

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. tenx does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. tenx products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses tenx products for any such unintended or unauthorized application, Buyer shall indemnify and hold tenx and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that tenx was negligent regarding the design or manufacture of the part.

AMENDMENT HISTORY

Version	Date	Description		
0.90	Apr, 2016	New release.		
0.91	Jan, 2017	 P19, 20, 33, 34,49, 51, 53, 55, 57, 76, 79, 82, 62, 75, 76, 82, 86: Correcting errors. P106, 107: Add Characteristic Graphs. P7: Add HS function description 		
0.92	Mar, 2017	 P21, 29, 30: LVR2.0V modified to LVR1.8V P106: Update LVR characteristics graph P67,P69, P80: Modify the description of RCVBF/RCVOVF 		
0.93	Sep, 2017	 P15: SYSCFG LVR 2.0V modified to 1.8V P7, 10: ISP modified to ICP 		

DS-TM57M5541_E 2 Rev 0.93, 2017/09/07

CONTENTS

AMI	ENDMENT HISTORY	2
CON	NTENTS	3
FEA	ATURES	5
BLO	OCK DIAGRAM	8
PIN	ASSIGNMENT	9
PIN	DESCRIPTIONS	10
	SUMMARY	
	NCTIONAL DESCRIPTION	
	CPU Core	
	1.1 Program ROM (PROM)	
	1.2 System Configuration Register (SYSCFG)	
	1.3 Page Locker Function	
	1.4 RAM Addressing Mode	17
	1.5 Programming Counter (PC) and Stack	18
2.	Reset	21
	2.1 Power on Reset	21
	2.2 Low Voltage Reset	21
	2.3 External Pin Reset	
	2.4 Watchdog Timer Reset	22
3.	Clock Circuitry and Operation Mode	23
	3.1 System Clock	
	3.2 Dual System Clock Modes Transition	
	3.3 System Clock Oscillator	
4.	Power	29
5.	Interrupt	31
6.	I/O Port	35
	6.1 PA0-6, PB0-7, PD0-7, PE0-1	35
	6.2 PA7	38
7.	Peripheral Functional Block	39
	7.1 Watchdog (WDT) /Wakeup (WKT) Timer	39
	7.2 Timer0	
	7.3 Timer1	
	7.4 Timer3:16-bit Timer	
	7.5 PWM0: (8+2) bits PWM	
	7.7 Analog-to-Digital Converter	

7.8 Touch Key	60
7.9 Serial Peripheral Interface (SPI)	
7.10 Specific Purpose Slave I2C Interface	
MEMORY MAP	74
INSTRUCTION SET	87
ELECTRICAL CHARACTERISTICS	100
1. Absolute Maximum Ratings	100
2. DC Characteristics	100
3. Clock Timing	101
4. Reset Timing Characteristics	101
5. LVR Circuit Characteristics	102
6. ADC Electrical Characteristics	102
7. Characteristic Graphs	103
PACKAGING INFORMATION	108

FEATURES

1. ROM: 4K x 14 bits MTP (Multi Time Programmable ROM) with Page Locker function

2. RAM: 368 x 8 bits

3. STACK: 8 Levels

4. System Oscillation Sources (Fsys):

- Fast-clock
 - FIRC (Fast Internal RC): 16 MHz
 - FXT (Fast Crystal): 1~16 MHz
- Slow-clock
 - SIRC (Slow Internal RC): 128 KHz @VCC=3V
 - SXT (Slow Crystal): 32768 Hz

5. System Clock Prescaler:

• System Oscillation Sources can be divided by 1/2/4/16 as System Clock (Fsys)

6. Dual System Clock:

• FIRC+SIRC or FXT+SIRC or FIRC+SXT

7. Power Saving Operation Mode

- FAST Mode: Slow-clock can be disabled or enabled, Fast-clock keeps CPU running
- SLOW Mode: Fast-clock can be disabled or enabled, Slow-clock keeps CPU running
- IDLE Mode: Fast-clock and CPU stop. Slow-clock, Timer3, or Wake-up Timer keep running
- STOP Mode: All clocks stop, T2 and Wake-up Timer stop

8. 3 Independent Timers

- Timer0
 - 8-bit timer divided by 1~256 pre-scaler option, Reload/Interrupt/Stop function
- Timer1
 - 8-bit timer divided by 1~256 pre-scaler option, Reload/Interrupt/Stop function
 - Overflow and Toggle out
- Timer3
 - 16-bit timer with 1~256 pre-scaler options, Reload/Interrupt/Stop function
 - IDLE mode wake-up timer
 - Clock sources: Slow-clock, Fsys

DS-TM57M5541_E 5 Rev 0.93, 2017/09/07

9. Interrupt

- Five External Interrupt pins
 - 1 pin are falling edge wake-up triggered & interrupts
 - 4 pins is rising or falling edge wake-up triggered & interrupt
- Timer0/Timer1/Timer3/WKT (wake-up) Interrupts
- TK (Touch Key) /ADC/LVD Interrupt
- SPI/I2C Interrupt
- Individual Interrupt Vector

10. Wake-up (WKT) Timer

• Clocked by built-in RC oscillator with 4 adjustable interrupt times

17 ms/34 ms/68 ms/136 ms @VCC=3V, 16 ms/32 ms/64 ms/128 ms @VCC=5V

11. Watchdog Timer

- Clocked by built-in RC oscillator with 4 adjustable reset times
 140 ms/280 ms/1120 ms/2240 ms @VCC=3V, 128 ms/256 ms/1024 ms/2048 ms @VCC=5V
- Watchdog timer can be disabled/enabled in STOP mode

12. PWMx4

- PWM0:
 - 8+2 bits, duty-adjustable, period-adjustable controlled PWM
 - PWM0 clock source: Fast-clock or FIRC 16 MHz, with 1~64 pre-scalers
- PWM1A/PWM1B/PWM1C:
 - 8 bits, duty-adjustable (Independent), period-adjustable controlled (Shared) PWM x3
 - PWM1A/1B/1C clock source (Shared): Fast-clock or FIRC 16 MHz, with 1~64 pre-scalers

13. 12-bit ADC Converter with 8 input channels and 1 internal reference voltage

- Internal Bandgap reference voltage1.25V ±3% @25°C, VCC=3V~5V
- ADC reference voltage=VCC

14. Reset Sources

Power On Reset/Watchdog Reset/Low Voltage Reset/External Pin Reset

15. Low Voltage Reset (LVR) /Low Voltage Detection Flag (LVD) Option:

- 3-Level Low Voltage Reset: 2.0V/2.3V/2.9V
- 4-Level Low Voltage Detection Flag: 2.2V/2.5V/3.1V/4.5V

16. SPI Interface:

- Master or Slave mode selectable
- Programmable transmit bit rate
- Serial clock phase and polarity options
- MSB-first or LSB-first selectable

17. I2C Interface:

• Specific purpose slave I2C interface with interrupt function

18. 16-Channel Touch Key

- 1~4 Key 10-bit H/W auto scan touch key (ATK0~3) with upper and lower boundaries for each key
- Interrupt/Wake-up CPU while key is pressed
- ATK scanning intervals (30/60/120/240 mS)
- TKCLD capacitor can select Internal CLD or External CLD

19. Operating Voltage:

- Fsys=1 MHz, LVR ~5.5V
- Fsys=16 MHz, 3.0~5.5V
- 20. Operating Temperature Range: -40°C to +85°C
- 21. Table Read Instruction: 14-bit ROM data lookup table
- 22. Instruction set: 39 Instructions

23. Instruction Execution Time

• 2 system clocks (Fsys) per instruction except branch

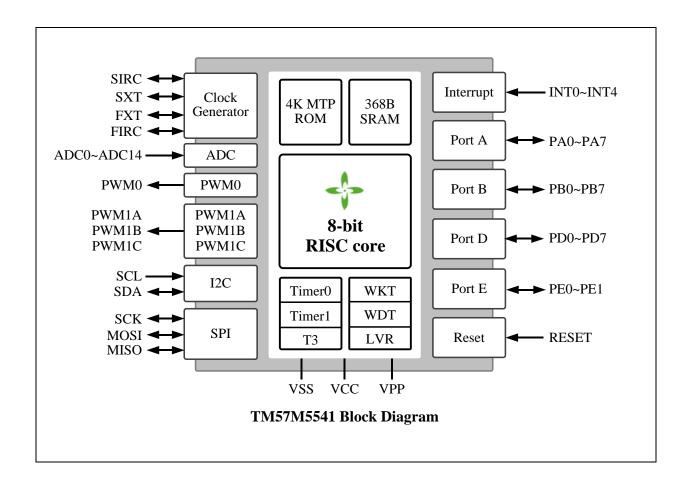
24. I/O ports: Maximum 26 programmable I/O pins

- Open-Drain Output
- CMOS Push-Pull Output
- Schmitt Trigger Input with pull-up resistor option
- 7 High Sink Pins (50mA@5V)

25. Programming connectivity support 5-wire (ICP) or 8-wire program

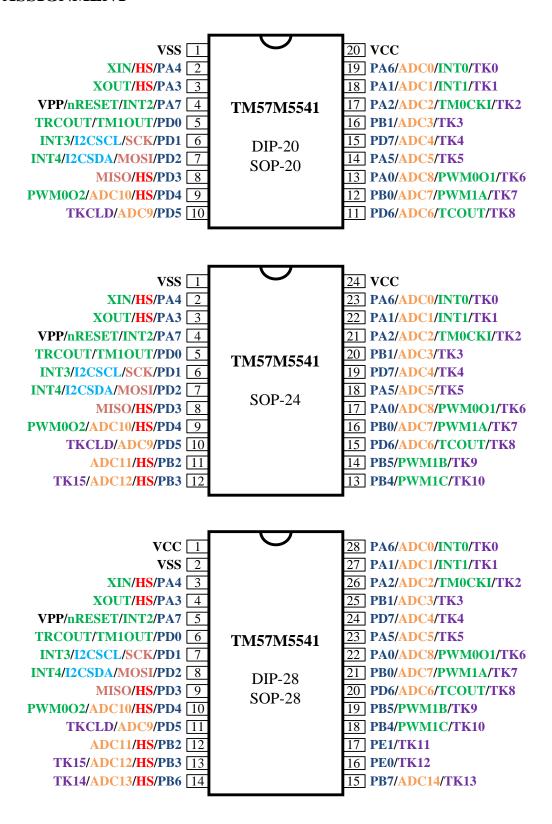
26. Page Locker Size: 512W/640W/768W/2304W by 128 words step

27. Package Types:


• SOP-28/SOP-24/SOP-20/DIP-28/DIP-20

28. Supported EV board on ICE

EV board: EV8212


BLOCK DIAGRAM

DS-TM57M5541_E 8 Rev 0.93, 2017/09/07

PIN ASSIGNMENT

PIN DESCRIPTIONS

Name	In/Out	Pin Description
PA0-PA6 PB0-PB7 PD0-PD7 PE0-PE1	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS " push-pull " output or " open-drain " output. Pull-up resistors are assignable by software.
PA7	I/O	Bit-programmable I/O port for Schmitt-trigger input, or " open-drain " output. Pull-up resistors are assignable by software Schmitt-trigger input with pull-high
nRESET	I	External active low reset, internal pull-high
VCC, VSS	P	Power Voltage input pin and ground
VPP	I	PROM programming high voltage input
INT0-INT4	I	External interrupt input
XIN, XOUT	-	Crystal / Resonator oscillator connection for system clock.
TM0CKI	I	Timer0's input in counter mode
TM1OUT	О	Timer1 match output, TM1OUT toggles when Timer1 overflow occurs.
TRCOUT	О	Touch Key clock output
PWM0O1	О	(8+2) bit PWM0 output 1
PWM0O2	О	(8+2) bit PWM0 output 2
PWM1A	О	8 bit PWM1A output
PWM1B	О	8 bit PWM1B output
PWM1C	О	8 bit PWM1C output
ADC14~ADC0	I	A/D channels input
IICSDA, IICSCL	-	Inter-Integrated Circuit Pin
MISO, MOSI, SCK	-	Serial Peripheral Interface Pin
TK0-TK13	I	Touch key input
TKCLD	I	Touch key capacitor input
HS	О	High sink Pin
TCOUT	О	Post-prescaler Instruction Cycle (Fsys/2) output

Programming pins:

Normal mode: VCC/VSS/PA0/PA1/PA2/PA3/PA4/PA7 (VPP)

ICP mode: VCC/VSS/PA0/PA1/PA7 (VPP) -When using ICP (In-circuit Program) mode, the PCB needs to remove all components of PA0, PA1, PA7.

PIN SUMMARY

					GPIO				Alte	erna	te I	Function		
					Inj	put	Ou	tput	Reset					
28-SOP/DIP	24-SOP	20-SOP/DIP	Pin Name	Туре	Wake up	Ext. Interrupt	O.D	P.P	Function After Reset	PWM	High Sink	TK	ADC	MISC
1	24	20	VCC	P										
2	1	1	VSS	P										
3	2	2	PA4/XIN/HS	I/O			0	0	PA4		0			XIN
4	3	3	PA3/XOUT/HS	I/O			0	0	PA3		0			XOUT
5	4	4	VPP/nRESET/INT2/PA7	I/O	0	0	0		PA7					nRESET
6	5	5	TRCOUT/TM1OUT/PD0	I/O			0	0	PD0					TM1OUT
7	6	6	INT3/IICSCL/SCK/PD1	I/O	0	0	0	0	PD1					I2C/SPI
8	7	7	INT4/IICSDA/MOSI/PD2	I/O	0	0	0	0	PD2					I2C/SPI
9	8	8	MISO/PD3/HS	I/O			0	0	PD3		0			SPI
10	9	9	PWM0O2/ADC10/PD4/HS	I/O			0	0	PD4	0	0		0	
11	10	10	TKCLD/ADC9/PD5	О			0	0	PD5			0	0	TKCLD
12	11		ADC11/PB2/HS	I/O			0	0	PB2		0		0	
13			TK15/ADC12/PB3/HS	I/O			0	0	PB3		0	0	0	
14	12		TK14/ADC13/PB6/HS	I/O			0	0	PB6		0	0	0	
15			PB7/ADC14/TK13	I/O			0	0	PB7			0	0	
16			PE0/TK12	I/O	0		0	0	PE0			0		
17			PE1/TK11	I/O	0		0	0	PE1			0		
18	13		PB4/PWM1C/TK10	I/O			0	0	PB4	0		0		
19	14		PB5/PWM1B/TK9	I/O			0	0	PB5	0		0		
20	15	11	PD6/ADC6/TCOUT/TK8	I/O			0	0	PD6			0	0	TCOUT
21	16	12	PB0/ADC7/PWM1A/TK7	I/O			0	0	PB0	0		0	0	
22	17	13	PA0/ADC8/PWM0O1/TK6	I/O			0	0	PA0	0		0	0	

						GP	OI				Alto	erna	te F	unction
					Inj	put	Out	tput	Reset					
28-SOP/DIP	24-SOP	20-SOP/DIP	Pin Name	Туре	Wake up	Ext. Interrupt	O.D	P.P	Function After Reset	PWM	High Sink	TK	ADC	MISC
23	18	14	PA5/ADC5/TK5	I/O			0	0	PA5			0	0	
24	19	15	PD7/ADC4/TK4	I/O			0	0	PD7			0	0	
25	20	16	PB1/ADC3/TK3	I/O			0	0	PB1			0	0	
26	21	17	PA2/ADC2/TM0CKI/TK2	I/O			0	0	PA2			0	0	TM0CKI
27	22	18	PA1/ADC1/INT1/TK1	I/O	0	0	0	0	PA1			0	0	
28	23	19	PA6/ADC0/INT0/TK0	I/O	0	0	0	0	PA6			0	0	

Symbol : P.P. = Push-Pull Output

O.D. = Open Drain SYS = by SYSCFG bit HS = High Sink

FUNCTIONAL DESCRIPTION

1. CPU Core

1.1 Program ROM (PROM)

The MTP Program ROM of this device is 4K words, with an extra INFO area to store the SYSCFG. The ROM can be written multi-times and can be read as long as the PROTECT and LPROT bits of SYSCFG are not set. The SYSCFG can be read no matter PROTECT or LPROT is set, but PROTECT bit can be cleared only when the User ROM Code area is erased, and LPROT bit can be cleared only when the Lib ROM Code area is erased. That is, unprotect the PROTECT or LPROT bit needs to erase the corresponding ROM area. If LPROT bit is set, The ROM can still be written multi-times in the User ROM Code area to update user ROM code again by writer, but the Lib ROM Code area will not be read or written again by writer until the LPROT bit is cleared. On the other hand, if PORTECT bit is set, the user ROM code area will not be read by writer, and the user ROM code can't be updated until the PORTECT bit is cleared.

000	Reset Vector
001	Interrupt Vector
00D	
00E	
	User ROM Code
FFF	Lib ROM Code
	SYSCFG (INFO area)

DS-TM57M5541_E 13 Rev 0.93, 2017/09/07

1.1.1 Reset Vector (000H)

After reset , system will restart the program counter (PC) at the address 000h, all registers will revert to the default value

1.1.2 Interrupt Vector (001H~00DH)

When an interrupt occurs, the program counter (PC) will be pushed onto the stack and jumps to address 001H~00DH with corresponding interrupt.

Address	Source	Description
001	LVD	Low Voltage detection interrupt
002	Timer3	Timer3 Counter Overflow
003	TK	Touch Key interrupt
004	I2C/SPI	I2C interrupt or SPI interrupt
005	Timer0	Timer0 Counter Overflow
006	Timer1	Timer1 Counter Overflow
007	XINT4	PD2 rising/falling interrupt (rising/falling selectable)
008	XINT3	PD1 rising/falling interrupt (rising/falling selectable)
009	XINT2	PA7 falling interrupt
00a	XINT1	PA1 rising/falling interrupt (rising/falling selectable)
00b	XINT0	PA6 rising/falling interrupt (rising/falling selectable)
00c	ADC	ADC interrupt
00d	WKT	Wakeup Timer Match

DS-TM57M5541_E 14 Rev 0.93, 2017/09/07

1.2 System Configuration Register (SYSCFG)

The System Configuration Register (SYSCFG) is located at MTP INFO area, it contains two 13bits registers (CFGWL/CFGWH). The SYSCFG determines the option for initial condition of MCU. It is written by PROM Writer only. User can select LVR operation Mode and chip operation mode by SYSCFG register. The 13th bit of CFGWH is code protection selection bit. If this bit is 1, the data in PROM will be protected, when user reads PROM.

Bi	Bit		13~0			
Default	Value	111111111111				
Bi	t	Description				
		LPROT: Lib Code protection selection				
	13	1	Enable			
		0	Disable			
		LSIZE: Lit	Size selection			
		1111	2304W			
CFGWL	12~9					
		0001	512W			
		0000	No use Page locker function			
	8~0	Tenx Reserved				
		PROTECT	: Code protection selection			
	13	1	Enable			
		0	Disable			
		XRSTE:	External Pin (PA7) Reset Enable			
	12	1	Enable			
		0	Disable (PA7 as input I/O pin)			
		-	Voltage Reset Mode			
		11	1.8V			
CFGWH	11-10	10	Disable			
01 0 1 1 1		01	2.3V			
		00	2.9V			
			DT Reset Enable			
	9-8	11	Always Enable			
		10	Enable in FAST/SLOW mode, Disable in IDLE/STOP mode			
		0X	Disable			
	7-0	Tenx Reser	ved			

DS-TM57M5541_E 15 Rev 0.93, 2017/09/07

1.3 Page Locker Function

TM57M5541 support Page Locker function. By setting LPROT (CFGWL.13), user can choose whether to turn it on. If the user A (library code provider) turns this function on, the user A (library code provider) can select different size (512~2304W) of lib protected area by LSIZE (CFGWL.12~9). In lib protected area, the user B (firmware developer) can't read ROM code by TABRL/TABRH instruction or in any other way. By using the TICE99IDE tool, the user A can provide a protected lib code for the user B to use, but the user B does not know its details, and the user B still can continue to complete the main code in the unprotected area.

4K Program ROM

	iii i ogium itom
000	Reset Vector
001	Interrupt Vector
00D	
00E	
	User Code
6FF	
700	
	Maximum Lib Protected Area
	2304W
DFF	
E00	
	Minimum Lib Protected Area 512W
PPP	31244
FFF	

LSIZE	Lib Protected Area
2304	(700H~FFFH)
2176	(780H~FFFH)
2048	(800H~FFFH)
1920	(880H~FFFH)
1792	(900H~FFFH)
1664	(980H~FFFH)
1536	(A00H~FFFH)
1408	(A80H~FFFH)
1280	(B00H~FFFH)
1152	(B80H~FFFH)
1024	(C00H~FFFH)
896	(C80H~FFFH)
768	(D00H~FFFH)
640	(D80H~FFFH)
512	(E00H~FFFH)

1.4 RAM Addressing Mode

There are two Data Memory Planes in CPU, F-Plane and R-Plane.

The lower locations of F-Plane are reserved for the SFR. Above the SFR is General Purpose Data Memory, implemented as static RAM. F-Plane can be addressed directly or indirectly. Indirect Addressing is made by INDF register. The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a pointer) . The first half of F-Plane is bit-addressable, while the second half of F-Plane is not bit-addressable.

R-Plane can also be addressed directly or indirectly. Indirect Addressing is made by INDR register. The INDR register is not a physical register. Addressing INDR actually addresses the register whose address is contained in the RSR register (RSR is a pointer). The R-Plane is not bit-addressable and only support two MOVWR, MOVRW byte operating instructions.

	F-P	lane
00	Regi Bit Add	
1f		
20	FR	AM
		ressable
2f		
30	FRAM, bank0 Bit Addressable	FRAM, bank1 Bit Addressable
3f		
40	FRAM, bank0	FRAM, bank1
7 f		

	R-Plane
00 3f	Registers
40	
	RRAM
ff	

DS-TM57M5541_E 17 Rev 0.93, 2017/09/07

1.5 Programming Counter (PC) and Stack

The Programming Counter is 12-bit wide capable of addressing a 4Kx14 MTP ROM. As a program instruction is executed, the PC will contain the address of the next program instruction to be executed. The PC value is normally increased by one except the followings. The Reset Vector (000h) and the Interrupt Vector (001h~00dh) are provided for PC initialization and Interrupt. For CALL/GOTO instructions, PC loads 10 bits address from instruction word. For RET/RETI/RETLW instructions, PC retrieves its content from the top level STACK. For the other instructions updating PC [7:0], the PC [11:8] keeps unchanged. The STACK is 12-bit wide and 8-level in depth. The CALL instruction and hardware interrupt will push STACK level in order. While the RET/RETI/RETLW instruction pops the STACK level in order.

For table lookup, the device offer the powerful table read instructions TABRL, TABRH to return the 14-bit ROM data into W by setting the DPTR= { DPH, DPL } F-Plane registers.

♦ Example: To look up the PROM data located "TABLE" & "TABLE2".

ORG 000H ; Reset Vector GOTO START

START:

MOVLW 00H

MOVWF INDEX ; Set lookup table's address.

LOOP:

MOVFW INDEX ; Move index value to W register.

CALL TABLE ; To lookup data, W=55H.

INCF INDEX, 1 ; Increment the index address for next address

.

GOTO LOOP ; Go to LOOP label.

....

MOVLW (TABLE2 >> 8) & 0xff

MOVWF DPH ; DPH register (F0F.2~0)

MOVLW (TABLE2) & 0xff

MOVWF DPL ; DPL register (F13.7~0)

TABRL ; W=86H TABRH ; W=19H

. . . .

TABLE:

ADDWF PCL, 1; Add the W with PCL, the result back in PCL.

RETLW 55H ; W=55h when return RETLW 56H ; W=56H when return RETLW 58H ; W=58H when return

• • • •

ORG 368H

TABLE2:

.DT 0x1986, 0x3719, 0x2983... ; 14-bit ROM data

1.5.1 ALU and Working (W) Register

The ALU is 8-bit wide and capable of addition, subtraction, shift and logical operations. In two-operand instructions, typically one operand is the W register, which is an 8-bit non-addressable register used for ALU operations. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either W register or a file register. Depending on the instruction executed, the ALU may affect the values of Carry (C), Digit Carry (DC), and Zero (Z) Flags in the STATUS register. The C and DC flags operate as a/Borrow and/Digit Borrow, respectively, in subtraction.

Note: /Borrow represents inverted of Borrow register.

/Digit Borrow represents inverted of Digit Borrow register.

1.5.2 STATUS Register (F-Plane 03H)

This register contains the arithmetic status of ALU and the reset status. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. It is recommended, therefore, that only BCF, BSF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect those bits.

STATUS	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
Reset Value	0	0	0	0	0	0	0	0					
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W					
Bit		Description											
7	GB1: Gene	eral Purpose	Bit 1										
6	GB0: Gene	eral Purpose	Bit 0										
5	RAMBK: 0: FRAM 1: FRAM		Selection										
4	0: after Po	TO: Time Out Flag 0: after Power On Reset, LVR Reset, or CLRWDT/SLEEP instruction 1: WDT time out occurs											
3	0: after Po	Down Flag ower On Res LEEP instru	set, LVR Res	set, or CLRV	VDT instruct	tion							
2		ult of a logic	operation is										
	DC: Decim	nal Carry Fla	g or Decima	1 / Borrow F	lag								
		ADD in	struction			SUB ins	struction						
1	0: no carry					from the lo	w nibble bits	s of the					
	1: a carry from the low nibble bits of the result result occurs occurs 1: no borrow												
	occurs C: Carry F	lag or/Borro	w Flag		1. 110 00110	vv							
0	2. 2		struction			SUB ins	struction						
0	0: no carry 1: a carry o	occurs from t			0: a borrow 1: no borro	occurs fron							

DS-TM57M5541_E 19 Rev 0.93, 2017/09/07

♦ Example: Write immediate data into STATUS register.

MOVLW

00H

MOVWF **STATUS** ; Clear STATUS register.

; Set C=1.

♦ Example: Bit addressing set and clear STATUS register.

BSF STATUS, 0

BSF 03H, 5 ; Selection RAM Bank1

STATUS, 0 : Clear C=0. **BCF**

BCF 03H, 5 ; Selection RAM Bank0

♦ Example: Determine the C flag by BTFSS instruction.

BTFSS STATUS, 0 ; Check the carry flag GOTO ; If C=0, goto label_1 LABEL_1 **GOTO** LABEL_2 ; If C=1, goto label_2

DS-TM57M5541_E 20 Rev 0.93, 2017/09/07

2. Reset

This device can be RESET in four ways.

- Power-On-Reset (POR)
- Low Voltage Reset (LVR)
- External Pin Reset (PA7)
- Watchdog Reset (WDT)

Resets can be caused by Power on Reset (POR) , External Pin Reset (XRST) , Watchdog Timer Reset (WDTR) , or Low Voltage Reset (LVR) . The CFGWH controls the Reset functionality. After Reset, the SFRs are returned to their default value, the program counter (PC) is cleared , and the system starts running from the reset vector 000H place. The TO and PD flags at status register (STATUS) are indicate system reset status.

2.1 Power on Reset

After Power-On-Reset, all system and peripheral control registers are then set to their default hardware Reset values. The clock source, LVR level and chip operation mode are selected by the SYSCFG register value.

2.2 Low Voltage Reset

The Low Voltage Reset features static reset when supply voltage is below a threshold level. There are three threshold levels can be selected. The LVR's operation mode is defined by the SYSCFG register. See the following LVR Selection Table; user must also consider the lowest operating voltage of operating frequency.

LVR Selection Table:

LVR level	Operating voltage
LVR1.8	5.5V >VCC >2.2V
LVR2.3	5.5V >VCC >2.4V
LVR2.9	5.5V > VCC > 3.1V or V _{CC} = 5.0V

Different Fsys have different system minimum operating voltage, reference to Operating Voltage of DC characteristics, if current system voltage is low than minimum operating voltage and lower LVR is selected, then the system maybe enter dead-band and error occur.

2.3 External Pin Reset

The External Pin Reset can be disabled or enabled by the SYSCFG register. It needs to keep at least 2 SIRC clock cycle long to be seen by the chip. XRST also set all the control registers to their default reset value. The TO/PD flags are not affected by these resets.

DS-TM57M5541_E 21 Rev 0.93, 2017/09/07

2.4 Watchdog Timer Reset

WDT overflow Reset can be disabled or enabled by the SYSCFG register. It runs in Fast/Slow mode and runs or stops in IDLE/STOP mode. WDT overflow speed can be defined by WDTPSC SFR. WDT is cleared by device Reset or CLRWDT SFR bit WDT overflow Reset also set all the control registers to their default reset value. The TO/PD flags are not affected by these resets.

♦ Example: Defining Reset Vector

ORG 000H

GOTO START ; Jump to user program address.

ORG 010H

START:

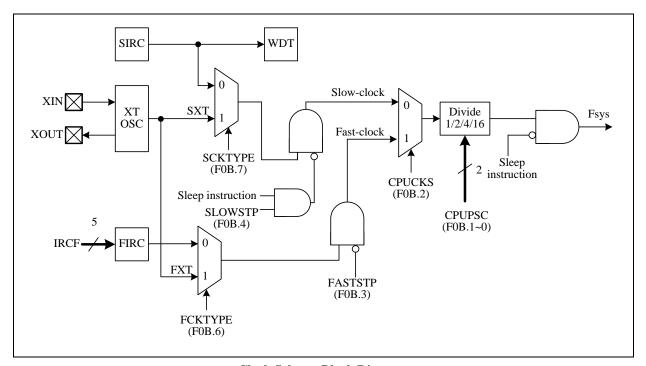
... ; 010H, The head of user program

. . .

GOTO START

DS-TM57M5541_E 22 Rev 0.93, 2017/09/07

3. Clock Circuitry and Operation Mode


3.1 System Clock

The device is designed with dual-clock system. There are four kinds of clock source, i.e. SIRC (Slow Internal RC), SXT (Slow Crystal, 32 KHz), FXT (Fast Crystal, 1~16 MHz) and FIRC (Fast Internal RC). Each clock source can be applied to CPU kernel as system clock. When in IDLE mode, only Slow-clock can be configured to keep oscillating to provide clock source to TM3 block. Refer to the figure below.

After Reset, the device is running at Slow mode with 128 KHz SIRC. S/W should select the proper clock rate for chip operation safety. The higher V_{CC} allows the chip to run at a higher System clock frequency. In a typical condition, an 16 MHz System clock rate requires $V_{CC} > 2.5V$.

The **TM57M5441** has an external oscillators connected to the XIN/XOUT pins. It relies on external circuitry for the clock signal and frequency stabilization, such as a stand-alone oscillator, quartz crystal, or ceramic resonator. In Fast mode, the fast oscillator can be used in the range from 1~16 MHz. In Slow mode, the slow oscillator can only use a clock frequency of 32.768 KHz.

The CLKCTL (F0B) SFR controls the System clock operating. H/W automatically blocks the S/W abnormally setting for this register. S/W can only change the Slow-clock type in Fast mode and change the Fast-clock type in Slow mode. Never to write both FASTSTP=1 & CPUCKS=1. It is recommended to write this SFR bit by bit.

Clock Scheme Block Diagram

The frequency of FIRC (Fast Internal RC) can be adjusted by IRCF (F1F). When IRCF=00h, frequency is the lowest. When IRCF=Fh, frequency is the highest. With this function, we can adjust the frequency of FIRC after power on. Each IC may have different default value of IRCF, to make sure the frequency of FIRC=16 MHz after Power on Reset.

DS-TM57M5541 E 23 Rev 0.93, 2017/09/07

FAST Mode:

In this mode, the program is executed using Fast-clock as CPU clock (Fsys) . The Timer0, Timer1 blocks are also driven by Fast-clock, The PWM0 block can driven by FIRC16M or Fsys. TM3 can also be driven by Fast-clock by setting TM3CKS=0 and CPUCKS=1.

SLOW Mode:

After power-on or reset, device enters SLOW mode, the default Slow-clock is SIRC. In this mode, the Fast-clock can stopped (by FASTSTP=1, for power saving) or running (by FASTSTP=0), and Slow-clock is enabled. All peripheral blocks (Timer0, Timer1etc...) clock sources are Slow-clock in the SLOW mode.

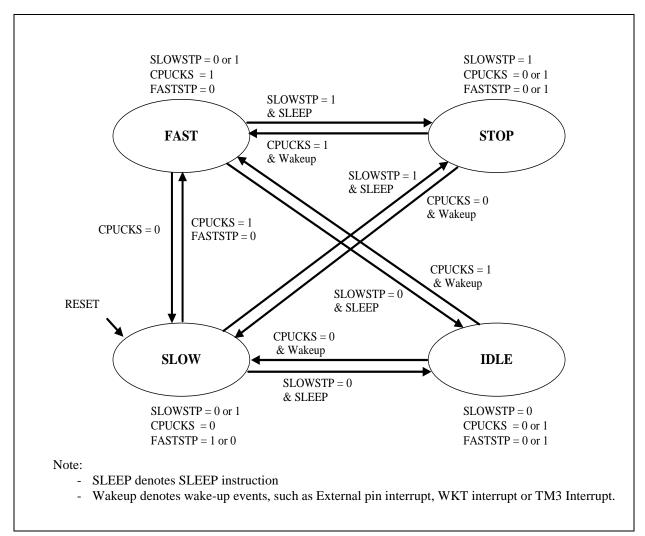
IDLE Mode:

If Slow-clock is enabled and TM3CKS=1 before executing the SLEEP instruction, the CPU enters the IDLE mode. In this mode, the Slow-clock will continue running to provide clock to TM3 block. CPU stop fetching code and all blocks are stop except TM3 related circuits.

Another way to keep clock oscillation in IDLE mode is setting WKTIE=1 before executing the SLEEP instruction. In such condition, the WKT keeps working and wake up CPU periodically.

TM3 and WKT/WDT are independent and have their own control registers. It is possible to keep both TM3 and WKT working and wake-up in the IDLE mode.

STOP Mode:


If Slow-clock and WKT/WDT are disabled before executing the SLEEP instruction, every block is turned off and the device enters the STOP mode. STOP mode is similar to IDLE mode. The difference is all clock oscillators either Fast-clock or Slow-clock is power down and no clock is generated.

DS-TM57M5541_E 24 Rev 0.93, 2017/09/07

3.2 Dual System Clock Modes Transition

The device is operated in one of four modes: FAST mode, SLOW mode, IDLE mode, and STOP mode.

CPU Operation Block Diagram

CPU Mode & Clock Functions Table:

Mode	Oscillator	Fsys	Fast-clock	Slow-clock	TM0/TM1	TM3	Wakeup event
FAST	FIRC	Fast-clock	Run	Set by SLOWSTP	Run	Run	X
SLOW	SIRC	Slow-clock	Set by FASTSTP	Run	Run	Run	X
IDLE	SIRC	Stop	Stop	Run	Stop	Run	WKT/IO/TM3
STOP	Stop	Stop	Stop	Stop	Stop	Stop	IO

DS-TM57M5541_E 25 Rev 0.93, 2017/09/07

• FAST mode switches to SLOW mode

The following steps are suggested to be executed by order when FAST mode switches to SLOW mode:

- (1) Enable Slow-clock (SLOWSTP=0)
- (2) Switch to Slow-clock (CPUCKS=0)
- (3) Stop Fast-clock (FASTSTP=1)
- ♦ Example: Switch FAST mode to SLOW mode.

MOVLW <u>0</u>0x101xxB

MOVWF F0B ; Slow-clock type=SIRC

BCF SLOWSTP ; Enable Slow-clock.

NOP

BCF CPUCKS ; Fsys=Slow-clock.

BSF FASTSTP ; Disable Fast-clock.

SLOW mode switches to FAST mode

SLOW mode can be enabled by CPUCKS=0 in F0B register of F-plane. The following steps are suggested to be executed by order when SLOW mode switches to FAST mode:

- (1) Enable Fast-clock (FASTSTP=0)
- (2) Switch to Fast-clock (CPUCKS=1)
- ♦ Example: Switch SLOW mode to FAST mode (The Fast-clock stop).

MOVLW 0<u>0</u>001000B

MOVWF F0B ; Fast-clock=FIRC

BCF FASTSTP ; Enable Fast-clock.

NOP

BSF CPUCKS ; Fsys=Fast-clock

• IDLE mode Setting

The IDLE mode can be configured by following setting in order:

- (1) Enable Slow-clock (SLOWSTP=0) or WKT(WKTIE=1)
- (2) Switch TM3 clock source to Slow-clock (TM3CKS=1)
- (3) Execute SLEEP instruction

IDLE mode can be waken up by External interrupt, WKT interrupt and TM3 interrupt.

♦ Example: Switch FAST/SLOW mode to IDLE mode.

BCF SLOWSTP ; Enable Slow-clock.

MOVLW 000<u>00000</u>B

MOVWR R2F ; TM3 Clock source=Slow-clock. TM3PSC=div 1

SLEEP ; Enter IDLE mode.

DS-TM57M5541 E 26 Rev 0.93, 2017/09/07

• STOP Mode Setting

The STOP mode can be configured by following setting in order:

- (1) Stop Slow-clock (SLOWSTP=1)
- (2) Stop WKT/WDT (WKTIE=0, WDTE=10 or 0X)
- (3) Execute SLEEP instruction

STOP mode can be waken up only by External pin interrupt.

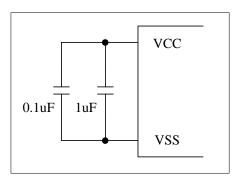
♦ Example: Switch FAST/SLOW mode to STOP mode.

BSF SLOWSTP ; Disable Slow-clock. MOVLW x000**0**000B ; Disable WKT counting

MOVWR INTIE

SLEEP ; Enter STOP mode.

R03	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWRDN		PWRDN									
R/W		W									
Reset	-	-	_	-	_	_	_	_			

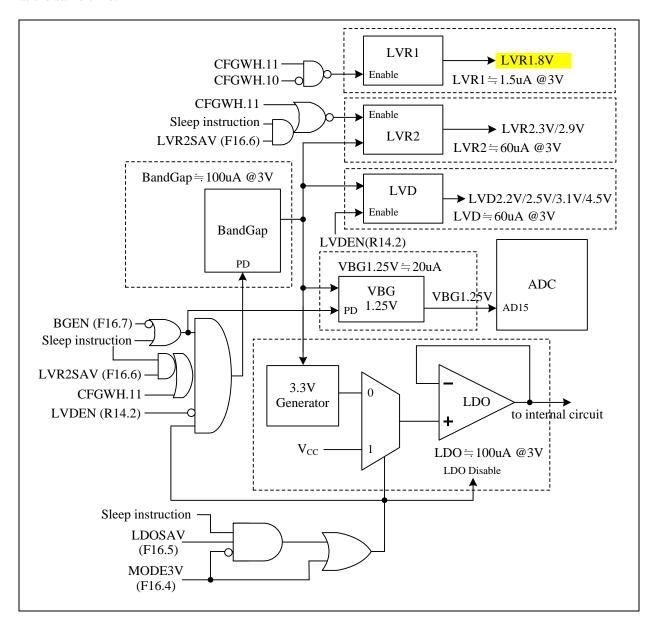

R03.7~0 **PWRDN:** Write this register to enter Power Down Mode

DS-TM57M5541_E 27 Rev 0.93, 2017/09/07

3.3 System Clock Oscillator

In the Fast Internal RC (FIRC) mode, the on-chip oscillator generates 16 MHz system clock. Since power noise degrades the performance of Internal Clock Oscillator, placing power supply bypass capacitors 1 uF and 0.1 uF very close to VCC/VSS pins improves the stability of clock and the overall system.

Internal RC Mode


DS-TM57M5541_E 28 Rev 0.93, 2017/09/07

4. Power

The TM57M5541 has a built-in internal low dropout regulator (LDO). When MODE3V=0, the voltage regulator outputs 3.3V power to the internal chip circuit. When MODE3V=1, the LDO is turned off, and the internal circuit receives a power supply directly from the VCC pin. Because the LDO consumes 200 μ A (Including LDO+BandGap) for operation, turning off LDO by setting MODE3V=1 can reduce the chip current consumption. However, setting MODE3V=1 is only valid for an operating condition of V_{CC} < 3.6V. The LDOSAV also control the LDO. When MODE3V=0 and LDOSAV=1, the LDO is turned off in STOP mode for saving power consumption.

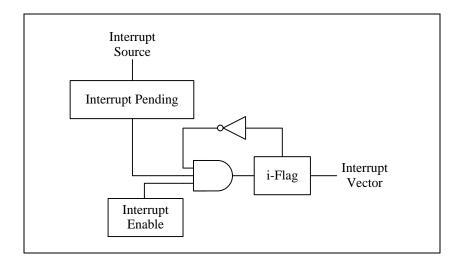
If we enable anyone of LDO or LVR2 or LVD or VBG1.25V, BandGap (\leftrightarrows 100 μ A) will be also enabled. To further save power consumption in STOP/IDLE mode, we must disable LDO/LVR2/LVD/VBG1.25V at the same time.

MODE3V=0

Operation Mode	LDOSAV (F16.5)	LVR CFGWH.11~10	LVR2SAV (F16.6)	LVDEN (R14.2)	BGEN (F16.7)	BandGap (100uA)	LDO (100uA)	LVR1 (2uA)	LVR2 (60uA)	LVD (60uA)	VBG 1.25V	Function
Fast / Slow	X	00	X	X	X	ON	ON	ON	ON	X	X	LVR2.9V
	X	01	X	X	X	ON	ON	ON	ON	X	X	LVR2.3V
	X	10	X	X	X	ON	ON	OFF	OFF	X	X	LVR Disable
rast/Slow	X	11	X	X	X	ON	ON	ON	OFF	X	X	LVR1.8V
	X	XX	X	1	X	ON	ON	X	X	ON	X	LVD Enable
	X	XX	X	X	1	ON	ON	X	X	X	ON	VBG1.25V
	0	00	0	X	X	ON	ON	ON	ON	X	OFF	LVR2.9V
	0	01	0	X	X	ON	ON	ON	ON	X	OFF	LVR2.3V
	0	10	X	X	X	ON	ON	OFF	OFF	X	OFF	LVR Disable
	0	11	X	X	X	ON	ON	ON	OFF	X	OFF	LVR1.8V
	0	00	1	X	X	ON	ON	ON	OFF	X	OFF	LVR1.8V
	0	01	1	X	X	ON	ON	ON	OFF	X	OFF	LVR1.8V
Idle / Stop	1	00	0	X	X	ON	OFF	ON	ON	X	OFF	LVR2.9V
	1	01	0	X	X	ON	OFF	ON	ON	X	OFF	LVR2.3V
	1	10	X	0	X	OFF	OFF	OFF	OFF	OFF	OFF	LVR Disable
	1	11	0	0	X	OFF	OFF	ON	OFF	OFF	OFF	LVR1.8V
	1	00	1	0	X	OFF	OFF	ON	OFF	OFF	OFF	LVR1.8V
	1	01	1	0	X	OFF	OFF	ON	OFF	OFF	OFF	LVR1.8V
	X	XX	X	1	X	ON	X	X	X	ON	OFF	LVD Enable

MODE3V=1

Operation Mode	LDOSAV (F16.5)	LVR CFGWH.11~10	LVR2SAV (F16.6)	LVDEN (R14.2)	BGEN (F16.7)	BandGap (100uA)	LDO (100uA)	LVR1 (2uA)	LVR2 (60uA)	LVD (60uA)	VBG 1.25V	Function
	X	00	X	X	X	ON	OFF	ON	ON	X	X	LVR2.9V
	X	01	X	X	X	ON	OFF	ON	ON	X	X	LVR2.3V
Fast / Slow	X	10	X	0	0	OFF	OFF	OFF	OFF	OFF	OFF	LVR Disable
Fast / Slow	X	11	X	0	0	OFF	OFF	ON	OFF	OFF	OFF	LVR1.8V
	X	XX	X	1	X	ON	OFF	X	X	ON	X	LVD Enable
	X	XX	X	X	1	ON	OFF	X	X	X	ON	VBG1.25V
	X	00	0	X	X	ON	OFF	ON	ON	X	OFF	LVR2.9V
	X	01	0	X	X	ON	OFF	ON	ON	X	OFF	LVR2.3V
	X	10	X	0	X	OFF	OFF	OFF	OFF	OFF	OFF	LVR Disable
Idle / Stop	X	11	X	0	X	OFF	OFF	ON	OFF	OFF	OFF	LVR1.8V
	X	00	1	0	X	OFF	OFF	ON	OFF	OFF	OFF	LVR1.8V
	X	01	1		X	OFF	OFF	ON	OFF	OFF	OFF	LVR1.8V
	X	XX	X	1	X	ON	X	X	X	ON	OFF	LVD Enable


5. Interrupt

This device has 1 level, 13 vector and 14 interrupt sources. Each interrupt source has its own enable control bit. An interrupt event will set its individual pending flag; no matter its interrupt enable control bit is 0 or 1. Because device has 8 vectors, there is not an interrupt priority register. Priority of each interrupt is equal and the device does not support nested interrupt. Another interrupts can be executed only if the current interrupt is exited (that is, RETI instruction is executed). Although the interrupts do not have priority, however, when exit from current interrupt, if there are more than 2 interrupts happened, the priority of the interrupt is LVD >TM3 >TK >I2C/SPI >TM0 >TM1 >XINT4 >XINT3 >XINT2 >XINT1 >XINT0 >ADC >WKT.

No	Address	Source	Description	WakeUp
1	001	LVD	Low Voltage detection interrupt	Yes
2	002	Timer3	Timer3 Counter Overflow	Yes
3	003	TK	Touch Key interrupt	Yes
4	004	I2C/SPI	I2C interrupt or SPI interrupt	Yes/No
5	005	Timer0	Timer0 Counter Overflow	No
6	006	Timer1	Timer1 Counter Overflow	No
7	007	XINT4	PD2 rising/falling interrupt (rising/falling selectable)	Yes
8	008	XINT3	PD1 rising/falling interrupt (rising/falling selectable)	Yes
9	009	XINT2	PA7 falling interrupt	Yes
10	00a	XINT1	PA1 rising/falling interrupt (rising/falling selectable)	Yes
11	00b	XINT0	PA6 rising/falling interrupt (rising/falling selectable)	Yes
12	00c	ADC	ADC interrupt	No
13	00d	WKT	Wakeup Timer Match	Yes

If the corresponding interrupt enable bit has been set (INTIE) , it would trigger CPU to service the interrupt. CPU accepts interrupt in the end of current executed instruction cycle. In the mean while, a "CALL 00n" (n ranges from 1 to d) instruction is inserted to CPU, and i-flag is set to prevent recursive interrupt nesting.

The i-flag is cleared in the instruction after the "RETI" instruction. That is, at least one instruction in main program is executed before service the pending interrupt. The interrupt event is level triggered. F/W must clear the interrupt event register while serving the interrupt routine.

DS-TM57M5541_E 31 Rev 0.93, 2017/09/07

♦ Example: Setup INT1 (PA1) interrupt request and rising edge trigger.

000H **ORG** ; Reset vector.

GOTO START ; Goto user program address.

ORG ; INT1 interrupt vector. 0aH

GOTO INT_SUBROUTINE ; If INT1 (PA1) input occurred rising edge.

ORG 0bH

START:

MOVLW 0101**00**01B

MOVWR PAMODL ; Enable INT1 (PA1) input pull up resistor.

MOVLW 0**1**001111B

MOVWR R₀B ; Set INT1 interrupt trigger as rising edge.

MOVLW 1111111<u>0</u>1B

MOVWF INTIF ; Clear INT1 interrupt request flag

MOVLW 000000**1**0B

MOVWR ; Enable INT1 interrupt. **INTIE**

MAIN:

GOTO MAIN

INT_SUBROUTINE:

GPR0 ; Push routine to Save W and STATUS data to buffers. **MOVWF**

MOVFW STATUS ; F-Plane 03H

MOVWF GPR1

BTFSS INT1IF ; Check INT1IF bit.

GOTO EXIT INT ; INT1IF=0, exit interrupt vector. ; INT1 interrupt service routine.

MOVLW 111111**0**1B

INTIF MOVWF ; Clear INT1 interrupt request flag

EXIT_INT **GOTO**

EXIT INT:

MOVFW GPR1 ; POP Routine W and STATUS data from buffers.

MOVWF STATUS MOVFW GPR0

RETI

R08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	TKIE	TM3IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F08.7 TKIE: Touch Key interrupt enable

> 0: disable 1: enable

F08.6 **TM3IE:** Timer3 interrupt enable

> 0: disable 1: enable

F08.5 **TM1IE:** Timer1 interrupt enable

0: disable 1: enable

F08.4 **TM0IE:** Timer0 interrupt enable

0: disable 1: enable

F08.3 **WKTIE:** Wakeup Timer interrupt enable

0: disable 1: enable

F08.2 **INT2IE:** INT2 (PA7) interrupt enable

0: disable 1: enable

F08.1 **INT1IE:** INT1 (PA1) interrupt enable

0: disable 1: enable

F08.0 **INT0IE:** INT0 (PA6) interrupt enable

0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	TKIF	TM3IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F09.7 **TKIF:** Touch Key interrupt event pending flag, set by H/W

ATKEN=1: Key's TK Data Count is over the pre-set compare threshold range

ATKEN=0: end of TK conversion

F09.6 **TM3IF:** Timer3 interrupt event pending flag

This bit is set by H/W while Timer3 overflows, write 0 to this bit will clear this flag

F09.5 **TM1IF:** Timer1 interrupt event pending flag

This bit is set by H/W while Timer1 overflows, write 0 to this bit will clear this flag

F09.4 **TM0IF:** Timer0 interrupt event pending flag

This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

F09.3 **WKTIF:** Wakeup Timer interrupt event pending flag

This bit is set by H/W while Wakeup Timer is timeout, write 0 to this bit will clear this flag

F09.2 **INT2IF:** INT2 (PA7) pin falling interrupt pending flag

This bit is set by H/W at INT2 pin's falling edge, write 0 to this bit will clear this flag

F09.1 **INT1IF:** INT1 (PA1) pin falling interrupt pending flag

This bit is set by H/W at INT1 pin's falling/rising edge, write 0 to this bit will clear this flag

F09.0 **INT0IF:** INT0 (PA6) pin falling/rising interrupt pending flag

This bit is set by H/W at INTO pin's falling/rising edge, write 0 to this bit will clear this flag

DS-TM57M5541_E 33 Rev 0.93, 2017/09/07

R0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	_	_	LVDIE	ADCIE	I2CIE	SPIE	INT4IE	INT3IE
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

F0D.5 **LVDIE:** LVD interrupt enable

0: disable 1: enable

F0D.4 **ADCIE:** ADC interrupt enable

0: disable 1: enable

F0D.3 **I2CIE:** I2C interrupt enable

0: disable 1: enable

F0D.2 **SPIE:** SPI interrupt enable

0: disable 1: enable

F0D.1 **INT4IE:** INT1 (PD2) interrupt enable

0: disable 1: enable

F0D.0 **INT3IE:** INT0 (PD1) interrupt enable

0: disable 1: enable

F0E	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	_	_	LVDIF	ADCIF	I2CIF	_	INT4IF	INT3IF
R/W	_		R/W	R/W	R/W	_	R/W	R/W
Reset	_	_	0	0	0	_	0	0

F0E.5 **LVDIF:** Low voltage detection interrupt flag,

This bit is set by H/W while $Vcc \le LVD$

F0E.4 **ADCIF:** ADC interrupt flag

This bit is set by H/W after end of ADC conversion, write 0 to this bit will clear this flag

F0E.3 **I2CIF:** I2C interrupt event pending flag,

This bit is set by H/W while

- 1. I2CRCD0 or I2CRCD1 receive new data finished
- 2. I2CRDC0 or I2CRCD1 data overflow occurred
- 3. I2CTXD0 or I2CTXD1 data transmit finished

, write 0 to this bit will clear this flag

F0E.1 **INT4IF:** INT4 (PD2) pin falling interrupt pending flag

This bit is set by H/W at INT4 pin's falling/rising edge, write 0 to this bit will clear this flag

F0E.0 **INT3IF:** INT0 (PD1) pin falling/rising interrupt pending flag

This bit is set by H/W at INT3 pin's falling/rising edge, write 0 to this bit will clear this flag

F19	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SPSTA	SPIF	WCOL	_	RCVOVF	RCVBF	SPBSY	_	_
R/W	R/W	R/W	-	R/W	R/W	R	_	_
Reset	0	0	-	0	0	_	_	_

F19.7 **SPIF:** SPI Interrupt Flag

Set by H/W at the end of a data transfer. Cleared by H/W when interrupt is vectored into. Write 0 to this bit will clear this flag.

6. I/O Port

6.1 PA0-6, PB0-7, PD0-7, PE0-1

These pins can be used as Schmitt-trigger input, CMOS push-pull output. The pull-up resistor is assignable to each pin by S/W setting. To use the pin in Schmitt-trigger input mode, S/W needs to set the I/O pin to Mode0 or Mode1 and PxD=1. Reading the pin data (PxD) has different meaning. In "Read-Modify-Write" instruction, CPU actually reads the output data register. In the others instructions, CPU reads the pin state. The so-called "Read-Modify-Write" instruction includes BSF, BCF and all instructions using F-Plane as destination.

These pins can operate in four different modes as below.

Mode	PA0~PA6, PB0~PB7, PD0~PD7, PE0~1 pin function	PxD SFR data	Pin State	Resistor Pull-up	Digital Input
	Open Drain	0	Drive Low	N	N
Mode 0	Input	1	Pull-up	Y	Y
	Touch Key (when TKCHS)	1	TK	N	N
Mode 1	Open Drain	0	Drive Low	N	N
	Open Drain	1	Hi-Z	N	Y
Mode 2	CMOS Output	0	Drive Low	N	N
	CMOS Output	1	Drive High	N	N
Mode 3	ADC/CLD/Wakeup	0	_	N	N/N/Y
	Wakeup	1	_	Y	Y

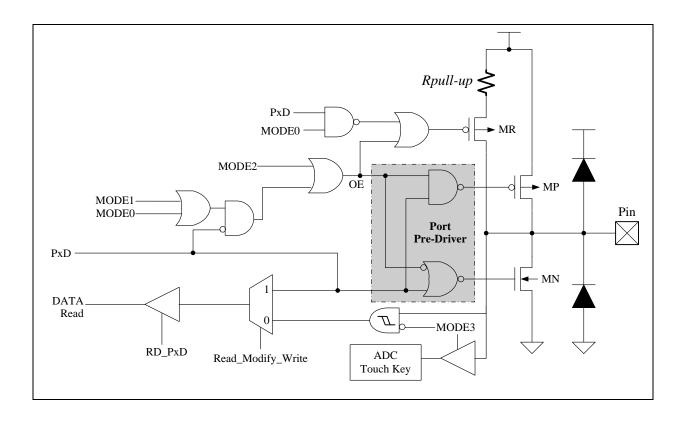
I/O Pin Function Table

DS-TM57M5541_E 35 Rev 0.93, 2017/09/07

Beside I/O port function, each pin has one or more alternative functions, such as ADC and Touch Key.

Pin Name	Wake-up	СКО	ADC/TK	others	Mode3
PA0			ADC8/TK6	PWM0O1	ADC8
PA1	INT1		ADC1/TK1		ADC1
PA2			ADC2/TK2		ADC2
PA3				XOUT/HS	
PA4				XIN/HS	
PA5			ADC5/TK5		ADC5
PA6	INT0		ADC0/TK0		ADC0
PA7	INT2				
PB0			ADC7/TK7	PWM1A	ADC7
PB1			ADC3/TK3		ADC3
PB2			ADC11	HS	ADC11
PB3				HS	
PB4			TK10	PWM1C	
PB5			TK9	PWM1B	
PB6			ADC13/TK14	HS	ADC13
PB7			ADC14/TK13		ADC14
PD0		TRCOUT/ TM1OUT			
PD1	INT3			SCK/IICSCL	
PD2	INT4			MOSI/IICSDA	
PD3				MISO/HS	
PD4			ADC10	PWM0O2/HS	ADC10
PD5			ADC9	TKCLD	ADC9/TKCLD
PD6		TCOUT	ADC6/TK8		ADC6
PD7			ADC4/TK4		ADC4
PE0	Wakeup		TK12		Wakeup
PE1	Wakeup		TK11		Wakeup

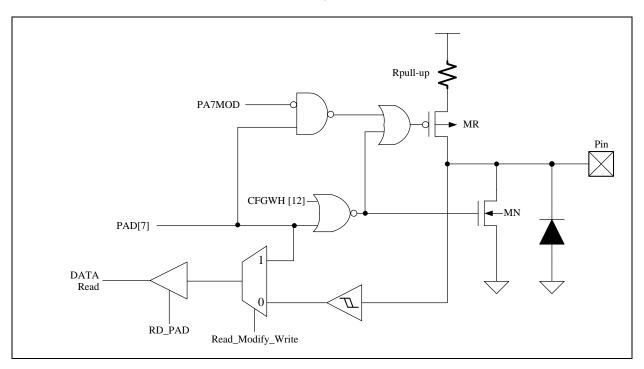
PortA/B/D/E multi-function Table


DS-TM57M5541_E 36 Rev 0.93, 2017/09/07

The necessary SFR setting for pin's alternative function is list below.

Alternative Function	Mode	PxD SFR data	Pin State	Other necessary SFR setting
INTO, INT1, INT3, INT4	0	1	Input with Pull-up	INTxIE
1110, 11111, 11113, 11114	1	1	Input	INTxIE
TK0~TK15	0	1	Touch Key Idling, Pull-up	TKCHS
1K0~1K13	U	1	Touch Key Scanning	TKCHS
TKCLD	3	X	Touch Key Capacitor Connection	TKCLDXS
AD0~AD14	3	X	ADC Channel	
PWM0O1, PWM0O2, PWM1A, PWM1B, PWM1C	X	X	PWM Output (CMOS Push-Pull)	PWM0010E PWM0020E PWM1A0E PWM1B0E PWM1COE
SPI Master Mode MISO	1	1	SPI Data Input	SPCON
SPI Master Mode SCK, MOSI	2	X	SPI Clock/Data Output (CMOS Push-Pull)	SPCON
SPI Slave Mode MISO	2	X	SPI Data Output (CMOS Push-Pull)	SPCON
SPI Slave Mode SCK, MOSI	1	1	SPI Clock/Data Input	SPCON
XIN, XOUT	0	1	Crystal oscillation	CLKCON

Mode Setting for Port Alternative Function



DS-TM57M5541_E 37 Rev 0.93, 2017/09/07

6.2 PA7

PA7 can be used in Schmitt-trigger input or open-drain output which is setting by the PAD [7] (F05.7) bit. When the PAD [7] bit is set, PA7 is assigned as Schmitt-trigger input mode, otherwise is assigned as open-drain output mode and output low. The pull-up resistor is controlled by PA7MOD (R05.6) bit and the default value is enabled (i.e. PA7MOD=0) after system reset.

How to control PA7 status can be concluded as following list.

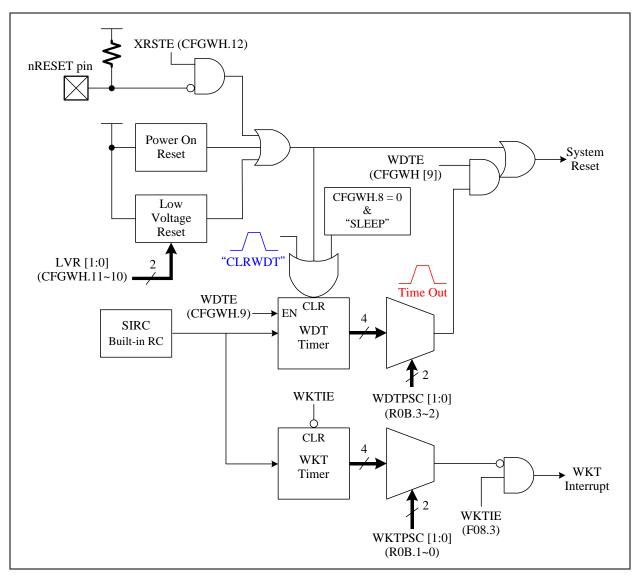
CFGWH.12	PAD[7]	PA7MOD	Pin State	Pull-up	MODE
0	0	0	Low	No	open-drain output without pull-high
0	1	0	High	Yes	input with pull-high
0	1	1	Hi-Z	No	input without pull-high
1	1	0	High	Yes	reset input with pull-high

♦ Example: Read state from PA7.

Condition: CFGWH.12 is set to "0". If CFGWH.12="1", then PA7 pin is external reset pin function.

BTFSS PAD,7
GOTO LOOP_A ; If PA7=0.
GOTO LOOP_B ; If PA7=1.

DS-TM57M5541_E 38 Rev 0.93, 2017/09/07



7. Peripheral Functional Block

7.1 Watchdog (WDT) /Wakeup (WKT) Timer

The WDT and WKT share the same built-in internal RC Oscillator and have individual own counters. The overflow period of WDT, WKT can be selected by individual prescaler (WDTPSC [1:0], WKTPSC [1:0]). The WDT timer is cleared by the CLRWDT instruction. If the Watchdog is enabled (CFGWH.9=WDTE=1), the WDT generates the chip reset signal. Set CFGWH.8 to '0' can let WDT timer stop counting after executing SLEEP instruction, i.e. CFGWH.8=1 WDT timer is always keep counting even if the SLEEP instruction is executed.

The WKT timer is an interval timer, WKT time out will generate WKT Interrupt Flag (WKTIF). The WKT timer is cleared/stopped by WKTIE=0. Set WKTIE=1, the WKT timer will always count regardless at any CPU operating mode.

WDT/WKT Block Diagram

DS-TM57M5541_E 39 Rev 0.93, 2017/09/07

Watchdog clear is controlled by CLRWDT instruction and moving any value into WDTCLR is to clear watchdog timer.

♦ Example: Clear watchdog timer by CLRWDT instruction.

MAIN:

. ; Execute program.

CLRWDT ; Execute CLRWDT instruction.

GOTO MAIN

♦ Example: Clear watchdog timer by write WDTCLR register.

MAIN:

. ; Execute program.

MOVWF WDTCLR ; Write any value into WDTCLR register.

. . .

GOTO MAIN

♦ Example: Setup WDT time and disable after executing SLEEP instruction.

MOVLW 0000**01**11B

MOVWR R0B ; Select WDT Time out=256 ms @5V

SLEEP

♦ Example: Set WKT period and interrupt function.

MOVLW 000001**10**B

MOVWR R0B ; Select WKT period=64 ms @5V.

MOVLW 11110111B ; Clear WKT interrupt request flag by using byte operation

; Don't use bit operation "BCF WKTIF" clear interrupt flag

MOVWF INTIF ; F-Plane 09H

MOVLW 0000<u>1</u>000B ; Enable WKT interrupt function

MOVWF F08

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	TKIF	TM3IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F09.3 **WKTIF:** Wakeup Timer interrupt event pending flag

This bit is set by H/W while Wakeup Timer is timeout, write 0 to this bit will clear this flag

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	TKIE	TM3IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

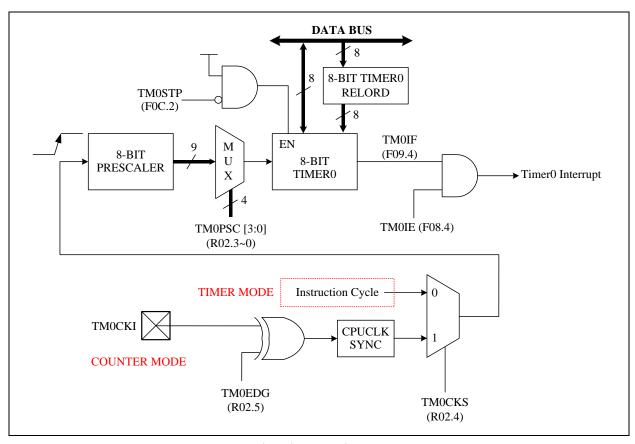
F08.3 **WKTIE:** Wakeup Timer interrupt enable

0: disable 1: enable

R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	HWAUTO	INT0EDG	_	_	WDTPSC		WKTPSC	
R/W	R/W	R/W	_	-	R/W	R/W	R/W	R/W
Reset	0	0	_	_	1	1	1	1

R0B.3~2 **WDTPSC:** WDT period (@VCC=5V) 00: 128 ms 01: 256 ms 10: 1024 ms 11: 2048 ms

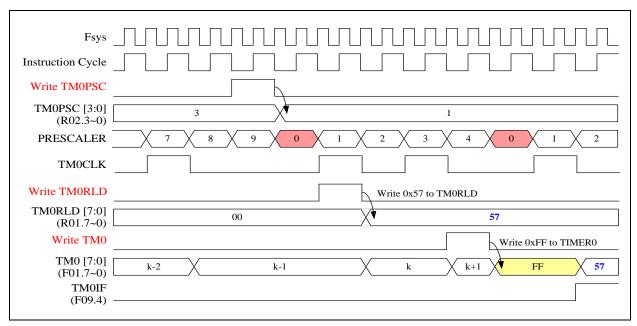
R0B.1~0 **WKTPSC:** WKT period (@VCC=5V)


00: 16 ms 01: 32 ms 10: 64 ms 11: 128 ms

41 Rev 0.93, 2017/09/07 DS-TM57M5541_E

7.2 Timer0

The Timer0 is an 8-bit wide register of F-Plane 01h (TM0). It can be read or written as any other register of F-Plane. Besides, Timer0 increases itself periodically and automatically rolls over a new "offset value" (TM1RLD) while it rolls over based on the pre-scaled clock source, which can be the instruction cycle or TM0CKI (PA2) rising/falling input. The Timer0 increase rate is determined by "Timer0 Pre-Scale" (TM0PSC) register in R-Plane. The Timer0 always generates TM0IF when its count rolls over. It generates Timer0 Interrupt if (TM0IE) is set. Timer0 can be stopped counting if the TM0STP bit is set.


Timer0 Block Diagram

DS-TM57M5541_E 42 Rev 0.93, 2017/09/07

The following timing diagram describes the Timer0 works in pure Timer mode.

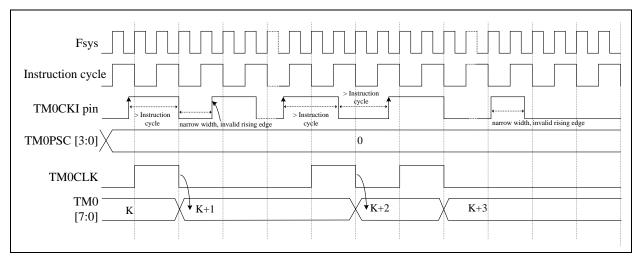
When the Timer0 prescaler (TM0PSC) is written, the internal 8-bit prescaler will be cleared to 0 to make the counting period correct at the first Timer0 count. TM0CLK is the internal signal that causes the Timer0 to increase by 1 at the end of TM0CLK. TM0WR is also the internal signal that indicates the Timer0 is directly written by instruction; meanwhile, the internal 8-bit prescaler will be cleared. When Timer0 counts from FFh to TM0RLD, TM0IF (Timer0 Interrupt Flag) will be set to 1 and generate interrupt if TM0IE (Timer0 Interrupt Enable) is set.

Timer0 works in Timer mode (TM0CKS=0)

The equation of TM0 interrupt time value is as following:

TM0 interrupt interval cycle time=Instruction cycle time/TM0PSC/ (256-TM0)

♦ Example: Setup TM0 work in Timer mode


; Setup T	M0 clock source	e and divider	
	MOVLW	0000 <u>0101</u> B	; R02.4=0, Setup TM0 clock=Instruction cycle
	MOVWR	R02	; R02.3~0=5 (TM0PSC)
			; TM0 clock prescaler=Instruction cycle divided by 32
; Set TM() timer.		
	BSF	TM0STP	; Disable TM0 counting (Default "0").
	MOVLW	156	
	MOVWF	TM0	; Write 156 into TM0 register of F-Plane. (F01)
	MOVLW	124	_
	MOVWR	TM0RLD	; Write 156 into TM0RLD register of R-Plane. (R01)
; Enable 7	ΓM0 timer and	interrupt function.	
	MOVLW	111 <u>0</u> 1111B	; Clear TM0 request interrupt flag by byte operation
	MOVWF	INTIF	; F-Plane 09H
	MOVLW	000 <u>1</u> 0000B	; Enable TM0 interrupt function
	MOVWR	INTIE	; F-Plane 08H
	BCF	TM0STP	; Enable TM0 counting (Default "0").

DS-TM57M5541_E 43 Rev 0.93, 2017/09/07

The following timing diagram describes the Timer0 works in Counter mode.

If TM0CKS=1 then Timer0 counter source clock is from TM0CKI pin. TM0CKI signal is synchronized by instruction cycle that means the high/low time durations of TM0CKI must be longer than one instruction cycle time to guarantee each TM0CKI's change will be detected correctly by the synchronizer.

Timer0 works in Counter mode for TM0CKI (TM0EDG=0), TM0CKS=1

♦ Example: Setup TM0 work in Counter mode and clock source from TM0CKI pin (PA2)

; Setup TM0 clock source from TM0CKI pin (PA2) and divider.

MOVLW 00**110000**B

MOVWR R02; R02.5=1, Select TM0 prescaler counting edge=falling

edge.

; R02.4=1, Setup TM0 clock=TM0CKI pin (PA2)

; Disable TM0 counting (Default "0").

; R02.3~0=0 (TM0PSC)

; TM0 clock prescaler=Instruction cycle divided by 1

; Set TM0 timer and stop TM0 counting.

BSF TM0STP

MOVLW 00H

MOVWF TM0; Write 0 into TM0 register of F-Plane 01H.

; Start TM0 count and read TM0 counter.

BCF TM0STP ; Enable TM0 counting.

NOP

NOP

NOP

BSF TM0STP ; Disable TM0 counting (Default "0")

MOVFW TM0

F01	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
TM0		TM0									
R/W											
Reset	0	0	0	0	0	0	0	0			

F01 **TM0:** Timer0 content

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	TKIE	TM3IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F08.4 **TM0IE:** Timer0 interrupt enable

0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	TKIF	TM3IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F09.4 **TM0IF:** Timer0 interrupt event pending flag
This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

F0C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF0C	CLKFLT	VCCFLT	TM3SET	TM3STP	TM1STP	TM0STP	PED	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	1	1

F0C.2 **TM0STP:** Timer0 counter stop 0: Release 1: Stop counting

R01	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TM0RLD		TM0RLD								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

R01 TM0RLD: Timer0 Reload Data

R02	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0CTL	_	-	TM0EDG	TM0CKS	TM0PSC			
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

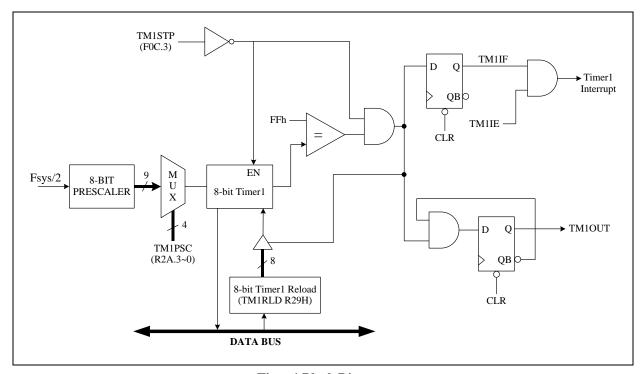
R02.5 **TM0EDG:** Timer0 prescaler counting edge for TM0CKI pin

0: rising edge 1: falling edge

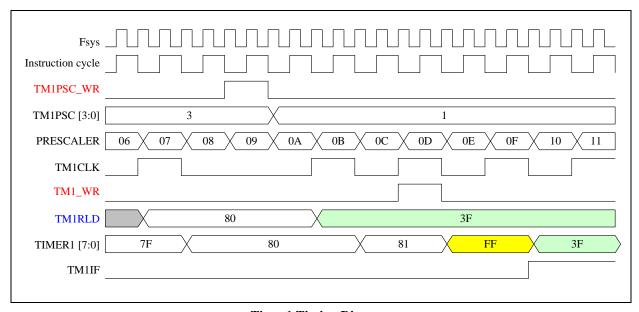
R02.4 **TM0CKS:** Timer0 prescaler clock source

0: Instruction cycle 1: TM0CKI pin (PA2 pin)

R02.3~0 TM0PSC: Timer0 prescaler. Timer0 prescaler clock source divided by

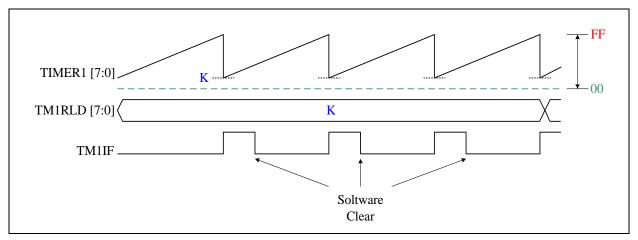

0000: /1 0001: /2 0010: /4 0011: /8 0100: /16

DS-TM57M5541_E 45 Rev 0.93, 2017/09/07



7.3 Timer1

The Timer1 is an 8-bit wide register of F-Plane. It can be read or written as any other register of F-Plane. Besides, Timer1 increases itself periodically and automatically reloads a new "offset value" (TM1RLD) while it rolls over based on the pre-scaled instruction clock. The Timer1 increase rate is determined by TM1PSC register in R-Plane. Set the TM1STP bit will stop Timer1 counting. TM1OUT is an output signal that toggles when Timer1 overflow.


Timer1 Block Diagram

Timer1 Timing Diagram

DS-TM57M5541_E 46 Rev 0.93, 2017/09/07

Timer1 Reload Diagram

♦ Example: Setup TM0 work in Timer mode and counting overflow toggle out to TM1OUT (PD0) configuration.

; Setup TM1 clock source, divider and enable TM1OUT

MOVLW x000<u>**0101**</u>B

MOVWR R2A ; R2A.3~0=5 (TM1PSC) , Select TM1 clock=Fsys/64. BSF TM1OE ; F1B.5=1, Enable TM1OUT function pin (PD0).

; Set TM1 timer offset and stops TM1 counting

BSF TM1STP ; Stop TM1 counting (Default "0").

MOVLW F0H

MOVWF TM1; Write F0H into TM1 counter (F0A, F-Plane)

; Enable TM0 timer and interrupt function.

MOVLW 11011111B ; Clear TM1 request interrupt flag by byte operation

MOVWF INTIF ; F-Plane 09H

MOVLW 00100000B; Enable TM1 interrupt function.

MOVWF INTIE :

BCF TM1STP ; Enable TM1 counting (Default "0").

Example:

Fsys=4 MHz, TM1PSC=1, TM1 clock source=Fsys/4=1 MHz

TM1RLD=0xF0,

TM1 interrupt time= (1/1 MHz) * (0xFF - 0xF0) = 1 us*16=16 us

TM1OUT output time period=16 us *2=32 us.

TM1OUT output frequency=1/32 us=31.250 KHz.

DS-TM57M5541_E 47 Rev 0.93, 2017/09/07

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	TKIE	TM3IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F08.5 **TM1IE:** Timer1 interrupt enable

0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	TKIF	TM3IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F09.5 **TM1IF:** Timer1 interrupt event pending flag
This bit is set by H/W while Timer1 overflows, write 0 to this bit will clear this flag

R28	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TM1		TM1								
R/W										
Reset	0	0	0	0	0	0	0	0		

R28 **TM1:** Timer1 content

F0C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF0C	CLKFLT	VCCFLT	TM3SET	TM3STP	TM1STP	TM0STP	PE	D
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	1	1

F0C.3 **TM1STP:** Timer1 counter stop

0: Release1: Stop counting

F1B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF1B	TCOE	TRCOE	TM10E	PWM1COE	PWM1BOE	PWM1AOE	PWM0O2OE	PWM0010E
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F1B.5 **TM10E:** Enable Timer1 overflow toggle output to PD0 pin (TM10UT)

R2A	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR2A	_	_	_	_	TM1PSC			
R/W	_	_	_	_	W	W	W	W
Reset	_	_	_	_	0	0	0	0

R2A.3~0 TM1PSC: Timer1 prescaler. Timer1 clock source divided by

 0000: Fsys/2
 0101: Fsys/64

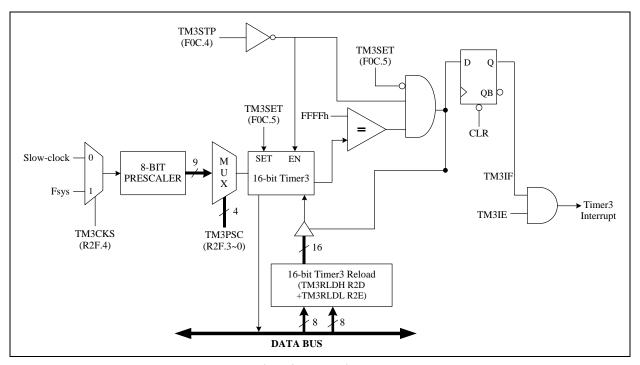
 0001: Fsys/4
 0110: Fsys/128

 0010: Fsys/8
 0111: Fsys/256

 0011: Fsys/16
 1xxx: Fsys/512

0100: Fsys/32

R29	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM1RLD				TM1	RLD			
R/W	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0


R29.7~0 TM1RLD: Timer1 reload offset value while it rolls over

DS-TM57M5541_E 48 Rev 0.93, 2017/09/07

7.4 Timer3:16-bit Timer

The Timer3 is an 16-bit wide register of R-Plane. It can be read as any other register of R-Plane. Besides, Timer3 increases itself periodically and automatically reloads a new "offset value" (TM3RLD) while it rolls over based on the pre-scaled Fsys or Slow-clock. The Timer3 increasing rate is determined by TM3PSC register in R-Plane. Setting the TM3STP bit will stop Timer3 counting. Setting the TM3SET=1 will hold Timer3 on the FFFFh, but it will not make TM3IF=1. After resetting TM3SET to 0, Timer3 will no longer be held on the FFFFh, and reload a new value (TM3RLD) in the next step.

Timer3 Block Diagram

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	TKIE	TM3IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F08.6 **TM3IE:** Timer3 interrupt enable

0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	TKIF	TM3IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F09.6 **TM3IF:** Timer3 interrupt event pending flag

This bit is set by H/W while Timer3 overflows, write 0 to this bit will clear this flag

DS-TM57M5541_E 49 Rev 0.93, 2017/09/07

R2B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TM3H		ТМЗН							
R/W	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	

R2B **TM3H:** Timer3 content high byte [15:8]

R2C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TM3L		TM3L							
R/W	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	

R2C **TM3L:** Timer3 content low byte [7:0]

R2D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TM3RLDH		TM3RLDH							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

R2D TM3RLDH: Timer3 reload offset value high byte [15:8] while it rolls over

R2E	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TM3RLDL		TM3RLDL							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

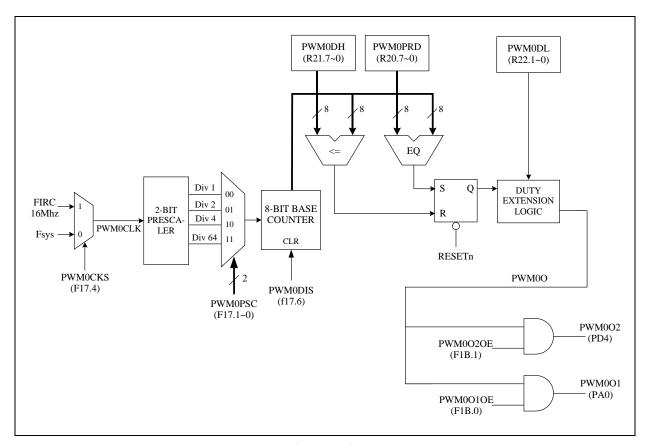
R2E TM3RLDL: Timer3 reload offset value low byte [7:0] while it rolls over

R2F	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM3CTL	_	_	_	TM3CKS		TM3	PSC	
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
Reset	_	_	_	0	0	0	0	0

R2F.4 **TM3CKS:** Timer3 prescaler clock source 0: Instruction cycle 1: Slow-clock

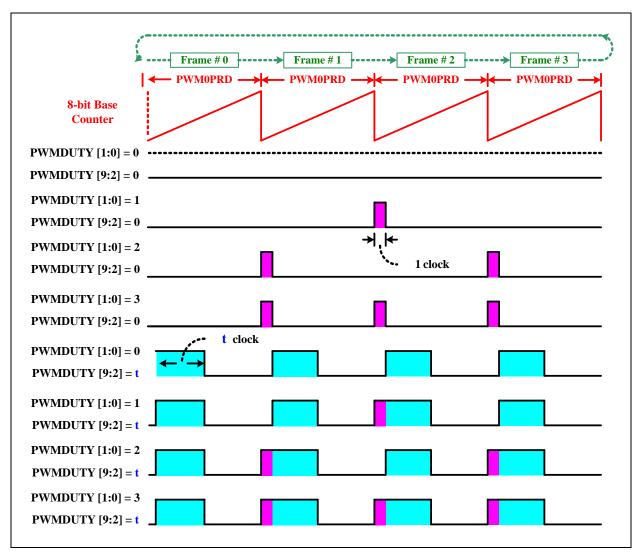
R2F.3~0 TM3PSC: Timer3 prescaler. Timer3 prescaler clock source divided by

0000: /1 0001: /2 0010: /4 0011: /8 0100: /16


DS-TM57M5541_E 50 Rev 0.93, 2017/09/07

7.5 PWM0: (8+2) bits PWM

The PWM can generate various frequency waveform with 1024 duty resolution based on PWM0CLK, which can select Fsys or FIRC 16 MHz, decided by PWM0CKS (F17.4) . A spread LSB technique allows PWM0 to run its frequency at "PWM0CLK divided by 256" instead of "PWM0CLK divided by 1024", which means the PWM is 4 times faster than normal. The advantage of higher PWM frequency is that the post RC filter can transform the PWM signal to more stable DC voltage level. The PWM output signal reset to low level whenever the 8-bit base counter matches the 8-bit MSB of PWM duty register PWM0DH (R21.7~0) . When the base counter rolls over, the 2-bit LSB of PWM duty register PWM0DL (R22.1~0) decides whether to set the PWM output signal high immediately or set it high after one clock cycle delay.


The PWM0 period can be set by writing period value to PWM0PRD register (R20). Note that changing the PWM0PRD will immediately change the PWM0PRD values, which are different from PWM0DH/PWM0DL which has buffer to update the duty at the end of current period. The Programmer must pay attention to the current time to change PWMAPRD by observing the following figure. There is a digital comparator that compares the PWM0 counter and PWM0RD, if PWM0 counter is larger than PWM0PRD after setting the PWM0PRD, a fault long PWM cycle will be generated because PWM0 counter must count to overflow then keep counting to PWM0PRD to finish the cycle.

PWM0 Block Diagram

DS-TM57M5541_E 51 Rev 0.93, 2017/09/07

PWM0 8+2 Timing Diagram

DS-TM57M5541_E 52 Rev 0.93, 2017/09/07

Example:

[CPU running at Fast mode, Fsys=FIRC 8 MHz]

♦ Example:

; Setup PWM0 clock prescaler

BSF PWM0CKS ; PWM0 clock source=FIRC 16 MHz

MOVLW 000100**11**B

MOVWF F17 ; PWM0 prescaler/64

MOVLW 80H

MOVWR PWM0PRD ; Set PWM0 period=80H

MOVLW 000000<u>00</u>B

MOVWR PWM0DL ; Set PWM0DL duty=00H

MOVLW 20H

MOVWR PWM0DH ; Set PWM0DH duty=20H

BSF PWM0O1OE ; Enable PWM0O1 output

Example:

PWM0 clock source=FIRC16 MHz, PWM0PSC=/64, PWMAPRD=80H,

PWM0DL=00H, PWM0DH=20H

 $PWM0\ output\ frequency = 16\ MHz/64/\ (PWMPROD+1) = 16\ MHz/64/129 = 1938\ Hz.$

PWM0P output duty=32:129=24.8%.

R21	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM0DH		PWM0DH							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

R21.7~0 **PWM0DH:** PWM0 duty 8-bit MSB

R22	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM0DL	_	_	-	-	_	_	PWM	10DL
R/W	_	_	_	_	_	_	R/W	R/W
Reset	_	_	_	_	_	_	0	0

R22.1~0 **PWM0DL:** PWM0 duty 2-bit LSB

F17	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF17	PWM1DIS	PWM0DIS	PWM1CKS	PWM0CKS	PWM	1PSC	PWM	0PSC
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F17.6 **PWM0DIS:** PWM0 Clock Disable 0:Clock Enable 1:Clock Disable

F17.4 **PWM0CKS:** PWM0 Clock Source

0: Fsys 1:FIRC16M

F17.1~0 **PWM0PSC:** PWM1A/1B/1C Clock Source Prescaler

00: DIV1 01: DIV2 10:DIV4 11:DIV64

F1B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF1B	TCOE	TRCOE	TM10E	PWM1COE	PWM1BOE	PWM1AOE	PWM0O2OE	PWM0O10E
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

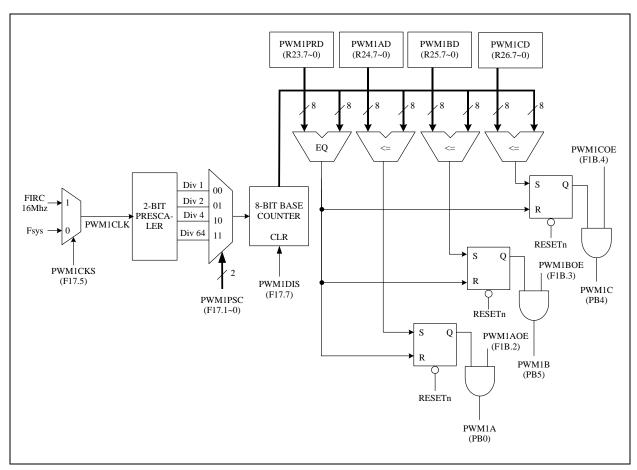
F1B.1 **PWM0O2OE:** PWM0O2 Output Enable

0: Disable 1:Enable

F1B.0 **PWM0O10E:** PWM0O1 Output Enable

0: Disable 1:Enable

R20	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM0PRD		PWM0PRD							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	1	1	1	1	1	1	1	1	


R20.7~0 **PWM0PRD:** PWM0 period data

7.6 PWM1A/PWM1B/PWM1C: 8 bits PWMs

PWM1A/PWM1B/PWM1C are 3 PWMs which have independent duty and common period. The PWMs can generate various frequency waveform with 256 duty resolution based on PWM1CLK, which can select Fsys or FIRC 16 MHz, decided by PWM1CKS (F17.5) . The advantage of higher PWM frequency is that the post RC filter can transform the PWM signal to more stable DC voltage level. The PWM output signal reset to low level whenever the 8-bit base counter matches the 8-bit of PWM duty register PWM1AD/PWM1BD/PWM1CD.

The PWM1A/1B/1C common period can be set by writing period value to PWM1PRD register (R23). Note that changing the PWM0PRD will immediately change the PWM1PRD values. The Programmer must pay attention to the current time to change PWM1PRD by observing the following figure. There is a digital comparator that compares the PWM1A/1B/1C counter and PWM1RD, if PWM1A/1B/C counter is larger than PWM1PRD after setting the PWM1PRD, a fault long PWM cycle will be generated because PWM1A/1B/1C counter must count to overflow then keep counting to PWM1PRD to finish the cycle.

PWM1 Block Diagram

R23	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM1PRD		PWM1PRD								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	1	1	1	1	1	1	1	1		

R23.7~0 **PWM1PRD:** PWM1 period data

DS-TM57M5541 E 55 Rev 0.93, 2017/09/07

R24	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM1AD		PWM1AD							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

R24.7~0 **PWM1A:** PWM1A duty 8-bit

R25	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM1BD		PWM1BD						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

R25.7~0 **PWM1B:** PWM1B duty 8-bit

R26	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM1CD		PWM1CD						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

R26.7~0 **PWM1C:** PWM1C duty 8-bit

F17	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF17	PWM1DIS	PWM0DIS	PWM1CKS	PWM0CKS	PWM1PSC		PWM0PSC	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F17.7 **PWM1DIS:** PWM1A/1B/1C Clock Disable

0:Clock Enable 1:Clock Disable

F17.5 **PWM1CKS:** PWM1A/1B/1C Clock Source

0: Fsys 1:FIRC16M

F17.3~2 **PWM1PSC:** PWM1A/1B/1C Clock Source Prescaler

00: DIV1 01: DIV2 10:DIV4 11:DIV64

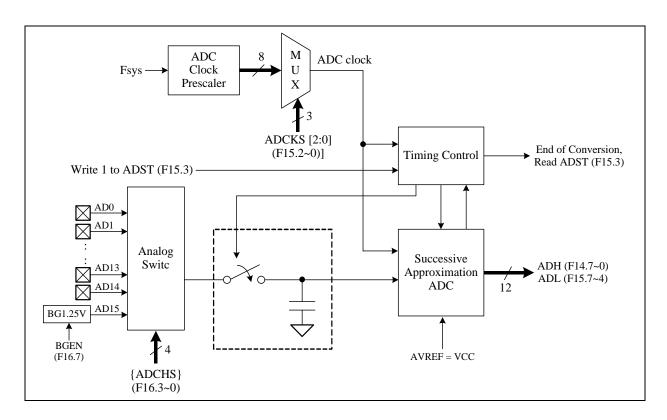
F1B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF1B	TCOE	TRCOE	TM10E	PWM1COE	PWM1BOE	PWM1AOE	PWM0O2OE	PWM0010E
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F1B.4 **PWM1COE:** PWM1C Output Enable

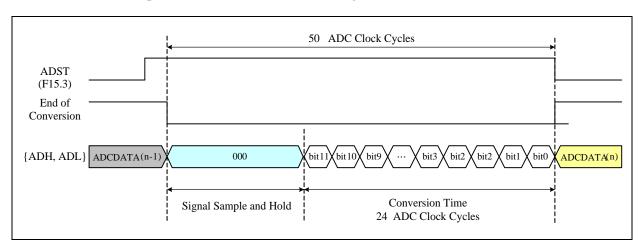
0: Disable 1:Enable

F1B.3 **PWMIBOE:** PWM1B Output Enable

0: Disable 1:Enable


F1B.2 **PWM1AOE:** PWM1A Output Enable

0: Disable 1:Enable


DS-TM57M5541_E 56 Rev 0.93, 2017/09/07

7.7 Analog-to-Digital Converter

The 12-bit ADC (Analog to Digital Converter) consists of a 16-channel analog input multiplexer, control register, clock generator, 12-bit successive approximation register, and output data register. To use the ADC, user needs to set ADCKS (F15.2~0) to choose a proper ADC clock frequency, which must be less than 1 MHz. User then launches the ADC conversion by setting the ADST (F15.3) control bit. After end of conversion, H/W automatic clears the ADST (F15.3) bit. User can poll this bit to know the conversion status. The PxMODE control registers are used for ADC pin configuration, user must set the Pin Mode=3 when the pin is used as an ADC input. The setting can disable the pin logical input path to save power consumption. User needs to set {ADCHS} (F16.3~0) to choose the input channel of ADC. One of them, AD15 is VBG1.25V input for ADC. ADC reference voltage is VCC.

DS-TM57M5541_E 57 Rev 0.93, 2017/09/07

Example:

[CPU running at FAST mode, Fsys=FIRC 4 MHz]

ADC clock frequency=1 MHz, ADC channel=ADC2 (PA2).

♦ Example:

MOVLW 00000**101**B ; Fsys=4 MHz

MOVWF ADCTL ; F15.2~0 (ADCKS) = ADC clock=Fsys/4=1 MHz

MOVLW 01<u>11</u>0101B ; ADC2 (PA2) Pin Mode=3=ADC input

MOVWR PAMODL;

MOVLW 0110**0010**B

MOVWF MF16 ; F16.3~0 (ADCHS [3:0]) =2, ADC select ADC2 (PA2 pin).

BSF ADST ; F15.3 (ADST), ADC start conversion.

WAIT_ADC:

BTFSC ADST ; Wait ADC conversion finish.

GOTO WAIT_ADC

MOVFW ADH ; F14.7~0, Read ADC result [11:4] into W MOVFW ADCTL ; F15.7~4, Read ADC result [3:0] into W

:

F14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADH				AI	OH			
R/W	R	R	R	R	R	R	R	R
Reset	_	_	_	_	_	_	_	_

F14.7~0 **ADH:** ADC output data MSB, ADQ [11:4]

F15	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCTL		AI	DL	=	ADST		ADCKS	
R/W	R	R	R	R	R/W	R/W	R/W	R/W
Reset	_	_	_	_	0	0	0	0

F15.7~4 **ADL:** ADC output data LSB, ADQ [3:0]

F15.3 **ADST:** ADC start bit.

0: H/W clear after end of conversion

1: ADC start conversion

F15.2~0 **ADCKS:** ADC clock frequency selection:

 000: Fsys/256
 100: Fsys/16

 001: Fsys/128
 101: Fsys/8

 010: Fsys/64
 110: Fsys/4

 011: Fsys/32
 111: Fsys/2

DS-TM57M5541_E 58 Rev 0.93, 2017/09/07

F16	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF16	BGEN	LVR2SAV	LDOSAV	MODE3V	ADCHS			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	0	0	0	0	0

F16.4 **BGEN:** Band Gap BG1.25V enable

0: Disable

1: Enable and Auto disable in STOP/IDLE mode

F16.3~0 **ADCHS:** ADC channel select

 0000: ADC0 (PA6)
 0110: ADC6 (PD6)
 1100: ADC12 (PB3)

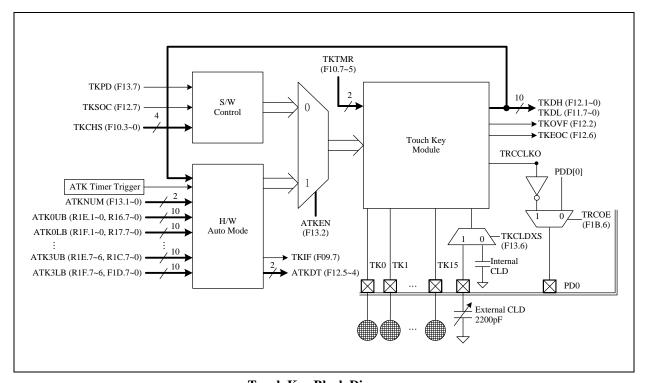
 0001: ADC1 (PA1)
 0111: ADC7 (PB0)
 1101: ADC13 (PB6)

 0010: ADC2 (PA2)
 1000: ADC8 (PA0)
 1110: ADC14 (PB7)

 0011: ADC3 (PB1)
 1001: ADC9 (PD5)
 1111: VBG 1.25V

0100: ADC4 (PD7) 1010: ADC10 (PD4) 0101: ADC5 (PA5) 1011: ADC11 (PB2)

DS-TM57M5541_E 59 Rev 0.93, 2017/09/07



7.8 Touch Key

The Touch Key offers an easy, simple and reliable method to implement finger touch applications. In most applications, it only requires an capacitor component (CLD), and the user can freely choose to use the built-in capacitor (Internal CLD) or an external capacitor component on CLD pin (External CLD) by TKCLDXS (F13.6). The device support 16 channels touch key detection with S/W manual mode and 4 channels with H/W auto mode (ATK). Only one mode can be active at a time.

To use the Touch Key, user must setup the Pin Mode correctly as below table. Setting Mode0 for Touch Key pin can pull up the pin and reduce the Key's mutual interference. While a TK pin is under scanning, **TM57M5541** will disable the pull up resistor automatically. **TM57M5541** can also output the Touch Key clock to PD0 when TRCOE (F1B.6) is set, the negative Touch Key clock will output to PD0.

Pin Mode Setting for Touch Key	TK0~15
Pin is not Touch Key	Mode0, 1, 2, 3
Pin is Touch Key, Idling	Mode0
Pin is Touch Key, S/W Scanning	Mode0
Pin is Touch Key, H/W Auto Scan	Mode0

Touch Key Block Diagram

DS-TM57M5541_E 60 Rev 0.93, 2017/09/07

7.8.1 S/W Manual Mode Touch Key Detection

All Touch Key (TK0~TK15) can be used for S/W mode, it can be select by TKCHS (F10.3~0) bits. To start the S/W mode, user assigns ATKEN=0 (F13.2) and TKPD=0 (F13.7) , then set the TKSOC (F12.7) bit to start touch key conversion, the TKSOC bit will be automatically cleared while end of conversion. However, if the system clock is too slow, H/W might lose the auto clear TKSOC capability. "TKEOC=0" means conversion is in process, while "TKEOC=1" means the conversion is finish. After TKEOC's (F11.3) edge rising, user must wait at least 10 μ s for next conversion. The touch key counting values is stored into the 10 bits touch key data count "TKDH (F12.1~0) , TKDL (F11.7~0)" . If TKOVF (F12.2) is set, it means the conversion transaction exceeds period time. Reduce/Increase TKTMR (F10.7~5) can reduce/increase touch key data count to adapt the system board circumstances.

The Touch Key unit has an internal built-in reference capacitor to simulate the KEY behavior. Set TKREF (F10.4) =1 and start the S/W scan mode can get the TK Data Count of this reference capacitor. Since the internal capacitor never affected by water or mobile phone, it is useful for comparing the environment background noise.

♦ Example: S/W Mode, Touch key channel=TK5 (PA5).

MOVLW xxxx**00**xxB ; PAMODH [3:2] =00b

MOVWR PAMODH ; Set PA5MOD as Mode0 for touch key input

BSF PAD, 5; Set PA5 is input with pull-up

MOVLW 0 <u>10</u>0 <u>0101</u>B ; TKSOC=0

MOVWF TKCTL ; TKTMR=2, TKCHS=5 (TK5)

BCF TKPD ; TKPD=0

:

BSF TKSOC ; TKSOC=1, touch key start conversion

NOP

WAIT TK:

BTFSS TKEOC ; Polling TKEOC

GOTO WAIT_TK ; Waiting touch key conversion finish

MOVFW TKDH ; Read TKDH [1:0] MOVFW TKDL ; Read TKDL [7:0]

DS-TM57M5541_E 61 Rev 0.93, 2017/09/07

7.8.2 H/W Auto Mode Touch Key Detection

Only continuous 1 to 4 Touch Key are eligible for H/W auto mode. Setting ATKNUM (F13.1~0) can select the number from 1 to 4. Setting TKCHS (F10.3~0) can choose ATK0. For example, ATKNUM= 10B (ATK0~ATK2), TKCHS=1001B (TK9), then ATK0=TK9, ATK1=TK10, ATK2=TK11. This function can work in IDLE mode and save the S/W effort as well as minimize the chip current consumption. If ATKEN is set to "1", the internal ATK timer will generate an overflow flag after ATK timer time out to trigger the touch key H/W auto mode starting. That can enable H/W control the touch key module fully. H/W then automatically detects the ATK0~ATK3's TK Data Count at every 30/60/120/240 ms rate by ATKSIT (F13.5~4). If a keys' TK Data Count is less than the pre-set compare lower boundary (ATKnLB) or more than the pre-set compare upper boundary (ATKnUB), H/W will record the compare result in the ATKDT (F12.5~4), and H/W will also generate interrupt flag TKIF (F9.7) after touch key module ends conversion. It generates auto touch key interrupt and wake up CPU if the TKIE (F8.7) bit is set. User can switch the TK module to S/W Manual Mode after the TK interrupt and identify/confirm the Key touch event.

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	TKIE	TM3IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F08.7 TKIE: Touch Key Interrupt Enable

> 0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	TKIF	TM3IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

TKIF: Touch Key interrupt event pending flag, set by H/W F09.7

ATKEN=1: Key's TK Data Count is over the pre-set compare threshold range

ATKEN=0: End of TK conversion

F10	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKCTL		TKTMR		TKREF		TKO	CHS	
R/W								
Reset	0	1	1	1	0	0	0	0

F10.7~5 TKTMR: Touch key conversion time

000: shortest

111: longest

F10.4 TKREF: Touch Key Channel Select REFC

1: Touch key channel select REFC (Internal reference capacitor)

0: Touch key channel select=TKCHS (Touch key channel depends on TKCHS)

F10.3~0 TKCHS: Touch key channel select / ATK0 select

> 0000: TK0 (PA6) 1000: TK8 (PD6) 0001: TK1 (PA1) 1001: TK9 (PB5) 0010: TK2 (PA2) 1010: TK10 (PB4) 0011: TK3 (PB1) 1011: TK11 (PE1) 0100: TK4 (PD7) 1100: TK12 (PE0) 0101: TK5 (PA5) 1101: TK13 (PB7) 1110: TK14 (PB6) 0110: TK6 (PA0) 1111: TK15 (PB3) 0111: TK7 (PB0)

F11	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TKDL		TKDL							
R/W		R							
Reset	0	0	0	0	0	0	0	0	

F11.7~0 **TKDL**: Touch key data LSB [7:0]

F12	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKDH	TKSOC	TKEOC	ATI	KDT	ATKPOL	TKOVF	TK	DH
R/W	R/W	R	R	R	R	R	I	₹
Reset	0	_	_	_	_	_	_	_

F12.7 **TKSOC**: Touch key start of conversion, rising edge to start

H/W auto cleared while end of conversion

F12.6 **TKEOC**: Touch key end of conversion

0: conversion is in process

1: end of conversion

F12.5~4 **ATKDT**:Touch key auto scan result

00: ATK0 has a touch event

01: ATK1 has a touch event

10: ATK2 has a touch event

11: ATK3 has a touch event

F12.3 **ATKPOL**: Auto Touch Key trigger Polarity

0: Low Boundary

1: Up Boundary

F12.2 **TKOVF**: Touch key counter overflow flag

0: not overflow 1: overflow

F12.1~0 **TKDH**: Touch key data MSB [9:8]

F13	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKCTL2	TKPD	TKCLDXS	ATK	KSIT	_	ATKEN	ATK	NUM
R/W	R/W	R/W	R/W	R/W	_	R/W	R/W	R/W
Reset	1	0	0	0	_	0	1	1

F13.7 **TKPD**: Touch key power down

0: Touch key running

1: Touch key power down

F13.6 **TKCLDXS**: Touch Key CLD External Selection

0: Internal CLD

1: External CLD

F13.5~4 ATKSIT: Auto Touch Key Scan Interval Time, @3V

00: 30ms

01: 60ms

10:120ms

11: 240ms

F13.2 **ATKEN**: Auto Touch Key Enable

0: Disable

1: Enable

F13.1~0 **ATKNUM**: Touch key auto scan channel number

00: ATK0

01: ATK0~ATK1

10: ATK0~ATK2

11: ATK0~ATK3

F1B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF1B	TCOE	TRCOE	TM10E	PWM1COE	PWM1BOE	PWM1AOE	PWM0O2OE	PWM0010E
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F1B.6 **TRCOE:** TRCOUT Output Enable

0: Disable 1:Enable

R16	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ATK0UBL		ATK0UBL							
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	

R16.7~0 **ATK0UBL:** Auto Touch Key ATK0 upper boundary LSB [7:0]

R17	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ATK0LBL		ATK0LBL							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

R17.7~0 **ATK0LBL:** Auto Touch Key ATK0 lower boundary LSB [7:0]

R18	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ATK1UBL		ATK1UBL							
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	

R18.7~0 **ATK1UBL:** Auto Touch Key ATK1 upper boundary LSB [7:0]

R19	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ATK1LBL		ATK1LBL							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

R19.7~0 **ATK1LBL:** Auto Touch Key ATK1 lower boundary LSB [7:0]

R1A	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ATK2UBL		ATK2UBL							
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	

R1a.7~0 **ATK2UBL:** Auto Touch Key ATK2 upper boundary LSB [7:0]

R1B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ATK2LBL		ATK2LBL							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

R1b.7~0 **ATK2LBL:** Auto Touch Key ATK2 lower boundary LSB [7:0]

R1C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ATK3UBL				ATK:	BUBL				
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	

R1c.7~0 **ATK3UBL:** Auto Touch Key ATK3 upper boundary LSB [7:0]

DS-TM57M5541_E 64 Rev 0.93, 2017/09/07

R1D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ATK3LBL		ATK3LBL							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

R1D.7~0 **ATK3LBL:** Auto Touch Key ATK3 lower boundary LSB [7:0]

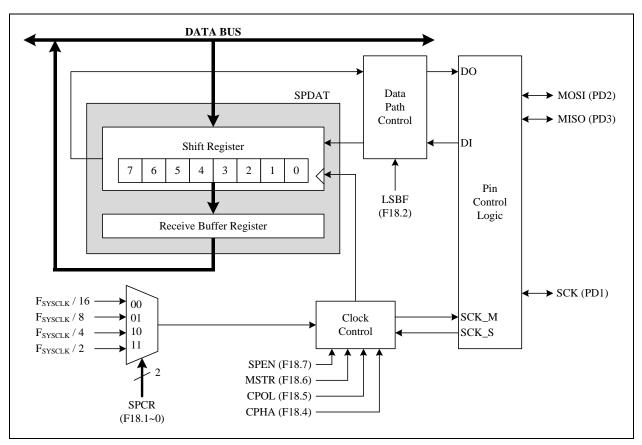
R1E	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATKUBH	ATK3	BUBH	ATK	2UBH	ATK1	UBH	ATK()UBH
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

R1E.7~6 **ATK3UBH:** Auto Touch Key ATK3 upper boundary MSB [9:8] R1E.5~4 **ATK2UBH:** Auto Touch Key ATK2 upper boundary MSB [9:8] R1E.3~2 **ATK1UBH:** Auto Touch Key ATK1 upper boundary MSB [9:8] R1E.1~0 **ATK0UBH:** Auto Touch Key ATK0 upper boundary MSB [9:8]

R1F	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATKLBH	ATK:	3LBH	ATK	2LBH	ATK	1LBH	ATK()LBH
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

R1F.7~6 **ATK3LBH:** Auto Touch Key ATK3 lower boundary MSB [9:8] R1F.5~4 **ATK2LBH:** Auto Touch Key ATK2 lower boundary MSB [9:8] R1F.3~2 **ATK1LBH:** Auto Touch Key ATK1 lower boundary MSB [9:8] R1F.1~0 **ATK0LBH:** Auto Touch Key ATK0 lower boundary MSB [9:8]

DS-TM57M5541_E 65 Rev 0.93, 2017/09/07



7.9 Serial Peripheral Interface (SPI)

The SPI module is capable of full-duplex, synchronous, serial communication between the MCU and peripheral devices. The peripheral devices can be other MCUs, A/D converter, sensors, or Flash memory, etc. The SPI runs at a baud rate up to the system clock divided by two. Firmware can read the status flags, or the operation can be interrupt driven.

The features of the SPI module include:

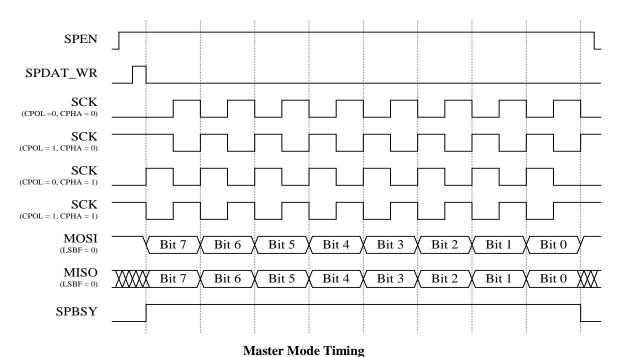
- Master or Slave mode operation
- 3-wire mode operation
- Full-duplex operation
- Programmable transmit bit rate
- Single Buffer receive
- Serial clock phase and polarity options
- MSB-first or LSB-first shifting selectable

SPI System Block Diagram

The MOSI (PD2) signal is an output when SPI is operating in Master mode and an input when SPI is operating in Slave mode. The MISO (PD3) signal is an input when SPI is operating in Master mode and an output when SPI is operating in Slave mode. Data is transferred MSB or LSB first by setting the LSBF bit. The SCK (PD1) signal is an output from a Master device and an input to Slave devices. It is used to synchronize the data on the MOSI and MISO lines of Master and Slave. SPI generates the signal with eight programmable clock rates in Master mode.

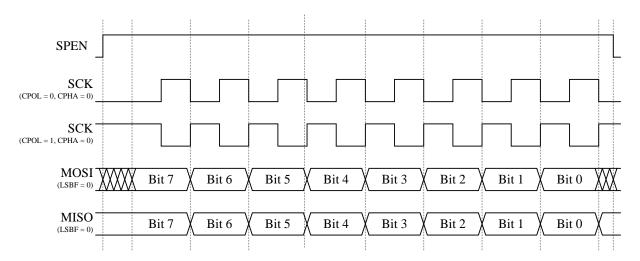
DS-TM57M5541_E 66 Rev 0.93, 2017/09/07

Master Mode

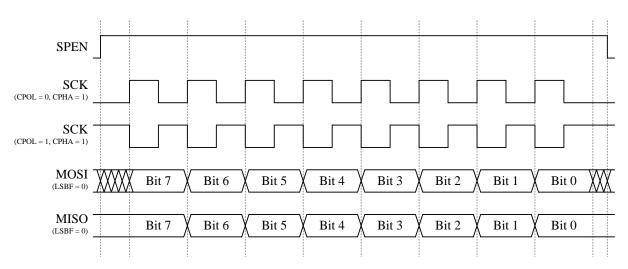

The SPI operates in Master mode by setting the MSTR bit in the SPCON. To start transmit, writing a data to the SPDAT. If SPBSY=0, the data will be transferred to the shift register and starts shift out on the MOSI line. The data of the Slave shift in from the MISO line at the same time. When the SPIF bit becomes set at the end of transfer, the receive data is written to receiver buffer and the RCVBF bit in the SPSTA is set. To prevent an overrun condition, software must read the SPDAT before next byte enters the shift register. The SPBSY bit will be set when writing a data to SPDAT to start transmit, and be cleared at the end of the eighth SCK period in Master mode.

Slave Mode

The SPI operates in Slave mode by clearing the MSTR bit in the SPCON. The transmission will start when the SPEN bit in the SPCON is set. The data from a Master will shift into the shift register through the MOSI line, and shift out from the shift register on the MISO line. When a byte enters the shift register, the data will be transferred to receiver buffer if RCVBF=0. If RCVBF=1, the newer received data will not be transferred to receiver buffer and the RCVOVF bit is set. After a byte enters the shift register, the SPIF and RCVBF bits are set. To prevent an overrun condition, software must read the SPDAT and write 0 to RCVBF before next byte enters the shift register. The maximum SCK frequency allowed in Slave mode is $F_{\rm SYS}/4$.


Serial Clock

The SPI has four clock types by setting the CPOL and CPHA bits in the SPCON register. The CPOL bit defines the level of the SCK in SPI idle state. The level of the SCK in idle state is low when CPOL=0, and is high when CPOL=1. The CPHA bit defines the edges used to sample and shift data. The SPI sample data on the first edge of SCK period and shift data on the second edge of SCK period when CPHA=0. The SPI sample data on the second edge of SCK period and shift data on first edge of SCK period when CPHA=1. Figures below show the detail timing in Master and Slave modes. Both Master and Slave devices must be configured to use the same clock type before the SPEN bit is set. The SPCR controls the Master mode serial clock frequency. This register is ignored when operating in Slave mode. The SPI clock can select System clock divided by 2, 4, 8, or 16 in Master mode.



DS-TM57M5541_E 67 Rev 0.93, 2017/09/07

Slave Mode Timing (CPHA=0)

Slave Mode Timing (CPHA=1)

In both Master and Slave modes, the SPIF interrupt flag is set by H/W at the end of a data transfer. If write data to SPDAT when SPBSY=1, the WCOL interrupt flag will be set by H/W. When this occurs, the data write to SPDAT will be ignored, and shift register will not be written.

DS-TM57M5541_E 68 Rev 0.93, 2017/09/07

F18	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SPCON	SPEN	MSTR	CPOL	СРНА	_	LSBF	SP	CR
R/W	R/W	R/W	R/W	R/W	_	R/W	R/W	
Reset	0	0	0	0	_	0	0	0

F18.7 **SPEN:** SPI Enable.

0: SPI Disable

1: SPI Enable, PD1~3 are SPI functional pins.

F18.6 **MSTR:** Master Mode Enable.

0: Slave Mode

1: Master Mode

F18.5 **CPOL:** SPI Clock Polarity

0: SCK is low in idle state

1: SCK is high in idle state

F18.4 **CPHA:** SPI Clock Phase

0: Data sampled on first edge of SCK period

1: Data sampled on second edge of SCK period

F18.2 **LSBF:** LSB First.

0: MSB first

1: LSB first

F18.1~0 **SPCR:** SPI Clock Rate.

00: Fsys/2

01: Fsys/4

10: Fsys/8

11: Fsys/16

F19	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SPSTA	SPIF	WCOL		RCVOVF	RCVBF	SPBSY		_
R/W	R/W	R/W		R/W	R/W	R		_
Reset	0	0	_	0	0	_	_	_

F19.7 **SPIF:** SPI Interrupt Flag

Set by H/W at the end of a data transfer. Cleared by H/W when interrupt is vectored into. Write 0 to this bit will clear this flag.

F19.6 WCOL: Write Collision Interrupt Flag

Set by H/W if write data to SPDAT when SPBSY=1. Write 0 to this bit or rewrite data to SPDAT when SPBSY=0 will clear this flag.

F19.4 **RCVOVF:** Receive Buffer Overrun Flag

Set by H/W at the end of a data transfer and RCVBF=1. Write 0 to this bit will clear this flag.

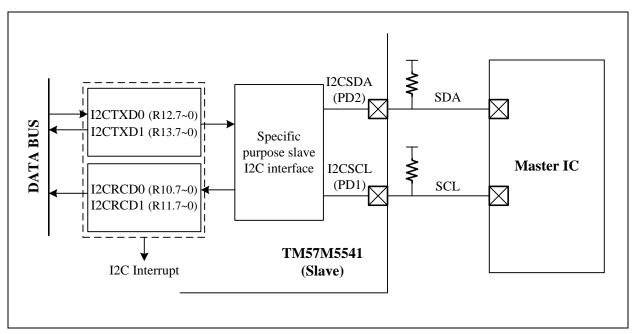
F19.3 **RCVBF:** Receive Buffer Full Flag

Set by H/W at the end of a data transfer. Write 0 to this bit will clear this flag.

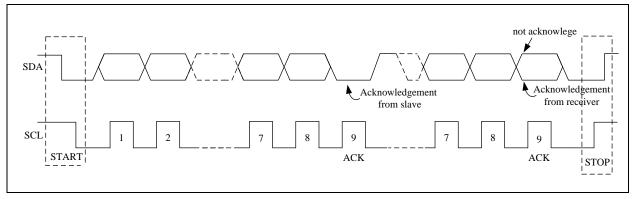
F19.2 **SPBSY:** SPI Busy Flag (Read Only)

Set by H/W when a SPI transfer is in progress.

F1A	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
SPDAT		SPDAT							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	


F1A.7~0 **SPDAT:** SPI Transmit and Receive Data

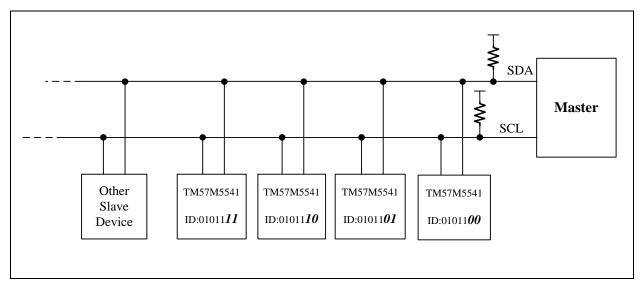
The SPDAT register is used to transmit and receive data. Writing data to SPDAT place the data into shift register and start a transfer when in Master mode. Reading SPDAT returns the contents of the receive buffer.



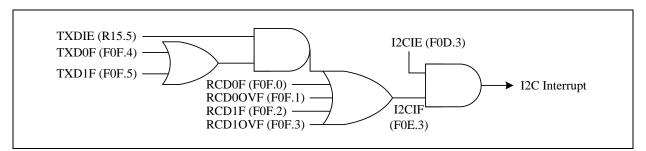
7.10 Specific Purpose Slave I2C Interface

Specific purpose slave I2C interface in TM57M5541 could be used for data transmission. This interface is based on a standard I2C (Inter-Integrated Circuit), and This chip is always as a slave mode. When the master node (another IC or device) sends the correct ID through I2C, it can read data from the register I2CTXD0 (R12.7~0) and I2CTXD1 (R13.7~0) or write data to the register I2CRCD0 (R10.7~0) and I2CRCD1 (R11.7~0).

Slave I2C Interface Block Diagram



I2C Protocol


DS-TM57M5541_E 70 Rev 0.93, 2017/09/07

To use the slave I2C interface, the I2CEN (R14.6) bit has to be set. TM57M5541 supports 4 slave device IDs by setting I2CID (R14.4~3) . TM57M5541 can generate the transmitting flag TXD0F (F0F.4) and TXD1F (F0F.5) when data transmitting finished. It generates the receiving flag RCD0F (F0F.0) and RCD1F (F0F.2) when data receiving finished. It can also generate the receiving overflow flag RCD0OVF (F0F.1) and RCD1OVF (F0F.3) when data receiving finished but the receiving flag is not cleared. If one of those I2C flags is set, the I2C interrupt flag I2CIF (F0E.3) will be generated. It generates I2C interrupt if the I2CIE (F0D.3) bit is set. The transmitting interrupt can be disabled by setting TXDIE (R15.5) . Refer to the following table and figure.

I2C Parallel Connection Application Circuit

Slave I2C Interrupt Block Diagram

RCDxOVF	RCDxF	I2CIF	STATE
0	0	0	IDLE
0	1	1	Data received to I2CRCDx register
1	1	1	Data overflow occurred at I2CRCDx register

TXDIE	TXDxF	I2CIF	STATE
0	X	X	Disable the transmitting interrupt
1	0	0	IDLE
1	1	1	Data in I2CTXDx is transmitting finish

DS-TM57M5541_E 71 Rev 0.93, 2017/09/07

	S Start P Stop
Master write Data to I2C_RCD0 of TM57MT21	
S 0 1 0 1 1 A A 0 k d d d d d d d k P	k Slave Ack K Master Ack
Slave ID 8bits Data to I2C_RCD0	d Data from Master to Slave
Master write Data to I2C_RCD0 & I2C_RCD1 of TM57MT21	D Data from Slave to Master
S 0 1 0 1 1 A A 0 k d d d d d d k d d d d d d d d d d d	A Slave ID Last 2 bits (Default : 00)
Slave ID 8bits Data to I2C_RCD0 8bits Data to I2C_RCD1	
Master read Data from I2C_TXD0 of TM57MT21 S 0 1 0 1 1 A A 1 k D D D D D D D 1 P Slave ID 8bits Data from I2C_TXD0	
Master read Data from I2C_TXD0 & I2C_TXD1 of TM57MT21	
S 0 1 0 1 1 A A 1 k D D D D D D K D D D D D D D D T P	
Slave ID 8bits Data from I2C_TXD0 8bits Data from I2C_TXD1	

Table of TM57M5541 I2C Commands

F0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE1	_	_	LVDIE	ADCIE	I2CIE	SPIE	INT4IE	INT3IE
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	-	0	0	0	0	0	0

F08.3 I2CIE: I2C Receive/Transmit Data finished Interrupt Enable

0: disable 1: enable

F0E	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF1	_	_	LVDIF	ADCIF	I2CIF	SPIF	INT4IF	INT3IF
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

F09.3 **I2CIF**: I2C interrupt event pending flag

This bit is set by H/W while

- a. I2CRCD0 or I2CRCD1 receive data finished
- b. I2CRCD0 or I2CRCD1 data overflow occurred
- c. I2CTXD0 or I2CTXD1 data transmit finished

write 0 to this bit will clear this flag and slave I2C related flags

R10	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
I2CRCD0		I2CRCD0							
R/W		R							
Reset	0	0	0	0	0	0	0	0	

R10.7~0 **I2CRCD0:** The receiving register 0 of slave I2C

R11	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
I2CRCD1		I2CRCD1							
R/W		R							
Reset	0	0	0	0	0	0	0	0	

R11.7~0 **I2CRCD1:** The receiving register 1 of slave I2C

R12	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
I2CTXD0		I2CTXD0								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

R12.7~0 **I2CTXD0:** The transmitting register 0 of slave I2C

R13	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
I2CTXD1		I2CTXD1								
R/W				R/	W					
Reset	0	0 0 0 0 0 0								

R13.7~0 **I2CTXD1:** The transmitting register 1 of slave I2C

R14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
I2CCTL	_	I2CEN	TXDIE	I2C	CID	LVDEN	LVD	SEL
R/W	_	R/W						
Reset	_	0	0	0	0	0	0	0

R14.6 **I2CEN:** Slave I2C interface enable

0: disable 1: enable

R14.5 **TXDIE**: Slave I2C transmitting interrupt enable

0: disable 1: enable

R14.4~3 **I2CID**: Slave I2C ID last 2 bits

F0F	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
I2CFLAG		_	TXD1F	TXD0F	RCD10VF	RCD1F	RCD00VF	RCD0F
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

F0F.5 **TXD1F**: Slave I2C transmitting data register 1 flag

This bit is set by H/W while I2CTXD1 data transmitting finished, write 0 to this bit will clear this flag

F0F.4 **TXD0F**: Slave I2C transmitting data register 0 flag

This bit is set by H/W while I2CTXD0 data transmitting finished, write 0 to this bit will clear this flag

F0F.3 **RCD10VF**: Slave I2C receiving data register 1 overflow

This bit is set by H/W while receiving data to I2CRCD1 overflow, write 0 to this bit will clear this flag

F0F.2 **RCD1F**: Slave I2C receiving data register 1 flag

This bit is set by H/W while data receiving to I2CRCD1 finished, write 0 to this bit will clear this flag

F0F.1 **RCD0OVF**: Slave I2C receiving data register 0 overflow

This bit is set by H/W while receiving data to I2CRCD0 overflow, write 0 to this bit will clear this flag

F0F.0 **RCD0F**: Slave I2C receiving data register 0 flag

This bit is set by H/W while data receiving to I2CRCD0 finished, write 0 to this bit will clear this flag

DS-TM57M5541_E 73 Rev 0.93, 2017/09/07

MEMORY MAP

F-Plane

Name	Address	R/W	Rst	Description
(F00) INDF				Function related to: RAM W/R
INDF	00.7~0	R/W	-	Not a physical register, addressing INDF actually point to the register whose address is contained in the FSR register
(F01) TM0				Function related to: Timer0
TM0	01.7~0	R/W	0	Timer0 content
(F02) PCL				Function related to: PROGRAM COUNT
PCL	02.7~0	R/W	0	Programming Counter LSB [7~0]
(F03) STATUS	}			Function related to: STATUS
GB1	03.7	R/W	0	General purpose bit
GB0	03.6	R/W	0	General purpose bit
RAMBK	03.5	R/W	0	FRAM Bank
то	03.4	R	0	WDT timeout flag, cleared by PWRST, 'SLEEP' or 'CLRWDT' instruction
PD	03.3	R	0	Power down flag, set by 'SLEEP', cleared by 'CLRWDT' instruction
Z	03.2	R/W	0	Zero flag
DC	03.1	R/W	0	Decimal Carry flag
C	03.0	R/W	0	Carry flag
(F04) FSR				Function related to: RAM W/R
GB2	04.7	R/W	0	General purpose bit
FSR	04.6~0	R/W	-	File Select Register, indirect address mode pointer
(F05) PAD				Function related to: Port A
PAD	05.7~0	R	-	Port A pin or "data register" state
TAD	03.7~0	W	FF	Port A output data register
(F06) PBD				Function related to: Port B
PBD	06.7~0	R	-	Port B pin or "data register" state
FBD	00.7~0	W	FF	Port B output data register
(F07) PDD				Function related to: Port D
PDD	07.2~0	R	-	Port D pin or "data register" state
FDD	07.2~0	W	FF	Port D output data register
(F08) INTIE				Function related to: Interrupt Enable
TKIE	08.7	R/W	0	Touch key interrupt enable, 1=enable, 0=disable
TM3IE	08.6	R/W	0	TM3 interrupt enable, 1=enable, 0=disable
TM1IE	08.5	R/W	0	Timer1 interrupt enable, 1=enable, 0=disable
TM0IE	08.4	R/W	0	Timer0 interrupt enable, 1=enable, 0=disable
WKTIE	08.3	R/W	0	Wakeup Timer interrupt enable, 1=enable, 0=disable Set 0 to clear & disable WKT timer
INT2IE	08.2	R/W	0	INT2 pin (PA7) interrupt enable, 1=enable, 0=disable
INT1IE	08.1	R/W	0	INT1 pin (PA1) interrupt enable, 1=enable, 0=disable
INT0IE	08.0	R/W	0	INT0 pin (PA6) interrupt enable, 1=enable, 0=disable

Name	Address	R/W	Rst	Description
(F09) INTIF	•			Function related to: Interrupt Flag
TKIF	09.7	R	-	Touch Key interrupt event pending flag, set by H/W ATKEN=1: Key's TK Data Count is over the pre-set compare threshold range ATKEN=0: end of TK conversion
		W	0	write 0: clear this flag; write 1: no action
TM3IF	09.6	R	-	TM3 interrupt event pending flag, set by H/W while Timer3 overflows
		W	0	write 0: clear this flag; write 1: no action
TM1IF	09.5	R	-	Timer1 interrupt event pending flag, set by H/W while Timer1 overflows
		W	0	write 0: clear this flag; write 1: no action
TM0IF	09.4	R	-	Timer0 interrupt event pending flag, set by H/W while Timer0 overflows
		W	0	write 0: clear this flag; write 1: no action
WKTIF	09.3	R	-	WKT interrupt event pending flag, set by H/W while WKT time out
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	07.3	W	0	write 0: clear this flag; write 1: no action
INT2IF	09.2	R	-	INT2 (PA7) interrupt event pending flag, set by H/W at INT2 pin's falling edge
		W	0	write 0: clear this flag; write 1: no action
INT1IF	09.1	R	-	INT1 (PA1) interrupt event pending flag, set by H/W at INT1 pin's falling/rising edge
		W	0	write 0: clear this flag; write 1: no action
INT0IF	09.0	R	-	INT0 (PA6) interrupt event pending flag, set by H/W at INT0 pin's falling/rising edge
		W	0	write 0: clear this flag; write 1: no action
(F0A) PCH	•			Function related to: PROGRAM COUNT
PCH	0A.2~0	R/W	0	Programming Counter MSB [10~8]
(F0B) CLKCT	L			Function related to: Fsys
SCKTYPE	0b.7	R/W	0	Slow-clock Type 0: SIRC, 1: SXT
FCKTYPE	0b.6	R/W	0	Fast-clock Type 0: FIRC, 1: FXT
-	0b.5	-	-	Reserved
SLOWSTP	0b.4	R/W	0	Stop Slow-clock in Stop Mode 0: no Stop 1: Stop
FASTSTP	0b.3	R/W	0	Stop Fast-clock 0:no Stop 1:Stop
CPUCKS	0b.2	R/W	0	Select Fast-clock 0: Fsys=Slow-clock 1: Fsys=Fast-clock
CPUPSC	0b.1~0	R/W	11	Fsys Prescaler, 0: div 16, 1: div 4, 2: div 2, 3: div 1

Name	Address	R/W	Rst	Description
(F0C) MF0C				Function related to: TM0/TM1/TM3/Port E/Filter
CLKFLT	0c.7	R/W	0	CLK Filte: Please keep the value of this register = 0
VCCFLT	0c.6	R/W	0	Power noise Filter 0: disable 1: enable
TM3SET	0c.5	R/W	0	After TM3SET=1, TM3 NEXT STEP=FFFFh
TM3STP	0c.4	R/W	0	Stop Timer3
TM1STP	0c.3	R/W	0	Stop Timer1
TM0STP	0c.2	R/W	0	Stop Timer0
DED	0-1-0	R	-	Port E pin or "data register" state
PED	0c.1~0	W	FF	Port E output data register
(F0D) INTIE1				Function related to: Interrupt Enable
LVDIE	0d.5	R/W	0	LVD Interrupt Enable 0: Disable 1: Enable
ADCIE	0d.4	R/W	0	ADC Interrupt Enable 0: Disable 1: Enable
I2CIE	0d.3	R/W	0	I2C Interrupt Enable 0: Disable 1: Enable
SPIE	0d.2	R/W	0	SPI Interrupt Enable 0: Disable 1: Enable
INT4IE	0d.1	R/W	0	XINT4 (PD2) Interrupt Enable 0: Disable 1: Enable
INT3IE	0d.0	R/W	0	XINT3 (PD1) Interrupt Enable 0: Disable 1: Enable
(F0E) INTIF1				Function related to: Interrupt Flag
LVDIF	0e.5	R	-	Low voltage detection interrupt flag, set by H/W while $Vcc \leq LVD$
LVDIF	0e.5	W	0	write 0: clear this flag; write 1: no action
ADCIE	0- 4	R	-	ADC interrupt flag, set by H/W after end of ADC conversion
ADCIF	0e.4	W	0	write 0: clear this flag; write 1: no action
I2CIF	0e.3	R	-	I2C interrupt event pending flag, set by H/W while a. I2CRCD0 or I2CRCD1 receive new data finished b. I2CRDC0 or I2CRCD1 data overflow occurred c. I2CTXD0 or I2CTXD1 data transmit finished
		W	0	write 0: clear this flag; write 1: no action
-	0e.2	-	-	Reserved
INT4IF	0e.1	R	-	INT4 (PD2) interrupt event pending flag, set by H/W at INT4 pin's falling/rising edge
		W	0	write 0: clear this flag; write 1: no action
INT3IF	0e.0	R	-	INT3 (PD1) interrupt event pending flag, set by H/W at INT3 pin's falling/rising edge
		W	0	write 0: clear this flag; write 1: no action

Name	Address	R/W	Rst	Description
(F0F) I2CFLAC	<u>.</u>			Function related to: Slave I2C
TXD1F	0f.5	R	-	Slave I2C transmitting data register 1 flag, set by H/W while I2CTXD1 data transmitting finished
11211	01.0	W	0	0: clear this flag 1: no action
TXD0F	0f.4	R	-	Slave I2C transmitting data register 0 flag, set by H/W while I2CTXD0 data transmitting finished
1112 01	017.	W	0	0: clear this flag 1: no action
RCD10VF	0f.3	R	-	Slave I2C receiving data register 1 overflow, set by H/W while receiving data to I2CRCD1 overflow
Rebiovi	01.3	W	0	0: clear this flag 1: no action
RCD1F	0f.2	R	-	Slave I2C receiving data register 1 flag, set by H/W while data receiving to I2CRCD1 finished
KCD11	01.2	W	0	0: clear this flag 1: no action
RCD0OVF	0f.1	R	-	Slave I2C receiving data register 0 overflow, set by H/W while receiving data to I2CRCD0 overflow
NCD0011	01.1	W	0	0: clear this flag 1: no action
RCD0F	0f.0	R	-	Slave I2C receiving data register 0 flag, set by H/W while data receiving to I2CRCD0 finished
Repor	01.0	W	0	0: clear this flag 1: no action
(F10) TKCTL				Function related to: Touch Key
TKTMR	10.7~5	R/W	011	Touch key conversion time 000: shortest 111: longest
TKREF	10.4	R/W	1	Touch Key Channel Select REFC
TKCHS	10.3~0	R/W	0	Touch key channel select (ATKEN=0) or ATK0 select (ATKEN=1) 0000: TK0 (PA6) 1000: TK8 (PD6) 0001: TK1 (PA1) 1001: TK9 (PB5) 0010: TK2 (PA2) 1010: TK10 (PB4) 0011: TK3 (PB1) 1011: TK11 (PE1) 0100: TK4 (PD7) 1100: TK12 (PE0) 0101: TK5 (PA5) 1101: TK13 (PB7) 0110: TK6 (PA0) 1110: TK14 (PB6) 0111: TK7 (PB0) 1111: TK15 (PB3)
(F11) TKDL				Function related to: Touch Key
TKDL	11.7~0	R	-	Touch key data LSB [7~0]

Name	Address	R/W	Rst	Description
(F12) TKDH	'			Function related to: Touch Key
TKSOC	12.7	R/W	0	Touch key start of conversion, rising edge to start H/W auto cleared while end of conversion
TKEOC	12.6	R	ı	Touch key end of conversion 0: conversion is in process 1: end of conversion
ATKDT	12.5~4	R	ı	Touch key auto scan result 00: ATK0 has a touch event 01: ATK1 has a touch event 10: ATK2 has a touch event 11: ATK3 has a touch event
ATKPOL	12.3	R	-	Auto Touch Key trigger Polarity 0: Low Boundary, 1: Up Boundary
TKOVF	12.2	R	-	Touch key counter overflow flag 0: not overflow 1: overflow
TKDH	12.1~0	R	ı	Touch key data MSB [9~8]
(F13)TKCTL2				Function related to: Touch Key
TKPD	13.7	R/W	1	Touch Key Power Down 0: TK Enable 1: TK Power Down
TKCLDXS	13.6	R/W	0	Touch Key CLD External Selection 0: Internal CLD 1: External CLD
ATKSIT	13.5~4	R/W	0	Auto Touch Key Scan Interval Time, @3V 00: 30ms 01: 60ms 10: 120ms 11: 240ms
-	13.3	-	-	Reserved
ATKEN	13.2	R/W	0	Auto Touch Key Enable 0: Disable 1: Enable
ATKNUM	13.1~0	R/W	11	Auto Touch Key Scan Channel Number 00: ATK0 01: ATK0~ATK1 10: ATK0~ATK2 11: ATK0~ATK3
(F14)ADH	1			Function related to: ADC
ADH	14.7~0	R	-	ADC output data MSB, ADQ [11:4]
(F15) ADCTL				Function related to: ADC
ADL	15.7~4	R	-	ADC output data LSB, ADQ [3:0]
ADST	15.3	R/W	0	ADC start bit. 0: H/W clear after end of conversion 1: ADC start conversion
ADCKS	15.2~0	R/W	0	ADC clock frequency selection: 000: Fsys/256 100: Fsys/16 001: Fsys/128 101: Fsys/8 010: Fsys/64 110: Fsys/4 011: Fsys/32 111: Fsys/2

Name	Address	R/W	Rst	Description
(F16) MF16	'		-	Function related to: ADC/LDO/MODE3V/LVR/VBG
BGEN	16.7	R/W	1	VBG1.25V 0: disable 1: Enable and auto disable in STOP/IDLE mode
LVR2SAV	16.6	R/W	1	1: LVR2 (2.3V/2.9V) auto power off in STOP/IDLE mode
LDOSAV	16.5	R/W	1	1: LDO auto power off in STOP/IDLE mode
MODE3V	16.4	R/W	0	LDO power down 1: 3V mode (Vcc < 3.6V) 0: 5Vmode (Vcc > 3.6V)
ADCHS	16.3~0	R/W	0	ADCHS: ADC channel select 0000: ADC0 (PA6) 0110: ADC6 (PD6) 1100: ADC12(PB3) 0001: ADC1 (PA1) 0111: ADC7 (PB0) 1101: ADC13(PB6) 0010: ADC2 (PA2) 1000: ADC8(PA0) 1110: ADC14(PB7) 0011: ADC3 (PB1) 1001: ADC9(PD5) 1111: VBG 1.25V 0100: ADC4 (PD7) 1010: ADC10(PD4) 0101: ADC5 (PA5) 1011: ADC11(PB2)
(F17) PWMC	ΓL			Function related to: PWM
PWM1DIS	17.7	R/W	0	PWM1A/1B/1C Clock Disable 0: Clock Enable 1: Clock Disable
PWM0DIS	17.6	R/W	0	PWM0 Clock Disable 0: Clock Enable 1: Clock Disable
PWM1CKS	17.5	R/W	0	PWM1A/1B/1C Clock Source 0: Fsys 1: FIRC16M
PWM0CKS	17.4	R/W	0	PWM0 Clock Source 0: Fsys 1: FIRC16M
PWM1PSC	17.3~2	R/W	0	PWM1A/1B/1C Clock Source Prescaler 00: DIV1 01: DIV2 10: DIV4 11: DIV64
PWM0PSC	17.1~0	R/W	0	PWM0 Clock Source Prescaler 00: DIV1 01: DIV2 10: DIV4 11: DIV64
(F18) SPCON				Function related to: SPI
SPEN	18.7	R/W	0	SPI enable 0: SPI disable 1: SPI enable
MSTR	18.6	R/W	0	Master mode enable 0: Slave mode 1: Master mode
CPOL	18.5	R/W	0	SPI clock polarity 0: SCK is low in idle state 1: SCK is high in idle state
СРНА	18.4	R/W	0	SPI clock phase 0: Data sample on first edge of SCK period 1: Data sample on second edge of SCK period
-	18.3		1	Reserved
LSBF	18.2	R/W	0	LSB first 0: MSB first 1: LSB first
SPCR	18.1~0	R/W	0	SPI clock rate 00: Fsys/2 01: Fsys/4 10: Fsys/8 11: Fsys/16

Name	Address	R/W	Rst	Description
(F19) SPSTA				Function related to: SPI
SPIF	19.7	R/W	0	SPI interrupt flag This is set by H/W at the end of a data transfer. Cleared by H/W when an interrupt is vectored into. Writing 0 to this bit will clear this flag.
WCOL	19.6	R/W	0	Write collision interrupt flag Set by H/W if write data to SPDAT when SPBSY is set. Write 0 to this bit or rewrite data to SPDAT when SPBSY is cleared will clear this flag.
-	19.5	-	-	Reserved
RCVOVF	19.4	R/W	0	Received buffer overrun flag Set by H/W at the end of a data transfer and RCVBF is set. Write 0 to this bit will clear this flag.
RCVBF	19.3	R/W	0	Receive buffer full flag Set by H/W at the end of a data transfer. Write 0 to this bit will clear this flag.
SPIBSY	19.2	R	0	SPI busy flag Set by H/W when a SPI transfer is in progress.
-	19.1~0			Reserved
(F1A) SPDAT				Function related to: SPI
SPDAT	1a.7~0	R/W	0	SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writing data to SPDAT place the data into shift register and start a transfer when in master mode. Reading SPDAT returns the contents of the receive buffer.
(F1B) MF1B				Function related to: TCOUT/Timer1/Touch Key/PWM
TCOE	1b.7	R/W	0	TCOUT (PD6) Output Enable 0: Disable 1: Enable
TRCOE	1b.6	R/W	0	TRCOUT(PD0) Output Enable 0: Disable 1: Enable
TM10E	1b.5	R/W	0	TM1OUT (PD0) Output Enable 0: Disable 1: Enable
PWM1COE	1b.4	R/W	0	PWM1COE (PB4) Output Enable 0: Disable 1: Enable
PWM1BOE	1b.3	R/W	0	PWM1BOE (PB5) Output Enable 0: Disable 1: Enable
PWM1AOE	1b.2	R/W	0	PWM1AOE (PB0) Output Enable 0: Disable 1: Enable
PWM0O2OE	1b.1	R/W	0	PWM0O2 (PD4) Output Enable 0: Disable 1: Enable
PWM0O1OE	1b.0	R/W	0	PWM0O1 (PA0) Output Enable 0: Disable 1: Enable
(F1C) RSR		1		Function related to: RRAM W/R
RSR	1c.7~0	R/W	0	R-Plane File Select Register
(F1D) DPL		1		Function related to: Table Read
DPL	1d.7~0	R/W	0	Table read low address, data ROM pointer (DPTR) low byte

Name	Address	R/W	Rst	Description
(F1E) DPH				Function related to: Table Read
DPH	1e.3~0	R/W	0	Table read high address, data ROM pointer (DPTR) high byte
(F1F) IRCF				Function related to: Internal RC
IRCF	1f.4~0	R/W		FIRC frequency adjustment: 00H: Lowest frequency 1FH: Highest frequency
User Data Men	nory			
	20~27	R/W	-	RAM common area (8 Bytes)
FRAM	28~7F	R/W	-	RAM Bank0 area (RAMBK=0, 88 bytes)
	28~7F	R/W	-	RAM Bank1 area (RAMBK=1, 88 bytes)

R-Plane

Name	Address	R/W	Rst	Description
(R00) INDR				Function related to: RRAM R/W
INDR	00.7~0	R/W	-	Not a physical register, addressing INDR actually point to the register whose address is contained in the RSR register
(R01) TM0RI	LD			Function related to: TM0
TM0RLD	01.7~0	R/W	0	Timer0 reload Data
(R02) TM0CT	TL .			Function related to: TM0
	02.7~6			
TM0EDG	02.5	R/W	0	Timer0 prescaler counting edge for TM0CKI pin 0: rising edge
TM0CKS	02.4	R/W	0	Timer0 prescaler clock source 0: Instruction cycle 1: TM0CKI pin (PA2 pin)
TM0PSC	02.3~0	R/W	0	Timer0 prescaler. Timer0 prescaler clock source divided by 0000: /1 0101: /32 0001: /2 0110: /64 0010: /4 0111: /128 0011: /8 1xxx: /256 0100: /16
(R03) PWRD	N			Function related to: Power Down
PWRDN	03	W	-	write this register to enter STOP/IDLE Mode (i.e. 'SLEEP' instruction)
(R04) WDTCLR Function r				Function related to: WDT
WDTCLR	04	W	-	write this register to clear WDT timer (i.e. 'CLRWDT' instruction)
(R05) PAMO	DH			Function related to: Port A
PA7MOD	05.6	R/W	0	PA7 I/O mode control 0: with pull-up (PAD [7] =1) 1: without pull-up
PA6MOD	05.5~4	R/W	01	PA6~PA4 I/O mode control
PA5MOD	05.3~2	R/W	01	00: Mode0 01: Mode1
PA4MOD	05.1~0	R/W	01	10: Mode2 11: Mode3
(R06) PAMO	DL			Function related to: Port A
PA3MOD	06.7~6	R/W	01	PA3~PA0 I/O mode control
PA2MOD	06.5~4	R/W	01	00: Mode0
PA1MOD	06.3~2	R/W	01	01: Mode1 10: Mode2
PA0MOD	06.1~0	R/W	01	11: Mode3
(R07) PBMOI	DH			Function related to: Port B
PB7MOD	07.7~6	R/W	01	PB7~PB4 I/O mode control
PB6MOD	07.5~4	R/W	01	00: Mode0 01: Mode1
PB5MOD	07.3~2	R/W	01	10: Mode2
PB4MOD	07.1~0	R/W	01	11: Mode3
(R08) PBMO	DL			Function related to: Port B
PB3MOD	08.7~6	R/W	01	PB3~PB0 I/O mode control
PB2MOD	08.5~4	R/W	01	00: Mode0 01: Mode1
PB1MOD	08.3~2	R/W	01	10: Mode2
PB0MOD	08.1~0	R/W	01	11: Mode3

Name	Address	R/W	Rst	Description
(R09) PDMOI	DH			Function related to: Port D
PD7MOD	09.7~6	R/W	01	PD7~PD4 I/O mode control
PD6MOD	09.5~4	R/W	01	00: Mode0
PD5MOD	09.3~2	R/W	01	01: Mode1 10: Mode2
PD4MOD	09.1~0	R/W	01	11: Mode3
(R0A) PDMO	DL			Function related to: Port D
PD3MOD	0a.7~6	R/W	01	PD3~PD0 I/O mode control
PD2MOD	0a.5~4	R/W	01	00: Mode0
PD1MOD	0a.3~2	R/W	01	01: Mode1 10: Mode2
PD0MOD	0a.1~0	R/W	01	10. Mode2 11: Mode3
(R0B) MR0B				Function related to: STATUS/INTO/WDT/WKT
	0b.7	R/W	0	Save/Restore STATUS w/o TO, PD
HWAUTO	00.7	K/W	U	0:disable 1: Enable
DITOEDG	01.6	D ///	0	INTO pin (PA6) edge interrupt event
INT0EDG	0b.6	R/W	0	0: falling edge to trigger 1: rising edge to trigger
	0b.5~4		_	Reserved
	00.5			WDT pre-scale selections:
				00: 128mS
WDTPSC	0b.3~2	R/W	11	01: 256mS
				10: 1024mS
				11: 2048mS WKT pre-scale selections:
				00: 16mS
WKTPSC	0b.1~0	R/W	11	01: 32mS
				10: 64mS
(2.0) 2216				11: 128mS
(R0C) PEMO		~ ~~		Function related to: Port E
	0c.7~4	R/W	-	DEL DEGLIO
PE1MOD	0c.3~2	R/W	01	PE1~PE0 I/O mode control 00: Mode0
				01: Mode0
PE0MOD	0c.1~0	R/W	01	10: Mode2
				11: Mode3
(R10) I2CRCl				Function related to: Slave I2C
I2CRCD0	10.7~0	R	0	The receiving register 0 of slave I2C
(R11) I2CRCI	D1			Function related to: Slave I2C
I2CRCD1	11.7~0	R	0	The receiving register 1 of slave I2C
(R12) I2CTXI	D0			Function related to: Slave I2C
I2CTXD0	12.7~0	R/W	0	The transmitting register 0 of slave I2C
(R13) I2CTXI	D1			Function related to: Slave I2C
I2CTXD1	13.7~0	R/W	0	The transmitting register 1 of slave I2C

Name	Address	R/W	Rst	Description
(R14) MR14				Function related to: I2C/LVD
	14.7			
I2CEN	14.6	R/W	0	Slave I2C interface enable 0: disable 1: enable
TXDIE	14.5	R/W	0	Slave I2C transmitting interrupt enable 0: disable 1: enable
I2CID	14.4~3	R/W	0	Slave I2C ID last 2 bits
LVDEN	14.2	R/W	0	LVD Enable 0: disable 1: enable
LVDSEL	14.1~0	R/W	0	LVD Voltage Select 00: 2.2V 01: 2.5V 10: 3.1V 11: 4.5V
(R15) MR15				Function related to: INT1/INT3/INT4
INT4EDG	15.2	R/W	0	INT4 pin (PD2) edge interrupt event 0: falling edge to trigger 1: rising edge to trigger
INT3EDG	15.1	R/W	0	INT3 pin (PD1) edge interrupt event 0: falling edge to trigger 1: rising edge to trigger
INT1EDG	15.0	R/W	0	INT1 pin (PA1) edge interrupt event 0: falling edge to trigger 1: rising edge to trigger
(R16) ATK0U	BL			Function related to: Touch Key
ATK0UBL	16.7~0	R/W	FF	Auto Touch Key ATK0 upper boundary LSB [7:0]
(R17) ATK0L	BL			Function related to: Touch Key
ATK0LBL	17.7~0	R/W	00	Auto Touch Key ATK0 lower boundary LSB [7:0]
(R18) ATK1U	BL			Function related to: Touch Key
ATK1UBL	18.7~0	R/W	FF	Auto Touch Key ATK1 upper boundary LSB [7:0]
(R19) ATK1L	BL			Function related to: Touch Key
ATK1LBL	19.7~0	R/W	00	Auto Touch Key ATK1 lower boundary LSB [7:0]
(R1A) ATK2U	JBL			Function related to: Touch Key
ATK2UBL	1a.7~0	R/W	FF	Auto Touch Key ATK2 upper boundary LSB [7:0]
(R1B) ATK2L	BL			Function related to: Touch Key
ATK2LBL	1b.7~0	R/W	00	Auto Touch Key ATK2 lower boundary LSB [7:0]
(R1C) ATK3U	JBL			Function related to: Touch Key
ATK3UBL	1c.7~0	R/W	FF	Auto Touch Key ATK3 upper boundary LSB [7:0]
(R1D) ATK3L	BL			Function related to: Touch Key
ATK3LBL	1d.7~0	R/W	00	Auto Touch Key ATK3 lower boundary LSB [7:0]
(R1E) ATKUI	вн			Function related to: Touch Key
ATK3UBH	1e.7~6	R/W	11	Auto Touch Key ATK3 upper boundary MSB [9:8]
ATK2UBH	1e.5~4	R/W	11	Auto Touch Key ATK2 upper boundary MSB [9:8]
ATK1UBH	1e.3~2	R/W	11	Auto Touch Key ATK1 upper boundary MSB [9:8]
ATK0UBH	1e.1~0	R/W	11	Auto Touch Key ATK0 upper boundary MSB [9:8]

Name	Address	R/W	Rst	Description
(R1F) ATKLI	BH			Function related to: Touch Key
ATK3LBH	1f.7~6	R/W	0	Auto Touch Key ATK3 lower boundary MSB [9:8]
ATK2LBH	1f.5~4	R/W	0	Auto Touch Key ATK2 lower boundary MSB [9:8]
ATK1LBH	1f.3~2	R/W	0	Auto Touch Key ATK1 lower boundary MSB [9:8]
ATK0LBH	1f.1~0	R/W	0	Auto Touch Key ATK0 lower boundary MSB [9:8]
(R20) PWM0l	PRD			Function related to: PWM0
PWM0PRD	20.7~0	R/W	FF	PWM0 period data
(R21) PWM0l	DH			Function related to: PWM0
PWM0DH	21.7~0	R/W	0	PWM0 Duty MSB 8bit
(R22) PWM0I	DL			Function related to: PWM0
PWM0DL	22.1~0	R/W	0	PWM0 Duty LSB 2bit
(R23) PWM11	PRD			Function related to: PWM1
PWM1PRD	23.7~0	R/W	FF	PWM1 (PWM1A/PWM1B/PWM1C) period data
(R24) PWM1	AD			Function related to: PWM1A
PWM1AD	24.7~0	R/W	0	PWM1A Duty
(R25) PWM11	BD			Function related to: PWM1B
PWM1BD	25.7~0	R/W	0	PWM1B Duty
(R26) PWM10	CD			Function related to: PWM1C
PWM1CD	26.7~0	R/W	0	PWM1C Duty
(R28) TM1				Function related to: Timer1
TM1	28.7~0	R/W	0	Timer1 content
(R29) TM1RI	.D			Function related to: Timer1
TM1RLD	29.7~0	R/W	0	Timer1 reload Data
(R2A) TM1PS	SC			Function related to: Timer1
TM1PSC	2a.3~0	R/W	0	Timer1 prescaler. Timer1 clock source 0000: Fsys/2 0001: Fsys/4 0010: Fsys/8 0011: Fsys/16 0100: Fsys/32 0101: Fsys/64 0110: Fsys/128 0111: Fsys/256 1xxx: Fsys/512
(R2B) TM3H				Function related to: Timer3
ТМ3Н	2b.7~0	R	0	Timer3 content MSB [15:8]
(R2C) TM3L0				Function related to: Timer3
TM3L	2c.7~0	R	0	Timer3 content LSB [7:0]
(R2D) TM3RI	LDH			Function related to: Timer3
TM3RLDH	2d.7~0	R/W	0	Timer3 reload Data MSB [15:8]
(R2E) TM3RI	LDL			Function related to: Timer3
TM3RLDL	2e.7~0	R/W	0	Timer3 reload Data LSB [7:0]

Name	Address	R/W	Rst	Description		
(R2F) TM3C	TL			Function related to: Timer3		
TM3CKS	2f.4	R/W	0	Timer3 Clock select 0: Fsys/2 1: Slow-clock		
TM3PSC	2f.3~0	R/W	0	Timer3 prescaler. Timer3 clock source 0000: divided by 1 0001: divided by 2 0010: divided by 4 0011: divided by 8 0100: divided by 16 0101: divided by 32 0110: divided by 64 0111: divided by 128 1xxx: divided by 256		
User Data M	User Data Memory					
RRAM	40~ff	R/W	-	RAM common area (192 bytes)		

INSTRUCTION SET

Each instruction is a 14-bit word divided into an Op Code, which specifies the instruction type, and one or more operands, which further specify the operation of the instruction. The instructions can be categorized as byte-oriented, bit-oriented and literal operations list in the following table.

For byte-oriented instructions, "f" or "r" represents the address designator and "d" represents the destination designator. The address designator is used to specify which address in Program memory is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If "d" is "0", the result is placed in the W register. If "d" is "1", the result is placed in the address specified in the instruction.

For bit-oriented instructions, "b" represents a bit field designator, which selects the number of the bit affected by the operation, while "f" represents the address designator. For literal operations, "k" represents the literal or constant value.

Field/Legend	Description
f	F-Plane Register File Address
r	R-Plane Register File Address
b	Bit address
k	Literal. Constant data or label
d	Destination selection field, 0: Working register, 1: Register file
W	Working Register
Z	Zero Flag
С	Carry Flag or/Borrow Flag
DC	Decimal Carry Flag or Decimal/Borrow Flag
PC	Program Counter
TOS	Top Of Stack
GIE	Global Interrupt Enable Flag (i-Flag)
[]	Option Field
()	Contents
	Bit Field
В	Before
A	After
←	Assign direction

DS-TM57M5541 E 87 Rev 0.93, 2017/09/07

Mnemonic		Op Code	Cycle	Flag Affect	Description
		Byte-Oriente	d File Reg	ister Instructio	on
ADDWF	f, d	00 0111 dfff ffff	1	C, DC, Z	Add W and "f"
ANDWF	f, d	00 0101 dfff ffff	1	Z	AND W with "f"
CLRF	F	00 0001 1fff ffff	1	Z	Clear "f"
CLRW		00 0001 0100 0000	1	Z	Clear W
COMF	f, d	00 1001 dfff ffff	1	Z	Complement "f"
DECF	f, d	00 0011 dfff ffff	1	Z	Decrement "f"
DECFSZ	f, d	00 1011 dfff ffff	1 or 2	-	Decrement "f", skip if zero
INCF	f, d	00 1010 dfff ffff	1	Z	Increment "f"
INCFSZ	f, d	00 1111 dfff ffff	1 or 2	-	Increment "f", skip if zero
IORWF	f, d	00 0100 dfff ffff	1	Z	OR W with "f"
MOVFW	f	00 1000 Offf ffff	1	-	Move "f" to W
MOVWF	f	00 0000 1fff ffff	1	-	Move W to "f"
MOVWR	r	01 1110 00rr rrrr	1	-	Move W to "r"
MOVRW	r	01 1111 00rr rrrr	1	-	Move "r" to W
RLF	f, d	00 1101 dfff ffff	1	С	Rotate left "f" through carry
RRF	f, d	00 1100 dfff ffff	1	С	Rotate right "f" through carry
SUBWF	f, d	00 0010 dfff ffff	1	C, DC, Z	Subtract W from "f"
SWAPF	f, d	00 1110 dfff ffff	1	-	Swap nibbles in "f"
TESTZ	f	00 1000 1fff ffff	1	Z	Test if "f" is zero
XORWF	f, d	00 0110 dfff ffff	1	Z	XOR W with "f"
		Bit-Oriented	l File Regi	ster Instruction	1
BCF	f, b	01 000b bbff ffff	1	-	Clear "b" bit of "f"
BSF	f, b	01 001b bbff ffff	1	-	Set "b" bit of "f"
BTFSC	f, b	01 010b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if clear
BTFSS	f, b	01 011b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if set
		Literal a	nd Contro	l Instruction	
ADDLW	k	01 1100 kkkk kkkk	1	C, DC, Z	Add Literal "k" and W
ANDLW	k	01 1011 kkkk kkkk	1	Z	AND Literal "k" with W
CALL	k	10 kkkk kkkk kkkk	2	-	Call subroutine "k"
CLRWDT		01 1110 0000 0100	1	TO, PD	Clear Watch Dog Timer
GOTO	k	11 kkkk kkkk kkkk	2	-	Jump to branch "k"
IORLW	k	01 1010 kkkk kkkk	1	Z	OR Literal "k" with W
MOVLW	k	01 1001 kkkk kkkK	1	-	Move Literal "k" to W
NOP		00 0000 0000 0000	1	-	No operation
RET		00 0000 0100 0000	2	-	Return from subroutine
RETI		00 0000 0110 0000	2	-	Return from interrupt
RETLW	k	01 1000 kkkk kkkK	2	-	Return with Literal in W
SLEEP		01 1110 0000 0011	1	TO, PD	Go into Power-down mode, Clock oscillation stops
TABRH		00 0000 0101 1000	2	-	Lookup ROM high data to W
TABRL		00 0000 0101 0000	2	-	Lookup ROM low data to W
XORLW	k	01 1101 kkkk kkkk	1	Z	XOR Literal "k" with W

ADDLW Add Literal "k" and W

 $\begin{array}{lll} \text{Syntax} & & \text{ADDLW k} \\ \text{Operands} & & \text{k}:00\text{h} \sim \text{FFh} \\ \text{Operation} & & (\text{W}) \leftarrow (\text{W}) + \text{k} \\ \text{Status Affected} & & \text{C, DC, Z} \\ \end{array}$

OP-Code 01 1100 kkkk kkkk

Description The contents of the W register are added to the eight-bit literal 'k' and the result is

placed in the W register.

Cycle 1

Example ADDLW 0x15 B: W=0x10

A: W = 0x25

ADDWF Add W and "f"

Syntax ADDWF f [,d] Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation $(destination) \leftarrow (W) + (f)$

Status Affected C, DC, Z OP-Code 00 0111 dfff ffff

Description Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in

the W register. If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example ADDWF FSR, 0 B: W = 0x17, FSR = 0xC2

A: W = 0xD9, FSR = 0xC2

ANDLW Logical AND Literal "k" with W

SyntaxANDLW kOperands $k:00h \sim FFh$ Operation $(W) \leftarrow (W)$ AND k

Status Affected Z

OP-Code 01 1011 kkkk kkkk

Description The contents of W register are AND'ed with the eight-bit literal 'k'. The result is

placed in the W register.

Cycle 1

Example ANDLW 0x5F B: W = 0xA3

A : W = 0x03

ANDWF AND W with "f"

SyntaxANDWF f [,d]Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation(destination) \leftarrow (W) AND (f)

Status Affected Z

OP-Code 00 0101 dfff ffff

Description AND the W register with register 'f'. If 'd' is 0, the result is stored in the W

register. If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example ANDWF FSR, 1 B: W = 0x17, FSR = 0xC2

A : W = 0x17, FSR = 0x02

BCF Clear "b" bit of "f"

Syntax BCF f [,b]

Operands $f: 00h \sim 3Fh, b: 0 \sim 7$

Operation $(f.b) \leftarrow 0$

Status Affected

OP-Code 01 000b bbff ffff

Description Bit 'b' in register 'f' is cleared.

Cycle

Example BCF FLAG_REG, 7 B: FLAG_REG =0xC7

 $A : FLAG_REG = 0x47$

BSF Set "b" bit of "f"

Syntax BSF f [,b]

Operands $f: 00h \sim 3Fh, b: 0 \sim 7$

Operation $(f.b) \leftarrow 1$

Status Affected

OP-Code 01 001b bbff ffff

Description Bit 'b' in register 'f' is set.

Cycle 1

Example BSF FLAG_REG, 7 B: FLAG_REG = 0x0A

 $A : FLAG_REG = 0x8A$

BTFSC Test "b" bit of "f", skip if clear(0)

Syntax BTFSC f [,b]

Operands $f: 00h \sim 3Fh, b: 0 \sim 7$

Operation Skip next instruction if (f.b) = 0

Status Affected

OP-Code 01 010b bbff ffff

Description If bit 'b' in register 'f' is 1, then the next instruction is executed. If bit 'b' in register

'f' is 0, then the next instruction is discarded, and a NOP is executed instead,

making this a 2nd cycle instruction.

Cycle 1 or 2

Example LABEL1 BTFSC FLAG, 1 B: PC =LABEL1

TRUE GOTO SUB1 A: if FLAG.1 =0, PC =FALSE FALSE ... if FLAG.1 =1, PC =TRUE

BTFSS Test "b" bit of "f", skip if set(1)

Syntax BTFSS f [,b] Operands f: $00h \sim 3Fh$, b: $0 \sim 7$

Operation $f: 000 \sim 5 \text{ Fr}, b: 0 \sim 7$ Skip next instruction if (f.b) =1

Status Affected

OP-Code 01 011b bbff ffff

Description If bit 'b' in register 'f' is 0, then the next instruction is executed. If bit 'b' in register

'f' is 1, then the next instruction is discarded, and a NOP is executed instead,

making this a 2nd cycle instruction.

Cycle 1 or 2

Example LABEL1 BTFSS FLAG, 1 B: PC =LABEL1

TRUE GOTO SUB1 A: if FLAG.1 =0, PC =TRUE FALSE ... A: if FLAG.1 =1, PC =FALSE

CALL Call subroutine "k"

 $\begin{array}{ccc} \text{Syntax} & \text{CALL } k \\ \text{Operands} & k:000h \sim \text{FFFh} \end{array}$

Operation: TOS \leftarrow (PC) + 1, PC.11 \sim 0 \leftarrow k

Status Affected

OP-Code 10 kkkk kkkk kkkk

Description Call Subroutine. First, return address (PC+1) is pushed onto the stack. The 12-bit

immediate address is loaded into PC bits <11:0>. CALL is a two-cycle

instruction.

Cycle 2

Example LABEL1 CALL SUB1 B: PC =LABEL1

A : PC = SUB1, TOS = LABEL1 + 1

CLRF Clear "f"

SyntaxCLRF fOperands $f: 00h \sim 7Fh$ Operation $(f) \leftarrow 00h, Z \leftarrow 1$

Status Affected Z

OP-Code 00 0001 1fff ffff

Description The contents of register 'f' are cleared and the Z bit is set.

Cycle 1

Example CLRF FLAG_REG B: FLAG_REG =0x5A

 $A : FLAG_REG = 0x00, Z = 1$

CLRW Clear W

Syntax CLRW

Operands -

Operation (W) \leftarrow 00h, Z \leftarrow 1

Status Affected Z

OP-Code 00 0001 0100 0000

Description W register is cleared and Z bit is set.

Cycle 1

Example CLRW B: W=0x5A

A: W = 0x00, Z = 1

CLRWDT Clear Watchdog Timer

Syntax CLRWDT

Operands -

Operation WDT/WKT Timer \leftarrow 00h

Status Affected TO, PD

OP-Code 01 1110 0000 0100

Description CLRWDT instruction clears the Watchdog/Wakeup Timer

Cycle 1

Example CLRWDT B: WDT counter =?

A: WDT counter =0x00

COMF Complement "f"

SyntaxCOMF f [,d]Operands $f:00h \sim 7Fh, d:0, 1$ Operation(destination) \leftarrow (\bar{f})

Status Affected Z

OP-Code 00 1001 dfff ffff

Description The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W.

If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example COMF REG1, 0 B: REG1 =0x13

A : REG1 = 0x13, W = 0xEC

DECF Decrement "f"

Syntax DECF f [,d] Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation (destination) \leftarrow (f) - 1

Status Affected Z

OP-Code 00 0011 dfff ffff

Description Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the

result is stored back in register 'f'.

Cycle

Example DECF CNT, 1 B : CNT = 0x01, Z = 0

A : CNT = 0x00, Z = 1

DECFSZ Decrement "f", Skip if 0

Syntax DECFSZ f [,d] Operands $f: 00h \sim 7Fh, d: 0, 1$

Operation (destination) \leftarrow (f) - 1, skip next instruction if result is 0

Status Affected

OP-Code 00 1011 dfff ffff

Description The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W

register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, then a NOP is executed instead, making

it a 2 cycle instruction.

Cycle 1 or 2

Example LABEL1 DECFSZ CNT, 1 B: PC =LABEL1

GOTO LOOP A: CNT = CNT - 1

CONTINUE if CNT =0, PC =CONTINUE if CNT \neq 0, PC =LABEL1 + 1

GOTO Unconditional Branch

 $\begin{array}{lll} \text{Syntax} & \text{GOTO } k \\ \text{Operands} & k:000h \sim \text{FFFh} \\ \text{Operation} & \text{PC.11}{\sim}0 \leftarrow k \end{array}$

Status Affected

OP-Code 11 kkkk kkkk kkkk

Description GOTO is an unconditional branch. The 12-bit immediate value is loaded into PC

bits <11:0>. GOTO is a two-cycle instruction.

Cycle 2

Example LABEL1 GOTO SUB1 B: PC =LABEL1

A : PC = SUB1

INCF Increment "f"

Syntax INCF f [,d] Operands $f: 00h \sim 7Fh$

Operation (destination) \leftarrow (f) + 1

Status Affected Z

OP-Code 00 1010 dfff ffff

Description The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W

register. If 'd' is 1, the result is placed back in register 'f'.

Cycle 1

Example INCF CNT, 1 B : CNT = 0xFF, Z = 0

A : CNT = 0x00, Z = 1

INCFSZ Increment "f", Skip if 0

Syntax INCFSZ f [,d] Operands $f: 00h \sim 7Fh, d: 0, 1$

Operation (destination) \leftarrow (f) + 1, skip next instruction if result is 0

Status Affected

OP-Code 00 1111 dfff ffff

Description The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W

register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead, making it a 2

cycle instruction.

Cycle 1 or 2

Example LABEL1 INCFSZ CNT, 1 B : PC =LABEL1

GOTO LOOP A: CNT = CNT + 1

CONTINUE if CNT =0, PC =CONTINUE if CNT \neq 0, PC =LABEL1 + 1

IORLW Inclusive OR Literal with W

Syntax IORLW k Operands $k: 00h \sim FFh$ Operation $(W) \leftarrow (W) OR k$

Status Affected Z

OP-Code 01 1010 kkkk kkkk

Description The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is

placed in the W register.

Cycle 1

Example IORLW 0x35 B: W=0x9A

A : W = 0xBF, Z = 0

IORWF Inclusive OR W with "f"

 $\begin{array}{ll} \text{Syntax} & \text{IORWF f [,d]} \\ \text{Operands} & \text{f: 00h} \sim 7\text{Fh, d: 0, 1} \\ \text{Operation} & (\text{destination}) \leftarrow (\text{W}) \text{ OR k} \\ \end{array}$

Status Affected Z

OP-Code 00 0100 dfff ffff

Description Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the

W register. If 'd' is 1, the result is placed back in register 'f'.

Cycle 1

Example IORWF RESULT, 0 B: RESULT =0x13, W =0x91

A: RESULT =0x13, W =0x93, Z =0

MOVFW Move "f" to W

SyntaxMOVFW fOperands $f:00h \sim 7Fh$ Operation $(W) \leftarrow (f)$

Status Affected

OP-Code 00 1000 0fff ffff

Description The contents of register 'f' are moved to W register.

Cycle 1

Example MOVFW FSR B : FSR = 0xC2, W = ?

A: FSR =0xC2, W 0xC2

MOVLW Move Literal to W

Status Affected

OP-Code 01 1001 kkkk kkkk

Description The eight-bit literal 'k' is loaded into W register. The don't cares will assemble as

0's.

Cycle 1

Example MOVLW 0x5A B: W = ?

A: W = 0x5A

MOVWF Move W to "f"

SyntaxMOVWF fOperands $f:00h \sim 7Fh$ Operation $(f) \leftarrow (W)$

Status Affected

OP-Code 00 0000 1fff ffff

Description Move data from W register to register 'f'.

Cycle 1

Example MOVWF REG1 B: REG1 =0xFF, W =0x4F

A : REG1 = 0x4F, W = 0x4F

MOVWR Move W to "r"

SyntaxMOVWR rOperands $r:00h \sim 3Fh$ Operation $(r) \leftarrow (W)$

Status Affected -

OP-Code 01 1110 00rr rrrr

Description Move data from W register to register 'r'.

Cycle 1

Example MOVWR REG1 B: REG1 =0xFF, W =0x4F

A : REG1 = 0x4F, W = 0x4F

MOVRW Move "r" to W

Status Affected -

OP-Code 01 1111 00rr rrrr

Description Move data from register 'r' to register W.

Cycle 1

Example MOVRW EEPDT B: EEPDT =0xFE, W =0x4F

A: EEPDT =0xFE, W =0xFE

NOP No Operation

Syntax NOP Operands -

Operation No Operation

Status Affected -

OP-Code 00 0000 0000 0000 Description No Operation

Cycle 1 Example NOP

RET Return from Subroutine

Syntax RET Operands -

Operation $PC \leftarrow TOS$

Status Affected

OP-Code 00 0000 0100 0000

Description Return from subroutine. The stack is POPed and the top of the stack (TOS) is

loaded into the program counter. This is a two-cycle instruction.

Cycle 2

Example RET A: PC = TOS

RETI Return from Interrupt

Syntax RETI Operands -

Operation $PC \leftarrow TOS, GIE \leftarrow 1$

Status Affected

OP-Code 00 0000 0110 0000

Description Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the

PC. Interrupts are enabled. This is a two-cycle instruction.

Cycle 2

Example RETI A: PC =TOS, GIE =1

DS-TM57M5541_E 95 Rev 0.93, 2017/09/07

RETLW Return with Literal in W

OP-Code 01 1000 kkkk kkkk

Description The W register is loaded with the eight-bit literal 'k'. The program counter is

loaded from the top of the stack (the return address). This is a two-cycle

instruction.

Cycle 2

Example CALL TABLE B: W = 0x07

A: W =value of k8

TABLE ADDWF PCL, 1 RETLW k1 RETLW k2

RETLW kn

RLF Rotate Left "f" through Carry

Syntax RLF f [,d]

Operands $f: 00h \sim 7Fh, d: 0, 1$

Operation C Register f

Status Affected C

OP-Code 00 1101 dfff ffff

Description The contents of register 'f' are rotated one bit to the left through the Carry Flag. If

'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in

register 'f'.

Cycle 1

Example RLF REG1, 0 B : REG1 = 1110 0110, C = 0

A: REG1 =1110 0110 W =1100 1100, C=1

RRF Rotate Right "f" through Carry

Syntax RRF f [,d] Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation

C Register f

Status Affected C

OP-Code 00 1100 dfff ffff

Description The contents of register 'f' are rotated one bit to the right through the Carry Flag.

If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back

in register 'f'.

Cycle 1

Example RRF REG1, 0 B: REG1 =1110 0110, C =0

A: REG1 =1110 0110 W =0111 0011, C=0

SLEEP Go into Power-down mode, Clock oscillation stops

SLEEP Syntax Operands Operation TO, PD Status Affected OP-Code 01 1110 0000 0011

Description Go into Power-down mode with the oscillator stops.

Cycle

Example **SLEEP**

Subtract W from "f" **SUBWF**

Syntax SUBWF f [,d] **Operands** $f: 00h \sim 7Fh, d: 0, 1$ Operation $(destination) \leftarrow (f) - (W)$ Status Affected C, DC, Z OP-Code 00 0010 dfff ffff Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result Description is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. Cycle Example SUBWF REG1, 1 B : REG1 = 0x03, W = 0x02, C = ?, Z = ?A : REG1 = 0x01, W = 0x02, C = 1, Z = 0SUBWF REG1, 1 B: REG1 =0x02, W =0x02, C =?, Z =? A: REG1 =0x00, W =0x02, C =1, Z =1SUBWF REG1, 1 B : REG1 = 0x01, W = 0x02, C = ?, Z = ?

SWAPF Swap Nibbles in "f"

Syntax	SWAPF f [,d]	
Operands	f: 00h ~ 7Fh, d: 0, 1	
Operation	$(destination, 7\sim 4) \leftarrow (f.3\sim 0), (dest$	ination.3~0) \leftarrow (f.7~4)
Status Affected	-	
OP-Code	00 1110 dfff ffff	
Description	The upper and lower nibbles of r	egister 'f' are exchanged. If 'd' is 0, the result is
	placed in W register. If 'd' is 1, the	e result is placed in register 'f'.
Cycle	1	
Example	SWAPF REG, 0	B: REG1 = 0xA5

A : REG1 = 0xA5, W = 0x5A

A: REG1 =0xFF, W =0x02, C =0, Z =0

97 DS-TM57M5541_E Rev 0.93, 2017/09/07

TABRH Return DPTR high byte to W

Syntax TABRH

Operands -

Operation (W) \leftarrow ROM[DPTR] high byte content, Where DPTR = {DPH[max:8], FSR[7:0]}

Status Affected -

OP-Code 00 0000 0101 1000

Description The W register is loaded with high byte of ROM[DPTR]. This is a two-cycle

instruction.

Cycle

Example

MOVLW (TAB1&0xFF)

MOVWF FSR ;Where FSR is F-Plane register

MOVLW (TBA1>>8)&0xFF

MOVWF DPH ;Where DPH is F-Plane register

TABRL ;W =0x89TABRH ;W =0x37

ORG 0234H

TAB1:

DT 0x3789, 0x2277 ;ROM data 14 bits

TABRL Return DPTR low byte to W

Syntax TABRL

Operands -

Operation (W) \leftarrow ROM[DPTR] low byte content, Where DPTR = {DPH[max:8], FSR[7:0]}

Status Affected

OP-Code 00 0000 0101 0000

2

Description The W register is loaded with low byte of ROM[DPTR]. This is a two-cycle

instruction.

Cycle

Example

MOVLW (TAB1&0xFF)

MOVWF FSR ;Where FSR is F-Plane register

MOVLW (TBA1>>8)&0xFF

MOVWF DPH ;Where DPH is F-Plane register

TABRL ;W =0x89TABRH ;W =0x37

ORG 0234H

TAB1:

DT 0x3789, 0x2277 ;ROM data 14 bits

DS-TM57M5541_E 98 Rev 0.93, 2017/09/07

TESTZ Test if "f" is zero

TESTZ f Syntax f:00h ~ 7Fh Operands Operation Set Z flag if (f) is 0

Status Affected

OP-Code 00 1000 1fff ffff

Description If the content of register 'f' is 0, Zero flag is set to 1.

Cycle

TESTZ REG1 Example B : REG1 = 0, Z = ?

A : REG1 = 0, Z = 1

XORLW Exclusive OR Literal with W

Syntax XORLW k Operands k:00h~FFh Operation $(W) \leftarrow (W) XOR k$

Status Affected

OP-Code 01 1101 kkkk kkkk

Description The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result

is placed in the W register.

Cycle

Example XORLW 0xAF B:W=0xB5

A:W=0x1A

XORWF Exclusive OR W with "f"

Syntax XORWF f [,d] Operands $f: 00h \sim 7Fh, d: 0, 1$ Operation

 $(destination) \leftarrow (W) XOR (f)$

Status Affected Ż

OP-Code 00 0110 dfff ffff

Description Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is

stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

Cycle

Example XORWF REG, 1 B : REG = 0xAF, W = 0xB5

A : REG = 0x1A, W = 0xB5

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings (T_A =25 °C)

Parameter	Rating	Unit
Supply voltage	V_{SS} -0.3 to V_{SS} +5.5	
Input voltage	V_{SS} -0.3 to V_{CC} +0.3	V
Output voltage	V_{SS} -0.3 to V_{CC} +0.3	
Output current high per 1 PIN	-25	
Output current high per all PIN	-80	mA
Output current low per 1 PIN	+30	IIIA
Output current low per all PIN	+150	
Maximum operating voltage	5.5	V
Operating temperature	-40 to +85	°C
Storage temperature	-65 to +150	

2. DC Characteristics ($T_A = 25$ °C, $V_{DD} = 5.0$ V, unless otherwise specified)

Parameter	Sym	Co	Min	Тур	Max	Unit	
Input High Voltage	V_{IH}	All Input, except PA7	$V_{CC} = 3 \sim 5V$	0.6Vcc	_	Vcc	V
		PA7	$V_{CC} = 3 \sim 5V$	0.7Vcc	_	Vcc	V
Input Low Voltage	$V_{\rm IL}$	All Input, except PA7	$V_{CC} = 3 \sim 5V$	Vss	_	0.2Vcc	V
		PA7	$V_{CC} = 3 \sim 5V$	Vss	_	0.2Vcc	V
		All Output,	$V_{CC} = 5V, V_{OH} = 4.5V$	6	11	_	
Output High Current	т	except HS Pin	$V_{CC} = 3V, V_{OH} = 2.7V$	3	5	_	mA
Output High Current	I_{OH}	All HS Pin	$V_{CC} = 5V, V_{OH} = 4.5V$	6	11	_	ША
		All IIS FIII	$V_{CC} = 3V, V_{OH} = 2.7V$	3	5	_	
		All Output,	$V_{CC} = 5V, V_{OL} = 0.5V$	12	22	_	
Output I ow Current	I_{OL}	except HS Pin	$V_{CC} = 3V, V_{OL} = 0.3V$	7	12	_	mA
Output Low Current		All HS Pin	$V_{CC} = 5V, V_{OL} = 0.5V$	35	58	_	
			$V_{CC} = 3V, V_{OL} = 0.3V$	18	30	_	
Input Leakage Current (pin high)	I_{ILH}	All Input	$V_{IN} = V_{CC}$	-	_	1	uA
Input Leakage Current (pin low)	I_{ILL}	All Input	$V_{IN} = 0V$	-	_	-1	uA
		FAST mode FIRC 16 MHz	V _{CC} =5V	_	3.9	_	
		FAST mode FIRC 8 MHz	$V_{CC} = 5V$		2.4		
		FAST mode FIRC 4 MHz	$V_{CC} = 5V$	-	1.4	-	mA
Power Supply Current (No Load)	I_{CC}	FAST mode FIRC 1 MHz	$V_{CC} = 5V$		0.85		
		FAST mode FIRC 1 MHz	$V_{CC} = 3V$		0.6		
		SLOW mode SIRC 8 KHz BGEN =0 MODE3V =0	$V_{\rm CC}$ =5.0 V	_	190	-	uA

DS-TM57M5541_E 100 Rev 0.93, 2017/09/07

Parameter	Sym	Co	onditions	Min	Тур	Max	Unit
		SLOW mode SIRC 8 KHz BGEN =0 MODE3V =1 LVR disable	$V_{\rm CC}$ =3.0 V	_	7	_	uA
		IDLE mode SIRC 8 KHz	V _{CC} =3.0V LVR enable	_	5	_	
Power Supply Current (No Load)	I_{CC}	BGEN =0 LDOSAV =1 LVR2SAV=1	V _{CC} =3.0V LVR disable	_	3.5	_	uA
		STOP mode MODE3V =0	V _{CC} =5.0V LVR disable	_	0.1	1	
		LDOSAV =1 LVR2SAV =1	V _{CC} =5.0V, LVR enable	-	6	-	uA
		STOP mode MODE3V =1	V _{CC} =3.0V, LVR disable	_	0.1	1	4
		LDOSAV =1 LVR2SAV =1	V _{CC} =3.0V, LVR enable	-	1.5	-	uA
			Fsys =4 MHz	LVR _{th}	_	5.5	V
		MODE3V =0	Fsys =8 MHz	LVR _{th}	-	5.5	
System Operating			Fsys =16 MHz	2.6	-	5.5	
Voltage	V_{SYS}		Fsys =4 MHz	LVR _{th}	-	3.6	
		MODE3V =1	Fsys =8 MHz	LVR _{th}	_	3.6	
			Fsys =16 MHz	2.6	-	3.6	
		V _{IN} =0 V	V _{CC} =5.0V	_	26	_	V O
D.H. D. i.e	D	Ports A/B/D/E	V _{CC} =3.0V	_	46	_	ΚΩ
run-up Resistor	R_{UP}	V _{IN} =0 V	V _{CC} =5.0V	_	30	_	ΚΩ
		PA7	$V_{CC}=3.0V$	_	56	_	18.32

3. Clock Timing $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Condition	Min	Тур	Max	Unit
	$0^{\circ}\text{C} \sim 85^{\circ}\text{C}, V_{\text{CC}} = 4.0 \text{ V}$	-2.5%	16	+2.5%	
FIRC Frequency (*)	25 °C, $V_{CC} = 3.0 \sim 5.0 \text{ V}$	-3%	16	+3%	MHz
	25 °C, $V_{CC} = 2.5 \sim 5.0 \text{ V}$	-5%	16	+5%	

^(*) FIRC frequency can be divided by 1/2/4/16.

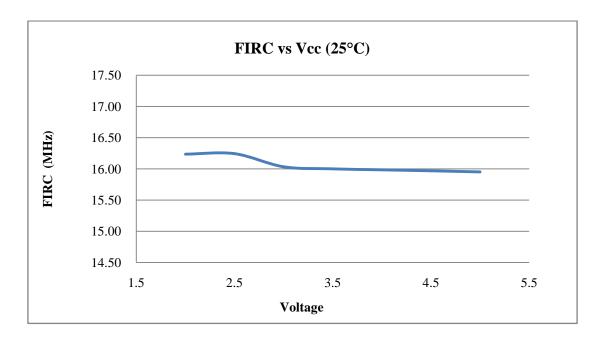
4. Reset Timing Characteristics $(T_A = -40$ °C to +85°C)

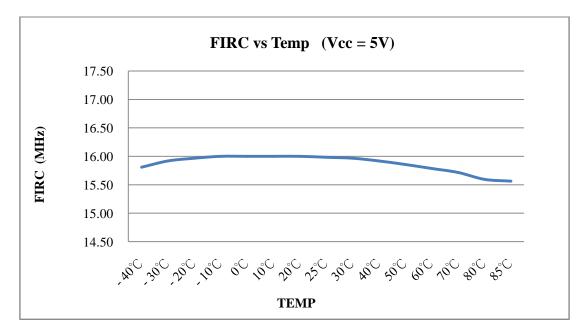
Parameter	Conditions	Min	Тур	Max	Unit
RESET Input Low width	Input $V_{CC} = 5 \text{ V} \pm 10 \%$	3	_	_	μs
WDT time	$V_{CC} = 3 \text{ V, WDTPSC} = 11$	200/	2240	+20%	*** ***
	$V_{CC} = 5 \text{ V, WDTPSC} = 11$	-20%	2048		ms
WKT time	$V_{CC} = 3 \text{ V, WKTPSC} = 11$		136	+20%	122 G
	$V_{CC} = 5 \text{ V, WKTPSC} = 11$	-20%	128	+20%	ms
CPU start up time	$V_{CC} = 5 \text{ V}$	_	15	_	ms

DS-TM57M5541_E 101 Rev 0.93, 2017/09/07

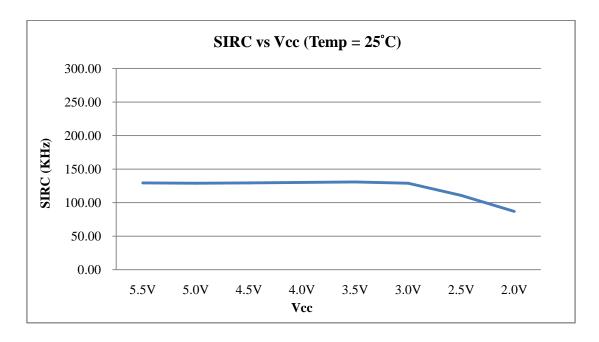
5. LVR Circuit Characteristics $(T_A = 25 \,^{\circ}\text{C})$

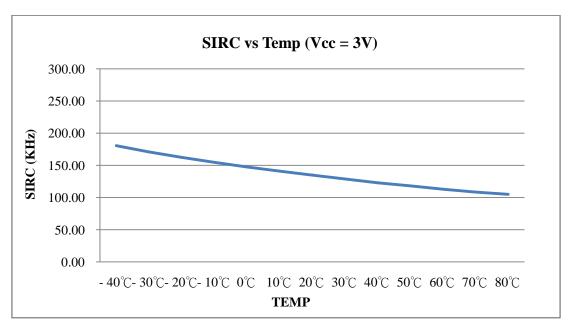
Parameter	Symbol	Min	Тур	Max	Unit
		-	2.0	-	V
LVR Reference Voltage	LVR_{th}	_	2.3	-	
		_	2.9	-	
LVR Hysteresis Voltage	$V_{ m HYST}$	-	±0.1	-	V
Low Voltage Detection time	$t_{ m LVR}$	100	_	_	μs


6. ADC Electrical Characteristics ($T_A = 25$ °C, VCC = 2.2V to 5.5V, VSS = 0V)

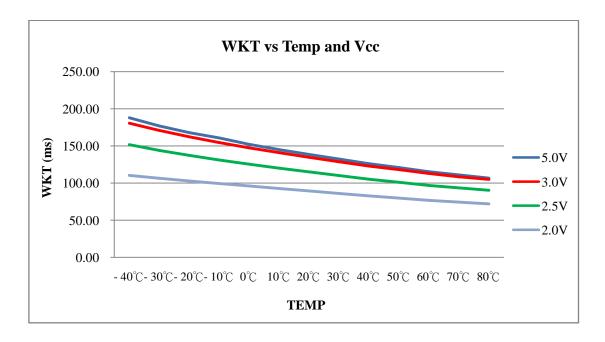

Parameter	Conditions	Min	Тур	Max	Units
Total Accuracy		_	±2.5	±12	
Integral Non-Linearity	$V_{CC} = 5V$, $V_{SS} = 0V$, $f_{ADC} = 1$ MHz	_	±3.2	±15	LSB
Differential Non-linearity		_	±1	±4	
Max Input Clock (f _{ADC})	ŀ	_	ı	1	MHz
Conversion Time	$f_{ADC} = 1 \text{ MHz}$	_	50	ı	μs
Input Voltage	I	V_{SS}	1	Vcc	V

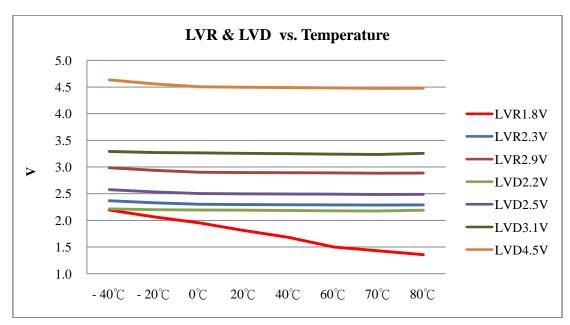
DS-TM57M5541_E 102 Rev 0.93, 2017/09/07


7. Characteristic Graphs

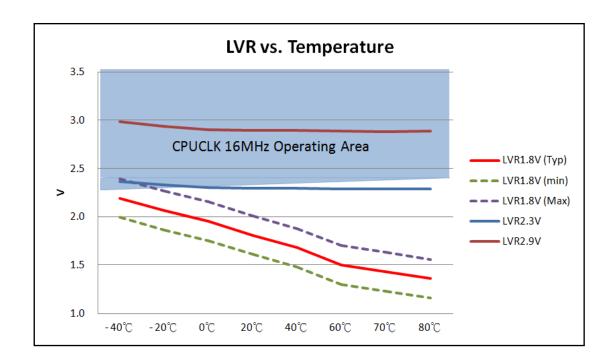


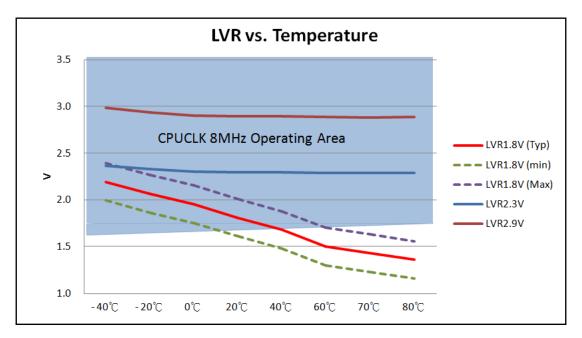
DS-TM57M5541_E 103 Rev 0.93, 2017/09/07



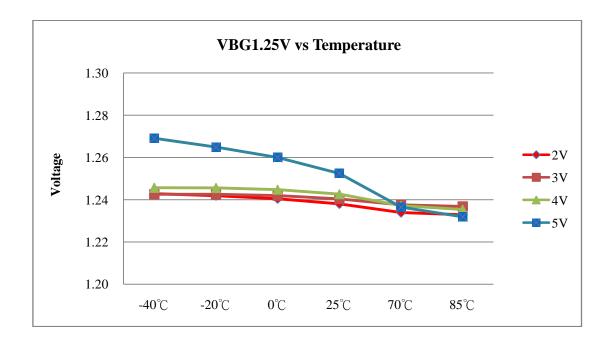


DS-TM57M5541_E 104 Rev 0.93, 2017/09/07





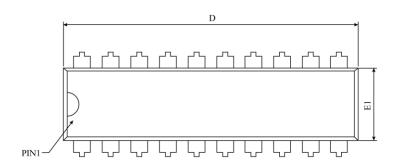
DS-TM57M5541_E 105 Rev 0.93, 2017/09/07

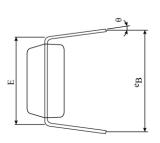


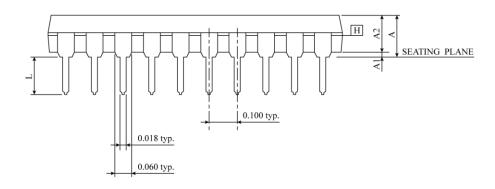
DS-TM57M5541_E 106 Rev 0.93, 2017/09/07

DS-TM57M5541_E 107 Rev 0.93, 2017/09/07

PACKAGING INFORMATION

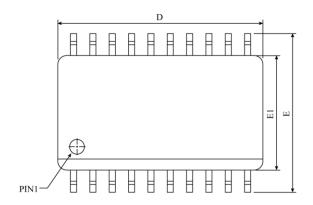

The ordering information:

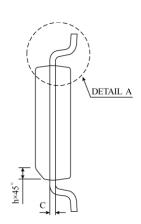

Ordering number	Package
TM57M5541-MTP	Wafer/Dice blank chip
TM57M5541-COD	Wafer/Dice with code
TM57M5541-MTP-21	SOP 20-pin (300 mil)
TM57M5541-MTP-05	DIP 20-pin (300 mil)
TM57M5541-MTP-22	SOP 24-pin (300 mil)
TM57M5541-MTP-08	DIP 28-pin (300 mil)
TM57M5541-MTP-23	SOP 28-pin (300 mil)

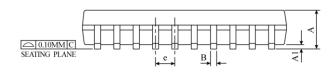

DS-TM57M5541_E 108 Rev 0.93, 2017/09/07

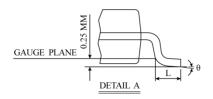
• DIP-20 (300mil) Package Dimension

SYMBOL	DI	DIMENSION IN MM		M DIMENSION IN INC			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
A	-	-	4.445	-	-	0.175	
A1	0.381	-	-	0.015	-	-	
A2	3.175	3.302	3.429	0.125	0.130	0.135	
D	25.705	26.061	26.416	1.012	1.026	1.040	
Е	7.620	7.747	7.874	0.300	0.305	0.310	
E1	6.223	6.350	6.477	0.245	0.250	0.255	
L	3.048	3.302	3.556	0.120	0.130	0.140	
e_{B}	8.509	9.017	9.525	0.335	0.355	0.375	
θ	0°	7.5°	15°	0°	7.5°	15°	
JEDEC		MS-001 (AD)					

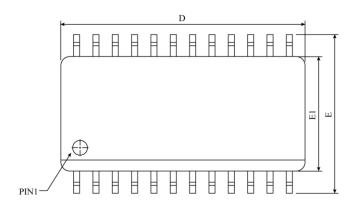

NOTES:

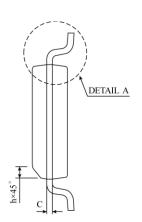

- 1. "D" , "E1" DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOTEXCEED .010 INCH.
- 2. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.
- 3. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.
- 4. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.
- 5. DATUM PLANE III COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.

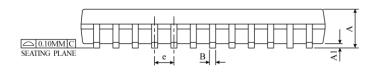

DS-TM57M5541_E 109 Rev 0.93, 2017/09/07

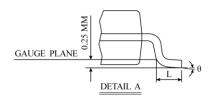


• SOP-20 (300mil) Package Dimension


CVMDOL	DI	MENSION IN M	ИM	DIN	MENSION IN IN	NCH
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
A	2.35	2.50	2.65	0.0926	0.0985	0.1043
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118
В	0.33	0.42	0.51	0.0130	0.0165	0.0200
С	0.23	0.28	0.32	0.0091	0.0108	0.0125
D	12.60	12.80	13.00	0.4961	0.5040	0.5118
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992
e	1.27 BSC				0.050 BSC	
h	0.25	0.50	0.75	0.0100	0.0195	0.0290
L	0.40	0.84	1.27	0.0160	0.0330	0.0500
θ	0°	4°	8°	0°	4°	8°
JEDEC	MS-013 (AC)					


riangle * NOTES : DIMENSION " D " DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

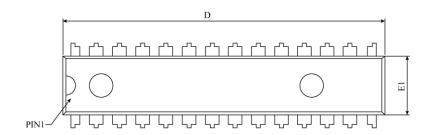

DS-TM57M5541_E 110 Rev 0.93, 2017/09/07

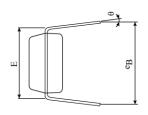


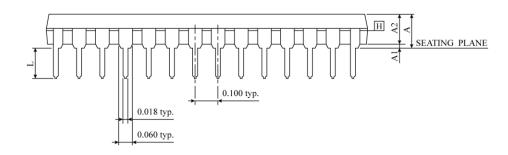
• SOP-24 (300mil) Package Dimension

CVMDOL	DI	MENSION IN M	1M	DIMENSION IN INCH		
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
A	2.35	2.50	2.65	0.0926	0.0985	0.1043
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118
В	0.33	0.42	0.51	0.0130	0.0165	0.0200
С	0.23	0.28	0.32	0.0091	0.0108	0.0125
D	15.20	15.40	15.60	0.5985	0.6063	0.6141
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992
e	1.27 BSC				0.050 BSC	
h	0.25	0.50	0.75	0.0100	0.0195	0.0290
L	0.40	0.84	1.27	0.0160	0.0330	0.0500
θ	0°	4°	8°	0°	4°	8°
JEDEC	MS-013 (AD)					

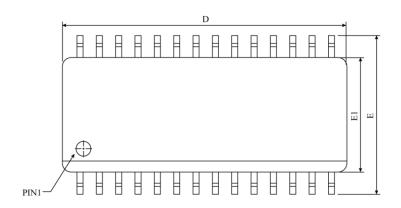
*NOTES: DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

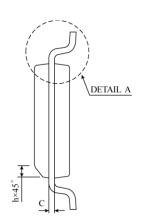

MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL


NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

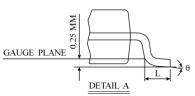

DS-TM57M5541_E 111 Rev 0.93, 2017/09/07

• Skinny DIP-28 (300mil) Package Dimension




SYMBOL	DI	MENSION IN M	1M	DIN	MENSION IN IN	ICH	
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
A	-	-	4.445	-	-	0.175	
A1	0.381	-	-	0.015	-	-	
A2	3.175	3.302	3.429	0.125	0.130	0.135	
D	35.179	35.370	35.56	1.385	1.393	1.400	
Е	7.874 BSC			0.310 BSC			
E1	7.188	7.315	7.442	0.283	0.288	0.293	
L	3.048	3.302	3.556	0.120	0.130	0.140	
e_{B}	8.382	8.954	9.525	0.330	0.353	0.375	
θ	0°	7.5°	15°	0°	7.5°	15°	
JEDEC	MS-015 (AH)						


DS-TM57M5541_E 112 Rev 0.93, 2017/09/07



• SOP-28 (300mil) Package Dimension

CVMDOL	DI	MENSION IN M	ſМ	DIN	MENSION IN IN	ICH
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
A	2.35	2.50	2.65	0.0926	0.0985	0.1043
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118
В	0.33	0.42	0.51	0.0130	0.0165	0.0200
С	0.23	0.28	0.32	0.0091	0.0108	0.0125
D	17.70	17.90	18.10	0.6969	0.7047	0.7125
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992
e		1.27 BSC			0.050 BSC	
h	0.25	0.50	0.75	0.0100	0.0195	0.0290
L	0.40	0.84	1.27	0.0160	0.0330	0.0500
θ	0°	4°	8°	0°	4°	8°
JEDEC	MS-013 (AE)					

* NOTES : DIMENSION " D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL

NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

DS-TM57M5541_E 113 Rev 0.93, 2017/09/07