Example	MOVFW FSR	B : FSR = 0xC2, W = ?
1		A: FSR = 0xC2, W = 0xC2

MOVLW	Move Literal to W	
Syntax	MOVLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow k$	
Status Affected	-	
OP-Code	01 1001 kkkk kkkk	
Description	The eight-bit literal 'k' is l 0's.	oaded into W register. The don't cares will assemble as
Cycle	1	
Example	MOVLW 0x5A	B: W = ?
-		A: W = 0x5A

MOVWF	Move W to "f"	
Syntax	MOVWF f	
Operands	f : 00h ~ 7Fh	
Operation	$(f) \leftarrow (W)$	
Status Affected	-	
OP-Code	00 0000 1fff ffff	
Description	Move data from W registe	er to register 'f'.
Cycle	1	
Example	MOVWF REG1	B : REG1 = 0xFF, W = 0x4F
-		A : REG1 = $0x4F$, W = $0x4F$

MOVWR	Move W to "r"	
Syntax	MOVWR r	
Operands	r : 00h ~ 3Fh	
Operation	$(r) \leftarrow (W)$	
Status Affected	-	
OP-Code	00 0000 00rr rrrr	
Description	Move data from W register	to register 'r'.
Cycle	1	-
Example	MOVWR REG1	B : REG1 = 0xFF, W = 0x4F A : REG1 = 0x4F, W = 0x4F

NOP	No Operation
Syntax	NOP
Operands	-
Operation	No Operation
Status Affected	-
OP-Code	00 0000 0000 0000
Description	No Operation
Cycle	1
Example	NOP -
RET	Return from Subroutine
Syntax	RET
Operands	-
Operation	$PC \leftarrow TOS$
Status Affected	-
OP-Code	00 0000 0100 0000
Description	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.
Cycle	2
Example	$\mathbf{RET} \qquad \mathbf{A} : \mathbf{PC} = \mathbf{TOS}$

RETI	Return from Interrupt	
Syntax	RETI	
Operands	-	
Operation	$PC \leftarrow TOS, GIE \leftarrow 1$	
Status Affected	-	
OP-Code	00 0000 0110 0000	
Description	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the	
	PC. Interrupts are enabled. This is a two-cycle instruction.	
Cycle	2	
Example	RETI $A : PC = TOS, GIE = 1$	

RETLW	Return with Literal in V	V
Syntax	RETLW k	
Operands	k : 00h ~ FFh	
Operation	$PC \leftarrow TOS, (W) \leftarrow k$	
Status Affected	-	
OP-Code	01 1000 kkkk kkkk	
Description	e	h the eight-bit literal 'k'. The program counter is stack (the return address). This is a two-cycle
Cycle	2	
Example	CALL TABLE	$\mathbf{B}:\mathbf{W}=0\mathbf{x}07$
L.	:	A: W = value of k8
	TABLE ADDWF PCL, 1	
	RETLW k1	
	RETLW k2	
	:	
	RETLW kn	

RLF	Rotate Left "f" through Carry
Syntax	RLF f [,d]
Operands	f : 00h ~ 7Fh, d : 0, 1
Operation	C Register f
Status Affected	С
OP-Code	00 1101 dfff ffff
Description	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.
Cycle	1
Example	RLF REG1, 0 $B : REG1 = 1110 \ 0110, C = 0$ $A : REG1 = 1110 \ 0110$ $W = 1100 \ 1100, C = 1$
RRF	Rotate Right "f" through Carry
Syntax	RRF f [,d]
Operands	f : 00h ~ 7Fh, d : 0, 1
Operation	C Register f
Status Affected	С
OP-Code	00 1100 dfff ffff
Description	The contents of register 'f' are rotated one bit to the right through the Carry Flag.

The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.

Cycle	1	
Example	RRF REG1,0	B : REG1 = 1110 0110, C = 0
		A : REG1 = 1110 0110
		$W = 0111\ 0011, C = 0$

SLEEP	Go into Power-down mode, Clock oscillation stops
Syntax	SLEEP
Operands	-
Operation	-
Status Affected	TO, PD
OP-Code	00 0000 0000 0011
Description	Go into Power-down mode with the oscillator stops.
Cycle	1
Example	SLEEP -

SUBLW	Subtract W from Li	iteral "k"
Syntax	SUBLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (k) - (W)$	
Status Affected	C, DC, Z	
OP-Code	01 1101 kkkk kkkk	
Description		egister are subtracted (2's complement method) from the e result is placed in the W register.
Cycle	1	
Example	SUBLW 0x15	B: W = 0x10, C = ?, Z = ?
•		A: W = 0x05, C = 1, Z = 0
	SUBLW 0x10	B: W = 0x10, C = ?, Z = ?
		A : W = 0x00, C = 1, Z = 1
	SUBLW 0x05	B: W = 0x10, C = ?, Z = ?

A: W = 0xF5, C = 0, Z = 0

SUBWF	Subtract W from "f"	
Syntax	SUBWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	$(destination) \leftarrow (f) - (W)$	
Status Affected	C, DC, Z	
OP-Code	00 0010 dfff ffff	
Description		nethod) W register from register 'f'. If 'd' is 0, the result If 'd' is 1, the result is stored back in register 'f'.
Cycle	1	
Example	SUBWF REG1, 1	B : REG1 = 0x03, W = 0x02, C = ?, Z = ?
-		A : REG1 = $0x01$, W = $0x02$, C = 1, Z = 0
	SUBWF REG1, 1	B : REG1 = 0x02, W = 0x02, C = ?, Z = ?
		A : REG1 = $0x00$, W = $0x02$, C = 1, Z = 1
	SUBWF REG1, 1	B : REG1 = 0x01, W = 0x02, C = ?, Z = ?
	,	A : REG1 = 0 xFF, W = 0 x02, C = 0 , Z = 0

SWAPF	Swap Nibbles in ''f''			
Syntax	SWAPF f [,d]			
Operands	f : 00h ~ 7Fh, d : 0, 1			
Operation	$(destination, 7\sim 4) \leftarrow (f.3\sim 0)$), (destination.3~0) \leftarrow (f.7~4)		
Status Affected	-			
OP-Code	00 1110 dfff ffff			
Description	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W register. If 'd' is 1, the result is placed in register 'f'.			
Cycle		is i, the result is placed in register 1.		
Example	SWAPF REG, 0	B : REG1 = $0xA5$ A : REG1 = $0xA5$, W = $0x5A$		

TABRH	Return D	PTR high byte to W	V
Syntax	TABRH		
Operands	-		
Operation	$(W) \leftarrow ROI$	M[DPTR] high byte conte	nt, Where $DPTR = \{DPH[max:8], FSR[7:0]\}$
Status Affected	-		
OP-Code	00 0000 01	01 1000	
Description	The W reg instruction.	ister is loaded with high	byte of ROM[DPTR]. This is a two-cycle
Cycle	2		
Example			
-	MOVLW	(TAB1&0xFF)	
	MOVWF	FSR	;Where FSR is F-Plane register
	MOVLW	(TAB1>>8)&0xFF	-
	MOVWF	DPH	;Where DPH is F-Plane register
	TABRL		W = 0x89
	TABRH		W = 0x37
	TAB1:	ORG 0234H	
	DT	0x3789, 0x2277	;ROM data 14bits

TABRL	Return D	PTR low byte to W	,
Syntax	TABRL		
Operands	-		
Operation	$(W) \leftarrow RO$	M[DPTR] low byte conte	ent, Where DPTR = {DPH[max:8], FSR[7:0]}
Status Affected	-		
OP-Code	00 0000 010	01 0000	
Description	U	ister is loaded with low	v byte of ROM[DPTR]. This is a two-cycle
~ .	instruction.		
Cycle	2		
Example			
	MOVLW	(TAB1&0xFF)	
	MOVWF	FSR	;Where FSR is F-Plane register
	MOVLW	(TAB1>>8)&0xFF	
	MOVWF	DPH	;Where DPH is F-Plane register
	TABRL		W = 0x89
	TABRH		W = 0x37
		ORG 0234H	
	TAB1: DT	0x3789, 0x2277	;ROM data 14bits

TESTZ	Test if "f" is zero	
Syntax	TESTZ f	
Operands	f : 00h ~ 7Fh	
Operation	Set Z flag if (f) is 0	
Status Affected	Z	
OP-Code	00 1000 1fff ffff	
Description	If the content of register	f' is 0, Zero flag is set to 1.
Cycle	1	
Example	TESTZ REG1	B : REG1 = 0, Z = ? A : REG1 = 0, Z = 1

XORLW	Exclusive OR Litera	al with W
Syntax	XORLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) XOR k$	
Status Affected	Z	
OP-Code	01 1111 kkkk kkkk	
Description	The contents of the W register is placed in the W register	gister are XOR'ed with the eight-bit literal 'k'. The result r.
Cycle	1	
Example	XORLW 0xAF	$\mathbf{B}: \mathbf{W} = 0\mathbf{x}\mathbf{B}5$
-		A: W = 0x1A

XORWF	Exclusive OR W wit	h ''f''
Syntax	XORWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (W) XOR	(f)
Status Affected	Z	
OP-Code	00 0110 dfff ffff	
Description	Exclusive OR the contents	s of the W register with register 'f'. If 'd' is 0, the result is
-	stored in the W register. If	'd' is 1, the result is stored back in register 'f'.
Cycle	1	
Example	XORWF REG, 1	B : REG = 0xAF, W = 0xB5
-		A : $REG = 0x1A$, $W = 0xB5$

ELECTRICAL CHARACTERISTICS

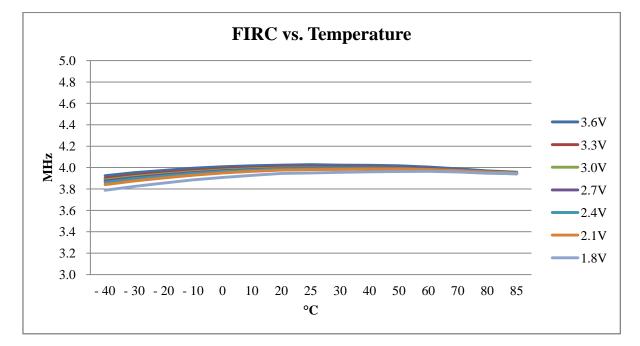
1. Absolute Maximum Ratings $(T_A = 25^{\circ}C)$

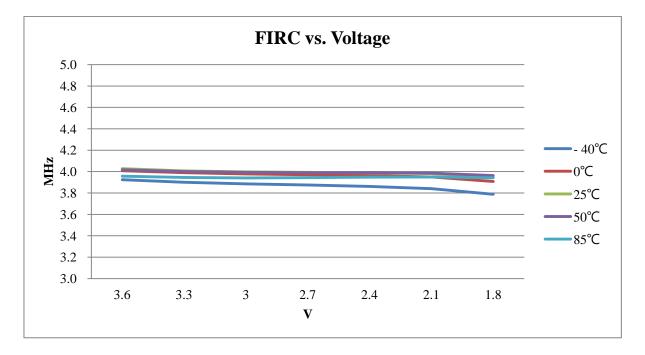
Parameter	Rating	Unit
Supply voltage	V_{SS} -0.3 to V_{SS} +4.2	
Input voltage	V_{SS} -0.3 to V_{DD} +0.3	V
Output voltage	V_{SS} -0.3 to V_{DD} +0.3	
Output current high per 1 PIN	-25	
Output current high per all PIN	-80	
Output current low per 1 PIN	+30	mA
Output current low per all PIN	+150	
Maximum Operating Voltage	4.2	V
Operating temperature	-40 to +85	°C
Storage temperature	-65 to +150	

Parameter	Symbol		Conditions	Min	Тур	Max	Unit
	V	FAST mod	le, 25°C, Fsys = 4 MHz	1.5	_	4.2	v
Operating Voltage	V_{DD}	SLOW	mode, 25°C, SIRC	1.2	-	4.2	v
Input High Voltage	V _{IH}	All Input	$V_{DD} = 3V$	$0.6V_{DD}$	Ι	_	V
Input Low Voltage	V_{IL}	All Input	$V_{DD} = 3V$	-	-	$0.2 V_{\text{DD}}$	V
I/O Port Source Current	I _{OH}	All Output except PA7	$V_{DD} = 3V, V_{OH} = 0.9V_{DD}$	2	4	-	mA
		All Output, except PA0 PA7	$V_{DD} = 3V, V_{OL} = 0.1V_{DD}$	7	14	_	
I/O Port Sink Current	I _{OL}	PA0 HSNK disable	$V_{DD} = 3V, V_{OL} = 0.1V_{DD}$	7	14	-	mA
		PA0	$V_{DD} = 3V, V_{OL} = 0.1V_{DD}$	-	240	-	
		HSNK enable	$V_{DD}=3V,V_{OL}=0.2V_{DD}$	_	420	-	
		PA7	$V_{DD} = 3V, V_{OL} = 0.1V_{DD}$	5	10	-	
		FAST mode, LVR enable, WDT enable	$V_{DD} = 3V,$ FIRC = 4 MHz	-	0.5	-	mA
		SLOW mode LVR enable	$V_{DD} = 3 V, SIRC,$ WKTPSC = 11	-	4	_	
Supply Current	I _{DD}	IDLE mode, LVR enable	$V_{DD} = 3V, SIRC,$ WKTPSC = 11	-	3.7	_	
		IDLE mode, LVR disable	$V_{DD} = 3V, SIRC,$ WKTPSC = 11	_	2.3	_	μA
		STOP mode, LVR enable	$V_{DD} = 3V$	-	1.3	_	
		STOP mode, LVR disable	$V_{DD} = 3V$	-	_	0.1	
LVR Reference	V _{LVR}	$T_A = 25^{\circ}C$	TM57ME16	-	1.2	-	v
Voltage	* LVR	$I_A = 23$ C	TM57ME18	-	1.6	-	v
LVR Hysteresis Voltage	V _{HYST}	$T_A = 25^{\circ}C$		-	±0.1	_	V
Low Voltage Detection time	t _{LVR}		$T_A = 25^{\circ}C$		-	_	μs
Pull-Up Resistor	R _P	$V_{IN} = 0 V$ Port A	$V_{DD} = 3V$	-	230	_	KΩ

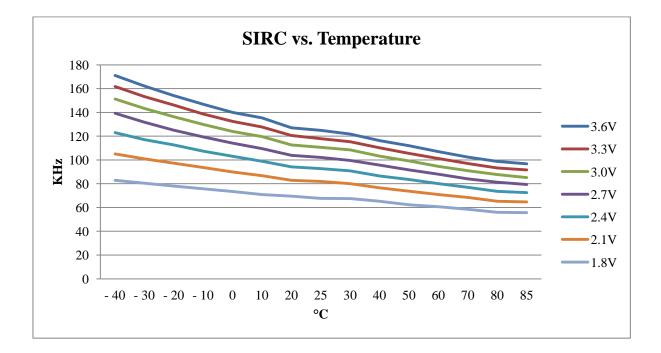
2. DC Characteristics ($T_A = 25^{\circ}C$, $V_{DD} = 1.2V$ to 4.2V)

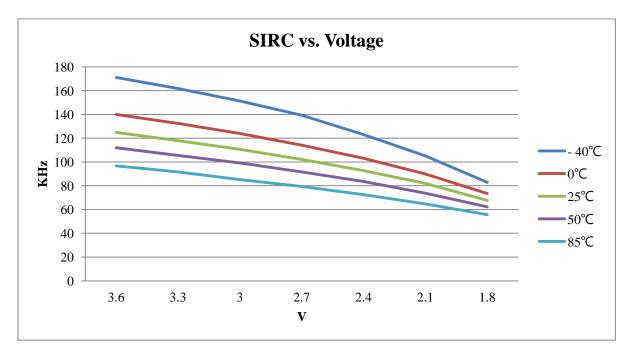
3. Clock Timing $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

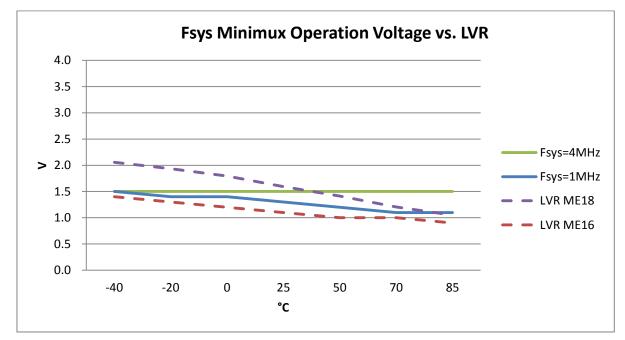

Parameter	Condition	Min	Тур	Max	Unit
Internal RC Frequency	25° C, $V_{DD} = 2.0 \sim 3.6$ V	3.9	4	4.1	MII-
	-40° C ~ 85°C, V _{DD} = 2.0 ~ 3.6V	3.8	4	4.2	MHz


4. Reset Timing Characteristics ($T_A = -40^{\circ}C$ to $+85^{\circ}C$)

Parameter	Conditions	Min	Тур	Max	Unit
RESET Input Low width	Input $V_{DD} = 3 V \pm 10 \%$	3	-		μs
WDT wakeup time	$V_{DD} = 3V$, WKTPSC = 00	_	18	-	ms
CDU start un time	$V_{DD} = 3V$, SLOWM = 1	-	4.7	-	
CPU start up time	$V_{DD} = 3V$, SLOWM = 0	_	5	_	ms

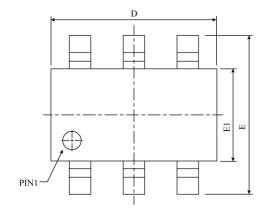


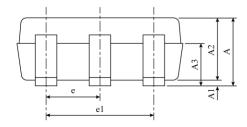

5. Characteristic Graphs

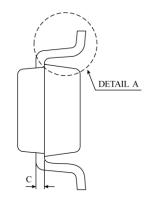


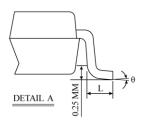
Note: Due to the variation of manufacturing process, this LVR will slightly vary between different chips.

PACKAGING INFORMATION

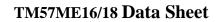

The ordering information:

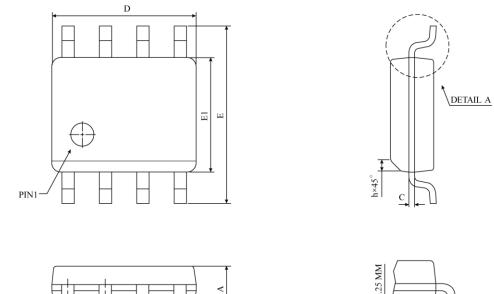

Ordering number	Package
TM57ME16-MTP	Wafer / Dice blank chip
TM57ME16-COD	Wafer / Dice with code
TM57ME16AS-MTP-A8	SOT23-6
TM57ME16-MTP-01	DIP 8-pin (300 mil)
TM57ME16-MTP-14	SOP 8-pin (150 mil)
TM57ME16-MTP-43	TSSOP-8
TM57ME18-MTP	Wafer / Dice blank chip
TM57ME18-COD	Wafer / Dice with code
TM57ME18CS-MTP-A8	SOT23-6
TM57ME18-MTP-01	DIP 8-pin (300 mil)
TM57ME18-MTP-14	SOP 8-pin (150 mil)

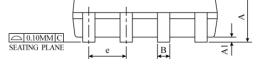


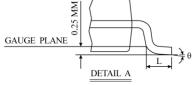

Package Information

SOT23-6 Package Dimension

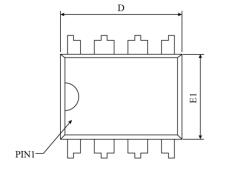


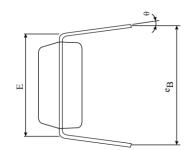

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH		
	MIN	NOM	MAX	MIN	NOM	MAX
А	-	-	1.45	-	-	0.057
A1	0	0.08	0.15	0	0.003	0.006
A2	0.90	1.10	1.30	0.035	0.043	0.051
A3	0.60	0.65	0.70	0.024	0.026	0.028
с	0.12	0.16	0.19	0.005	0.006	0.007
D	2.82	2.92	3.02	0.111	0.115	0.119
Е	2.70	2.90	3.10	0.106	0.114	0.122
E1	1.52	1.62	1.72	0.060	0.064	0.068
e	0.85	0.95	1.05	0.033	0.037	0.041
el	1.80	1.90	2.00	0.071	0.075	0.079
L	0.35	0.48	0.60	0.014	0.019	0.024
θ	0°	4°	8°	0°	4°	8°
JEDEC	M0-178 (AB)					

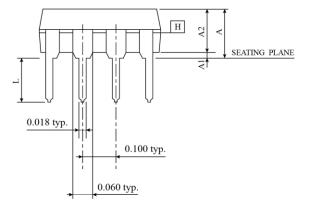

* NOTES : ALL DIMENSIONS REFER TO JEDEC STANDARD MO-178 AB DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.



SOP-8 (150mil) Package Dimension




SYMBOL	DIMENSION IN MM			DIN	DIMENSION IN INCH		
	MIN	NOM	MAX	MIN	NOM	MAX	
А	1.35	1.55	1.75	0.0532	0.0610	0.0688	
A1	0.10	0.18	0.25	0.0040	0.0069	0.0098	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.19	0.22	0.25	0.0075	0.0087	0.0098	
D	4.80	4.90	5.00	0.1890	0.1939	0.1988	
Е	5.80	6.00	6.20	0.2284	0.2362	0.2440	
E1	3.80	3.90	4.00	0.1497	0.1536	0.1574	
e	1.27 BSC			0.050 BSC			
h	0.25	0.38	0.50	0.0099	0.0148	0.0196	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	MS-012 (AA)						


* NOTES : DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

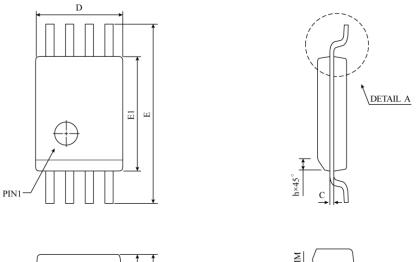
DIP-8 (300mil) Package Dimension

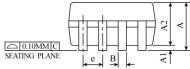
SYMBOL	DIMENSIC	N IN MM	DIMENSION IN INCH		
	MIN	MAX	MIN	MAX	
А	-	5.334	-	0.210	
A1	0.381	-	0.015	-	
A2	3.175	3.429	0.125	0.135	
D	9.017	10.160	0.355	0.400	
Е	7.620 BSC		0.300 BSC		
E1	6.223	6.477	0.245	0.255	
L	2.921	3.810	0.115	0.150	
е _В	8.509	9.525	0.335	0.375	
θ	0°	15°	0°	15°	
JEDEC	MS-001 (BA)				

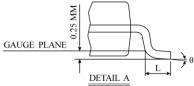
NOTES :

1. "D" , "E1" DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOTEXCEED .010 INCH.

2. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.


3. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.


4. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.


5. DATUM PLANE III COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.

TSSOP-8 (173mil) Package Dimension

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH		
	MIN	NOM	MAX	MIN	NOM	MAX
А	-	-	1.20	-	-	0.047
A1	0.05	0.10	0.15	0.002	0.004	0.006
A2	0.80	0.93	1.05	0.031	0.036	0.041
В	0.22 TYP			0.009 TYP		
D	2.90	3.00	3.10	0.114	0.118	0.122
Е	6.40 BSC			0.252 BSC		
E1	4.30	4.40	4.50	0.169	0.173	0.177
e	0.65 TYP			0.026 TYP		
L	0.45	0.60	0.75	0.018	0.024	0.030
θ	0°	4°	8°	0°	4°	8°
JEDEC	MS-153 (AA)					

* NOTES : DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.25 PER SIDE. DIMENSION "B" DOES NOT INCLUDE DAMBAR PROTRUSION.

ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 MM TOTAL IN EXCESS OF THE "B" DIMENSION AT MAXIMUM LOWER RADIUS OF THE LOWER RADIUS OF THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD IS 0.07 MM.