

TM57PT16/PT16B/PA16 DATA SHEET

Rev 0.93

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. **tenx** does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. **tenx** products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses tenx products for any such unintended or unauthorized application, Buyer shall indemnify and hold tenx and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that tenx was negligent regarding the design or manufacture of the part.

AMENDMENT HISTORY

Version	Date	Description	
V0.90	Jun, 2014	New release	
V0.91	Jan, 2015	Adding new product TM57PT16B and related description	
V0.92	Jan, 2016	Ordering information update	
V0.93	Mar, 2018	Adding DIP-8, SOP-8, MSOP-8 package type	

CONTENTS

AME	NDMENT HISTORY	.2
CON	TENTS	.3
FEA	ГURES	.5
BLO	CK DIAGRAM	.7
PIN A	ASSIGNMENT	.8
PIN I	DESCRIPTION	.9
	SUMMARY	
	CTIONAL DESCRIPTION	
	CPU Core	
	 1.1 Clock Scheme and Instruction Cycle 1.2 Addressing Mode	11 12 14 14 15
2.	Chip Operation Mode	19
	 2.1 Reset 2.2 External Reset Circuit 2.3 System Configuration Register (SYSCFG)	20 21 22
3.	Peripheral Functional Block	24
	 3.1 Watchdog (WDT) / Wakeup (WKT) Timer	27 31 34 37
4.	I/O Port	45
	4.1 PA0-1	46
MEN	IORY MAP	49
F-I	Plane	49
R-]	Plane	53

INSTRUCTION SET	
ELECTRICAL CHARACTERISTICS	
1. Absolute Maximum Ratings	
2. DC Characteristics	
3. Clock Timing	69
4. Reset Timing Characteristics	
5. ADC Electrical Characteristics	69
6. Characteristic Graphs	70
ORDERING INFORMATION	
SOT23-6 Package Dimension	74
DIP-8 (300mil) Package Dimension	
SOP-8 (150mil) Package Dimension	76
MSOP-8 (118mil) Package Dimension	

FEATURES

- **1.** ROM: 1K x 14 bits OTP or 512 x 14 bits TTPTM (Two Time Programmable ROM)
- 2. RAM: 48 x 8 bits
- 3. STACK: 5 Levels
- 4. I/O port: One Bit-programmable I/O port (Max. 6 pins)
- 5. Timer/Counter: One 8-bit timer/counter with divided by 1~256 pre-scale option
- 6. PWM: One 8-bit PWM0 with prescale/period-adjustment function
- 7. 10-bit ADC with 5 channels input
- 8. 4-channel Touch Key (TM57PT16/PT16B only)
 - H/W auto scan (ATK), threshold adjustable for each key
 - Interrupt / Wake-up CPU while key pressed
 - Internal built-in reference capacitor (TM57PT16B only)

9. Watchdog Timer

• Clocked by built-in RC oscillator with 4 adjustable Reset/Interrupt Time

(176 ms/88 ms/44 ms/22 ms, @5V; 224 ms/112 ms/56 ms/28 ms, @3V)

• Watchdog timer can be disabled/enabled in STOP mode

10. Reset

- Power On Reset
- Watchdog Reset
- Low Voltage Reset
- External pin Reset

11. System Clock Mode

- Internal RC: 4/8 MHz.
 - When the IRC is 8 MHz, the LVR can only be set to 3.1V (cannot use 2.2V).

12. 2-Level Low Voltage Reset: 2.2V/3.1V (Can be disabled)

LVR Freq	2.2V	3.1V	Disable
4 MHz	\checkmark	\mathbf{V}	N
8 MHz	X	\checkmark	$\mathbf{\overline{A}}$

13. Operation Voltage: Low Voltage Reset Level to 5.5V

- Fsys = 4 MHz, 1.9V ~ 5.5V
- Fsys = 8 MHz, 2.3V ~ 5.5V

14. I/O Port

- CMOS Output
- Pseudo-Open-Drain or Open-Drain Output
- Schmitt Trigger Input with/without pull-up resistor

15. Instruction set: 36 Instructions

16. Interrupt

- Two External Interrupt pins:
 - One pin is falling edge triggered
 - One pin is rising or falling edge triggered
- TM0, Wake-up Timer, Auto Touch Key (TM57PT16/PT16B only) Interrupt

17. PA1~PA4 individual pin low level wake up

18. Power Saving Operation Modes

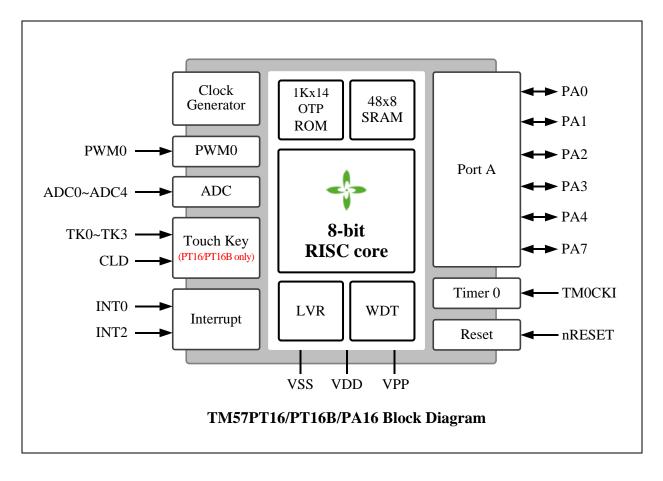
- Normal Mode: Internal RC keeps CPU running
- STOP Mode: All Clocks stop
- IDLE Mode: Internal RC and CPU stop, WKT or Auto Touch Key (TM57PT16/PT16B only) keep running

19. Support 5-wire program

20. Package Types:

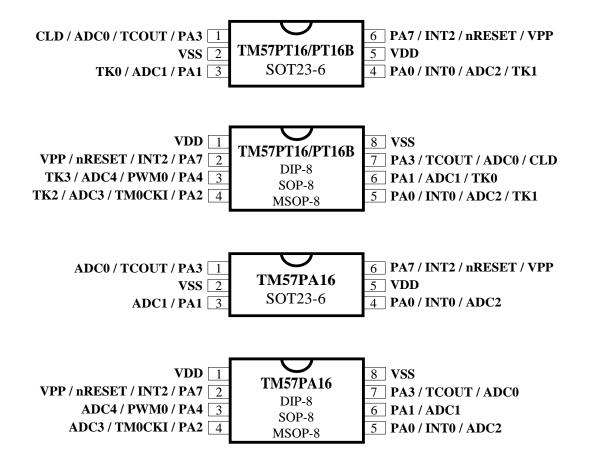
- SOT23-6
- DIP-8 (300mil)
- SOP-8 (150mil)
- MSOP-8 (118mil)

21. Supported EV Board on ICE


EV Board: EV8201

22. Comparison Table:

	EV8201	TM57PT16	TM57PT16B
EV Board	-	EV8201	EV8201
Touch Key	4-channel	4-channel	4-channel + Internal Reference
АТК	4-channel	4-channel	4-channel (Must set TKCHS2=0)
SFR Difference	TKTMR (F14.6~4)	TKTMR (F14.6~4)	TKTMR (F14.6~5) TKCHS2 (F14.4)



BLOCK DIAGRAM

PIN ASSIGNMENT

PIN DESCRIPTION

Name	In/Out	Pin Description
PA0–PA1	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "pseudo-open-drain" output. Pull-up resistors are assignable by software.
PA2–PA4	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or open-drain output. Pull-up resistors are assignable by software.
PA7	I/O	Bit-programmable I/O port for Schmitt-trigger input or open-drain output. Pull-up resistors are assignable by software.
nRESET	Ι	External active low reset
TCOUT	0	Instruction cycle clock output. The instruction clock frequency is system clock frequency divided by two (Fsys/2)
VDD, VSS	Р	Power Voltage input pin and ground
VPP	Ι	PROM programming high voltage input
INT0, INT2	Ι	External interrupt input
TM0CKI	Ι	Timer0's input in counter mode
NC	-	Not connected
PWM0	0	PWM0 output
TK0–TK3	Ι	Touch key input (TM57PT16/PT16B only)
CLD	Ι	Touch key capacitor input (TM57PT16/PT16B only)
ADC0-ADC4	Ι	ADC channel input

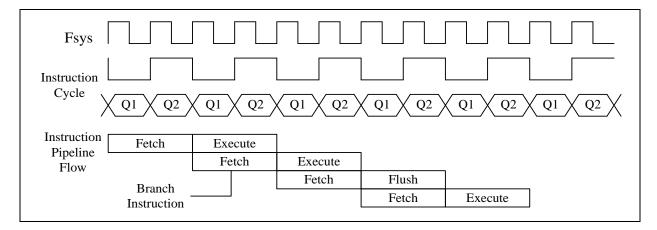
PIN SUMMARY

Pi Nun	in 1ber					GPIO)		et		Alterna	te Fu	nction
P				Inj	out	()utpu	ıt	Res		(y)		
40SM/4I0/40S-8	SOT23-6	Pin Name	Туре	Weak Pull-up	Ext. Interrupt	0.D	P.O.D	P.P	Function After Reset	MMd	Touch Key (PT16/PT16B only)	ADC	MISC
1	5	VDD	Р										
2	6	PA7/INT2/nRESET/VPP	I/O	0	0	0			PA7				nRESET
3	-	PA4/PWM0/ADC4/TK3	I/O	0		0		0	PA4	0	0	0	
4	-	PA2/TM0CKI/ADC3/TK2	I/O	0		0		0	PA2		0	0	TM0CKI
5	4	PA0/INT0/ADC2/TK1	I/O	0	0		0	0	PA0		0	0	
6	3	PA1/ADC1/TK0	I/O	0			0	0	PA1		0	0	
7	1	PA3/TCOUT/ADC0/CLD	I/O	0		0		0	PA3		0	0	TCOUT
8	2	VSS	Р										

Symbol : P.P. = Push-Pull Output

P.O.D. = Pseudo Open Drain

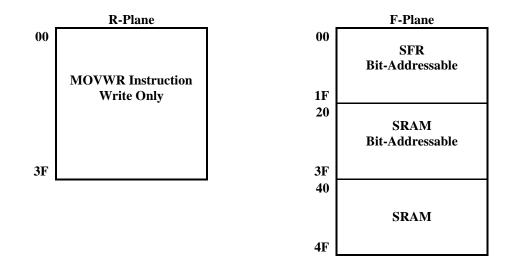
O.D. = Open Drain



FUNCTIONAL DESCRIPTION

1. CPU Core

1.1 Clock Scheme and Instruction Cycle


The system clock is internally divided by two to generate Q1 state and Q2 state for each instruction cycle. The Programming Counter (PC) is updated at Q1 and the instruction is fetched from program ROM and latched into the instruction register in Q2. It is then decoded and executed during the following Q1-Q2 cycle. Branch instructions take two cycles since the fetch instruction is 'flushed' from the pipeline, while the new instruction is being fetched and then executed.

1.2 Addressing Mode

There are two Data Memory Planes in CPU, R-Plane and F-Plane. The registers in R-Plane are writeonly. The "MOVWR" instruction copies the W-register's content to R-Plane registers by direct addressing mode. The lower locations of F-Plane are reserved for the SFR. Above the SFR is General Purpose Data Memory, implemented as static RAM. F-Plane can be addressed directly or indirectly. Indirect Addressing is made by INDF register. The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a pointer). The first half of F-Plane is bit-addressable, while the second half of F-Plane is not bit-addressable.

MOVLW AAH ; Move immediate AAH into W register **MOVWR** 05H ; Move W value into R-Plane location 05H \bigcirc Example: Write immediate data into F-Plane register MOVLW ; Move immediate 55H into W register 55H MOVWF ; Move W value into F-Plane location 20H 20H ♦ Example: Move F-Plane location 20H data into W register MOVFW 20H ; To get a content of F-Plane location 20H to W ♦ Example: Clear SRAM Bank0 data by indirect addressing mode ; W = 20H (SRAM start address) MOVLW 20H ; Set start address of user SRAM into FSR register MOVWF FSR LOOP: MOVLW 00H MOVFW INDF · Clear user SRAM data

IVIO V F VV	INDF	, Clear user SKAIVI uata
INCF	FSR, 1	; Increment the FSR for next address
MOVLW	50H	; $W = 50H$ (SRAM end address)
XORWF	FSR, 0	; Check the FSR is end address of user SRAM?
BTFSS	STATUS, Z	; Check the Z flag
GOTO	LOOP	; If $Z = 0$, goto LOOP label
		; If $Z = 1$, exit LOOP

Example: Write immediate data into R-Plane register

1.3 Programming Counter (PC) and Stack

The Programming Counter is 10-bit wide capable of addressing a 1K x 14 OTP ROM. As a program instruction is executed, the PC will contain the address of the next program instruction to be executed. The PC value is normally increased by one except the followings. The Reset Vector (000h) and the Interrupt Vector (001h) are provided for PC initialization and Interrupt. For CALL/GOTO instructions, PC loads 10 bits address from instruction word. For RET/RETI/RETLW instructions, PC retrieves its content from the top level STACK. For the other instructions updating PC [7:0], the PC [9:8] keeps unchanged. The STACK is 10-bit wide and 5-level in depth. The CALL instruction and hardware interrupt will push STACK level in order. While the RET/RETI/RETLW instruction pops the STACK level in order.

1.4 ALU and Working (W) Register

The ALU is 8-bit wide and capable of addition, subtraction, shift and logical operations. In two-operand instructions, typically one operand is the W register, which is an 8-bit non-addressable register used for ALU operations. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either W register or a file register. Depending on the instruction executed, the ALU may affect the values of Carry (C), Digit Carry (DC), and Zero (Z) Flags in the STATUS register. The C and DC flags operate as a /Borrow and /Digit Borrow, respectively, in subtraction.

Note: /Borrow represents inverted of Borrow register.

/Digit Borrow represents inverted of Digit Borrow register.

DS-TM57PT16_PT16B_PA16_E

1.5 STATUS Register

This register contains the arithmetic status of ALU and the reset status. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. It is recommended, therefore, that only BCF, BSF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect those bits.

STATUS	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Reset Value	-	-	-	0	0	0	0	0	
R/W	_	-	_	R	R	R/W	R/W	R/W	
Bit				Desci	ription				
7~5	Not Used								
4	0: after P	TO : Time Out Flag 0: after Power On Reset, LVR Reset, or CLRWDT/SLEEP instruction 1: WDT time out occurs							
3	PD: STOP Flag 0: after Power On Reset, LVR Reset, or CLRWDT instruction 1: after SLEEP instruction								
2	0: the res	Z: Zero Flag0: the result of a logic operation is not zero1: the result of a logic operation is zero							
	DC: Decimal Carry Flag or Decimal /Borrow Flag								
		ADD in	struction		SUB instruction				
1	0: no carry				0: a borrow from the low nibble bits of the				
	1: a carry from the low nibble bits of the result occurs1:					It result occurs 1: no borrow			
	C: Carry Flag or /Borrow Flag								
0		ADD in	struction	SUB instruction					
, v	0: no carry0: a borrow occurs from the MSB1: a carry occurs from the MSB1: no borrow								

♦ Example: Write immediate data into STATUS register

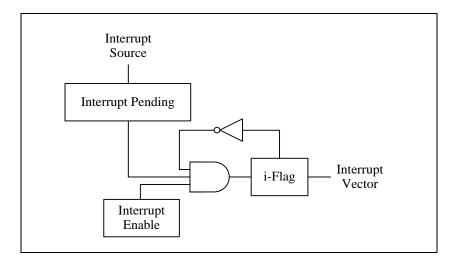
MOVLW	00H	
MOVWF	STATUS	; Clear STATUS register

♦ Example: Bit addressing set and clear STATUS register

BSF	STATUS, 0	; Set C = 1
BCF	STATUS, 0	; Clear $C = 0$

♦ Example: Determine the C flag by BTFSS instruction

BTFSS	STATUS, 0	; Check the C flag
GOTO	LABEL_1	; If $C = 0$, goto LABEL_1 label
GOTO	LABEL_2	; If $C = 1$, goto LABEL_2 label


DS-TM57PT16_PT16B_PA16_E

1.6 Interrupt

The TM57PA16 has 1 level, 1 vector and 4 interrupt sources. TM57PT16/PT16B has 1 level, 1 vector and 5 interrupt sources. Each interrupt source has its own enable control bit. An interrupt event will set its individual pending flag; no matter its interrupt enable control bit is 0 or 1. Because TM57PT16/PT16B/PA16 has only 1 vector, there is not an interrupt priority register. The interrupt priority is determined by F/W.

If the corresponding interrupt enable bit has been set (INTIE), it would trigger CPU to service the interrupt. CPU accepts interrupt in the end of current executed instruction cycle. In the mean while, A "CALL 001" instruction is inserted to CPU, and i-flag is set to prevent recursive interrupt nesting.

The i-flag is cleared in the instruction after the "RETI" instruction. That is, at least one instruction in main program is executed before service the pending interrupt. The interrupt event is level triggered. F/W must clear the interrupt event register while serving the interrupt routine.

 \bigcirc Example: Setup INT0 (PA0) interrupt request with rising edge trigger

• • I • • •	ORG	000H	; Reset Vector
	GOTO	START	; Goto user program address
	ORG	001H	; All interrupt vector
	GOTO	INT	; If INT0 (PA0) input occurred rising edge
	ORG	002H	
START:			
	MOVLW	xxxxxxx 0 B	
	MOVWR	PAE	; Disable INT0 (PA0) CMOS push-pull output
		40	; mode
	MOVLW	xxxxxxx <u>0</u> B	
	MOVWR	PAPUN	; Enable INT0 (PA0) input pull-up resistor
	MOVLW	1 D	
	MOVLW	xxxxxxx <u>1</u> B PAD	· Palaasa INTO (PAO) it bacomas Sahmitt trigger
	MOVWF	FAD	; Release INT0 (PA0), it becomes Schmitt-trigger ; input mode with input pull-up resistor
	MOVLW	000 <u>1</u> x0xxB	, input mode with input pun-up resistor
	MOVEW	R0B	; Set INT0 interrupt trigger as rising edge
	MOVWR	Rob	, set it to interrupt ungger as fising edge
	MOVLW	1111111 0 B	
	MOVWF	INTIF	; Clear INT0 interrupt request flag
	MOVLW	0000000 <u>1</u> B	,
	MOVWF	INTIE	; Enable INTO interrupt
MAIN:			•
	GOTO	MAIN	
INT:			
	MOVWF	40H	; Store W data to SRAM 40H
	MOVFW	STATUS	; Get STATUS data
	MOVWF	41H	; Store STATUS data to SRAM 41H
	DTEGG		
	BTFSS	INTOIF	; Check INTOIF bit
	GOTO	EXIT_INT	; INTOIF = 0, exit interrupt subroutine
	 MOVLW	1111111 0 D	; INT0 interrupt service routine
	MOVLW	1111111 0 B INTIF	; Clear INT0 interrupt request flag
EXIT_INT			, Clear INTO interrupt request mag
	MOVFW	41H	; Get SRAM 41H data
	MOVIW	STATUS	; Restore STATUS data
	MOVWI	40H	; Restore W data
	RETI		; Return from interrupt
			,

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	_		ATKIE	TM0IE	WKTIE	INT2IE		INT0IE
R/W	_	_	R/W	R/W	R/W	R/W	_	R/W
Reset	_	_	0	0	0	0	_	0

F08.5 **ATKIE:** Auto Touch Key interrupt enable (TM57PT16/PT16B only) 0: disable 1: enable

- F08.4 **TMOIE:** Timer0 interrupt enable 0: disable 1: enable
- F08.3 **WKTIE:** Wakeup Timer interrupt enable 0: disable 1: enable
- F08.2 **INT2IE:** INT2 (PA7) interrupt enable 0: disable 1: enable

F08.0 **INTOIE:** INTO (PA0) interrupt enable 0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	-		ATKIF	TM0IF	WKTIF	INT2IF		INT0IF
R/W	_	_	R/W	R/W	R/W	R/W	_	R/W
Reset	_	_	0	0	0	0	_	0

F09.5 **ATKIF:** Auto Touch Key interrupt event pending flag (TM57PT16/PT16B only) This bit is set by H/W while ATK detected the key touched, write 0 to this bit will clear this flag

F09.3 **WKTIF:** Wakeup Timer interrupt event pending flag This bit is set by H/W while Wakeup Timer is timeout, write 0 to this bit will clear this flag

F09.0 **INTOIF:** INTO (PA0) pin falling/rising interrupt pending flag This bit is set by H/W at INTO pin's falling/rising edge, write 0 to this bit will clear this flag

R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	_	_		INT0EDG	TCOE		WKTPSC	
R/W	_	_	_	W	W	_	W	
Reset	-	_	_	0	0	_	1	1

R0B.4 INT0EDG: INT0 (PA0) trigger edge select

0: INT0 (PA0) pin falling edge to trigger interrupt event

1: INTO (PA0) pin rising edge to trigger interrupt event

F09.4 **TM0IF:** Timer0 interrupt event pending flag This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

F09.2 **INT2IF:** INT2 (PA7) pin falling interrupt pending flag This bit is set by H/W at INT2 pin's falling edge, write 0 to this bit will clear this flag

2. Chip Operation Mode

2.1 Reset

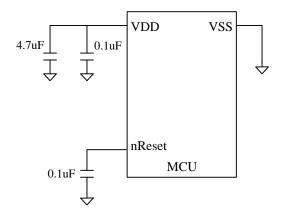
The TM57PT16/PT16B/PA16 can be RESET in four ways.

- Power-On-Reset
- Low Voltage Reset (LVR)
- External Pin Reset (PA7)
- Watchdog Reset (WDT)

After Power-On-Reset, all system and peripheral control registers are then set to their default hardware Reset values. The clock source, LVR level and chip operation mode are selected by the SYSCFG register value. The Low Voltage Reset features static reset when supply voltage is below a threshold level. There are two threshold levels can be selected. The LVR's operation mode is defined by the SYSCFG register.

There are two voltage selections for the LVR threshold level, one is higher level which is suitable for application with V_{DD} is more than 3.3V, while another one is suitable for application with V_{DD} is less than 3.3V. See the following LVR Selection Table; user must also consider the lowest operating voltage of operating frequency.

LVR Selection Table:


LVR Threshold Level	Consider the operating voltage to choose LVR
LVR3.1	$5.5V > V_{DD} > 3.3V$
LVR2.2	V _{DD} is wide voltage range

The External Pin Reset and Watchdog Reset can be disabled or enabled by the SYSCFG register. These two resets also set all the control registers to their default reset value. The TO/PD flag is not affected by these resets.

2.2 External Reset Circuit

External reset pin is low level active. The system is running when reset pin is high level voltage input. The reset pin receives the low voltage and the system is reset. The external reset can reset the system during power on duration, and good external reset circuit can protect the system to avoid working at unusual power condition.

2.3 System Configuration Register (SYSCFG)

The System Configuration Register (SYSCFG) is located at ROM address 3FCh. The SYSCFG determines the option for initial condition of MCU. It is written by PROM Writer only. User can select clock source, LVR threshold voltage and chip operation mode by SYSCFG register. The default value of SYSCFG is 3FFFh. The 13th bit of SYSCFG is code protection selection bit. If this bit is 0, the data in PROM will be protected, when user reads PROM.

Bit		13~0				
Default Value		11111111111				
Bit		Description				
13	PROTECT: 0	Code protection selection				
	0	Enable				
	1	Disable				
12	REUSE: PRO	M Re-use control				
	0	Enable				
	1	Disable				
11-10	LVR: LV Reset Mode					
	00	LVR Disable				
	01	LVR = 3.1V, always enable				
	10	LVR = 2.2V, disable in STOP mode				
	11	LVR = 2.2V, always enable				
9-8	Reserved					
7	XRSTE : Exte	rnal pin Reset Enable				
	0	Disable, PA7 as IO pin				
	1	Enable				
6	WDTE: WDT	Reset Enable				
	0	Disable				
	1	Enable				
5		8 MHz, 1: IRC=4 MHz is 8 MHz, the LVR can only be set to 3.1V or disable (can't use 2.2V).				
4-0	Reserved					

DS-TM57PT16_PT16B_PA16_E

2.4 PROM Re-use ROM

The PROM of this device is 1K words. For some F/W program, the program size could be less than 512 words. To fully utilize the PROM, the device allows users to reuse the PROM. This feature is named as Two Time Programmable (TTP) ROM. While the first half of PROM is occupied by a useless program code and the second half of the PROM remains blank, users can re-write the PROM with the updated program code into the second half of the PROM. In the Re-use mode, the Reset Vector and Interrupt Vector are re-allocated at the beginning of the PROM's second half by the Assembly Compiler. Users simply choose the "REUSE" option in the ICE tool interface, and then the Compiler will move the object code to proper location. That is, the user's program still has reset vector at address 000h, but the compiled object code has reset vector at 200h. In the SYSCFG, if PROTECT is enabled and not Re-use, the Code protection area is first half of PROM. This allows the Writer tool to write then verify the Code during the Re-use Code programming. After the Re-use Code being written into the PROM's second half, user should write "REUSE" control bit to "0". In the mean while, the Code protection area becomes the whole PROM except the Reserved Area.

	PROM, REUSE=1		PROM, REUSE=0				
000	Reset Vector		000				
001	Interrupt Vector		001				
		Code		Useless			
		Protect		Code			
		Area					
	User				Code		
1FF	Code		1FF		Protect		
200			200	Reset Vector	Area		
201			201	Interrupt Vector			
				User			
				Code			
3FB	Reserved		3FB	Reserved			
3FC	SYSCFG		3FC	SYSCFG			
3FD	Manufacturer		3FD	Manufacturer			
3FE	Reserved		3FE	Reserved			
3FF	Area		3FF	Area			

2.5 Power Down Mode

The Power Down mode includes STOP mode and IDLE mode. It is activated by SLEEP instruction.

STOP Mode:

When WKTIE (F08.3) is cleared, all blocks will be turned off and the TM57PT16/PT16B/PA16 will enter the "STOP Mode" after executing the SLEEP instruction. During the STOP mode, the system clock and peripherals stop to minimize power consumption. The STOP mode can be terminated by Reset, or enabled External Pins Interrupt or PA1-4 pins low level wake up.

IDLE Mode:

When WKTIE (F08.3) is set, the TM57PT16/PT16B/PA16 will enter the "IDLE Mode" after executing the SLEEP instruction. TM57PT16/PT16B has another way to enter the IDLE mode by setting TKAUTO (F15.2) before executing the SLEEP instruction. During the IDLE mode, the system clock and peripherals stops to minimize power consumption, but WKT/WDT and auto touch key (TM57PT16/PT16B only) can still run. The IDLE mode can be terminated by Reset, or enabled Interrupts (External pins, WKT and ATK interrupts) or PA1-4 pins low level wake up. (More details for Touch Key setting is in chapter 3.5)

R03	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWRDN		PWRDN								
R/W		W								
Reset	-									

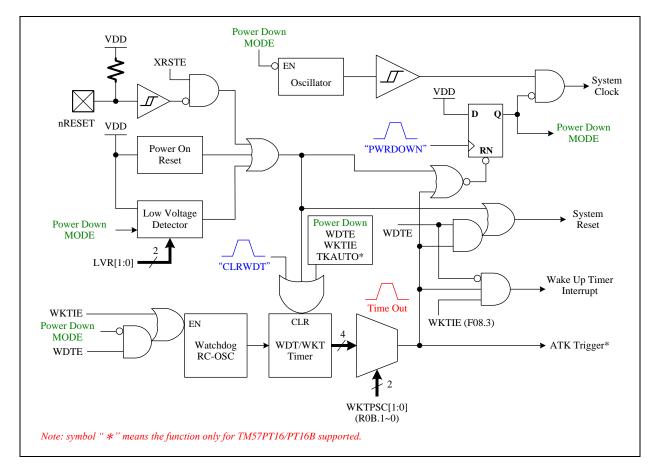
R03.7~0 **PWRDN:** Write this register to enter Power Down Mode

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	-	-	ATKIE	TM0IE	WKTIE	INT2IE	—	INT0IE
R/W	-	_	R/W	R/W	R/W	R/W	_	R/W
Reset	—	-	0	0	0	0	_	0

F08.3 **WKTIE:** Wakeup Timer interrupt enable

0: disable 1: enable

F15	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATKCTL			Ι	_	I	TKAUTO	TKSCNUM	
R/W	_	_	-	-	-	R/W	R/W	
Reset	_	Ι	Ι	-	Ι	0	0	0


F15.2 **TKAUTO**: Touch key auto scan mode enable (TM57PT16/PT16B only) 0: disable H/W Auto Mode 1: enable H/W Auto Mode

3. Peripheral Functional Block

3.1 Watchdog (WDT) / Wakeup (WKT) Timer

The WDT and WKT share the same internal RC Timer. The overflow period of WDT/WKT can be selected from 22 ms to 224 ms. The WDT/WKT is cleared by the CLRWDT instruction. If the Watchdog Reset is enabled (SYSCFG[6], WDTE=1), the WDT generates the chip reset signal, otherwise, the WKT only generates overflow time out interrupt. The WDT/WKT works in normal mode and IDLE mode. User can further choose to enable or disable the WDT/WKT by "WKTIE" (F08.3) to enter IDLE or STOP mode. If WKTIE is cleared (no matter WDTE is 1 or 0), the internal RC Timer stops for power saving. In other words, user keeps the WDT/WKT alive in IDLE Mode by setting WKTIE to "1". If the WDTE is set and WKTIE is cleared, WDT/WKT timer will be cleared and stopped for power saving in STOP mode. If the WDTE and WKTIE are set, WDT/WKT timer keeps counting in IDLE/normal mode. Refer to the following table and figure.

If the user program needs the MCU totally shut down for power conservation in STOP mode, the below setting of control bits should be followed.

Мо	ode	WDTE	WKTIE	TKAUTO (PT16/PT16B only)	Watchdog RC Oscillator
		0	0		Stop
		0	1	0	
	Normal Mode		0	0	Run
IVIC			1		
		Х	Х	1	Run
	IDLE	Х	Х	1	Run
Power Down	n Mode	х	1	Х	Kuli
Mode	STOP Mode	x	0	0	Stop

F03	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STATUS	_	_	_	ТО	PD	Z	DC	С
R/W	_	_	_	R	R	R/W	R/W	R/W
Reset	_	_	_	0	0	0	0	0

F03.4 **TO:** WDT time out flag, read-only

0: after Power On Reset, LVR Reset, or CLRWDT/SLEEP instructions 1: WDT time out occurs

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	_	-	ATKIE	TM0IE	WKTIE	INT2IE	_	INTOIE
R/W	_	_	R/W	R/W	R/W	R/W	_	R/W
Reset	_	-	0	0	0	0	—	0

F08.3 **WKTIE:** Wakeup Timer interrupt enable 0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	_	_	ATKIF	TM0IF	WKTIF	INT2IF	_	INT0IF
R/W	-	-	R/W	R/W	R/W	R/W	_	R/W
Reset	-	-	0	0	0	0	_	0

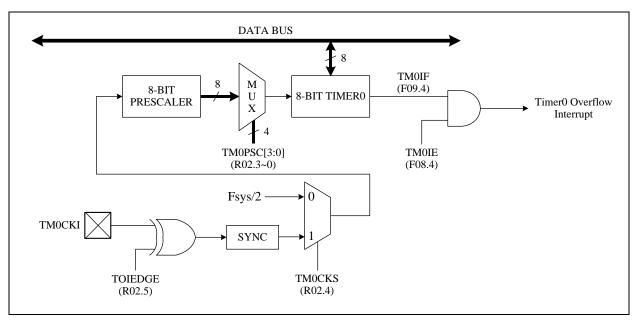
F09.3 **WKTIF:** Wakeup Timer interrupt event pending flag This bit is set by H/W while Wakeup Timer is timeout, write 0 to this bit will clear this flag

F15	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATKCTL	I		Ι	_	I	TKAUTO	TKSC	CNUM
R/W	_	_	-	-	_	R/W	R/	W
Reset		-	Ι	-	Ι	0	0	0

F15.2 **TKAUTO**: Touch key auto scan mode enable (TM57PT16/PT16B only) 0: disable H/W Auto Mode 1: enable H/W Auto Mode

R04	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WDTCLR		WDTCLR						
R/W		W						
Reset	_	-	—	-	-	-	-	-

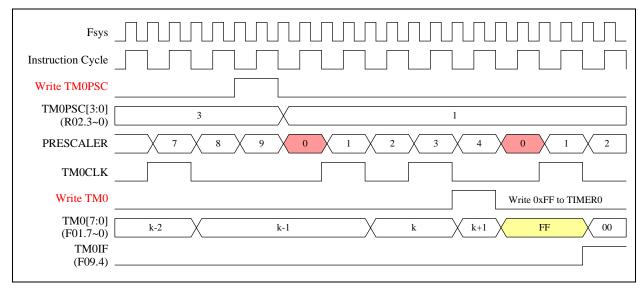
R04.7~0 WDTCLR: Write this register to clear WDT/WKT


R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	_	_	_	INT0EDG	TCOE	—	WKT	TPSC
R/W	_	_	_	W	W	_	V	V
Reset	-	-	_	0	0	_	1	1

R0B.1~0 WKTPSC: WDT/WKT pre-scale option select 00: WDT/WKT period is 22 ms, @5V; 28 ms, @3V 01: WDT/WKT period is 44 ms, @5V; 56 ms, @3V 10: WDT/WKT period is 88 ms, @5V; 112 ms, @3V 11: WDT/WKT period is 176 ms, @5V; 224 ms, @3V

3.2 Timer0: 8-bit Timer/Counter with Pre-scale (PSC)

The Timer0 is an 8-bit wide register of F-Plane. It can be read or written as any other register of F-Plane. Besides, Timer0 increases itself periodically and automatically rolls over based on the pre-scaled clock source, which can be the instruction cycle or TM0CKI (PA2) rising/falling input. The Timer0's increasing rate is determined by the TM0PSC[3:0] (R02.3~0) bits in R-Plane. The Timer0 can generate interrupt flag TM0IF (F09.4) when it rolls over. It generates Timer0 interrupt if the TM0IE (F08.4) bit is set.



Timer0 Block Diagram

Timer Mode:

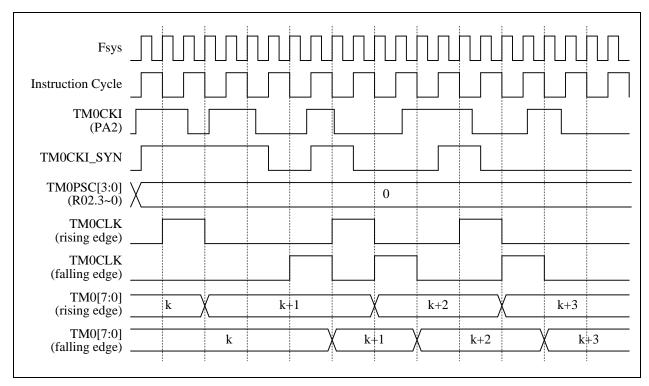
When the Timer0 prescaler (TM0PSC) is written, the internal 8-bit prescaler will be cleared to 0 to make the counting period correct at the first Timer0 count. TM0CLK is the internal signal that causes the Timer0 to increase by 1 at the end of TM0CLK. TM0WR is also the internal signal that indicates the Timer0 is directly written by instruction; meanwhile, the internal 8-bit prescaler will be cleared. When Timer0 counts from FFh to 00h, TM0IF (Timer0 Interrupt Flag) will be set to 1 and generate interrupt if TM0IE (Timer0 Interrupt Enable) is set. The following timing diagram describes the Timer0 works in pure Timer mode.

Timer0 works in Timer mode (TM0CKS = 0)

The equation of Timer0 interrupt timer value is as following:

Timer0 interrupt frequency = Instruction cycle time / TM0PSC / 256

 \bigcirc Example: Setup Timer0 work in Timer mode, Fsys = IRC Clock = 4MHz


; Setup Tim	ner0 clock sou	rce and divider	
	MOVLW	00x 00101 B	; TM0CKS = 0, Timer0 clock is instruction cycle
	MOVWR	TMOCTL	; TM0PSC = $0101b$, divided by 32
; Enable Ti	mer0 and inte	rrupt function	
	MOVLW	111 <u>0</u> 1111B	
	MOVWF	INTIF	; Clear Timer0 request interrupt flag
	BSF	TM0IE	; Enable Timer0 interrupt function
; Setup Tim	ner0		
-	CLRF	TM0	; Clear Timer0 content
T : 0 1	1		
Timer0 clo	ck source is F	sys/2 = 4 MHz / 2 = 2 N	/Hz, Timer0 divided by 32

Timer0 interrupt frequency = 2 MHz / 32 / 256 = 244.14 Hz

Counter Mode:

If TM0CKS is set, then Timer0 counter source clock is from TM0CKI (PA2) pin. TM0CKI signal is synchronized by instruction cycle that means the high/low time durations of TM0CKI must be longer than one instruction cycle time to guarantee each TM0CKI's change will be detected correctly by the synchronizer. The following timing diagram describes the Timer0 works in Counter mode.

Timer0 works in Counter mode (TM0CKS = 1) for TM0CKI

♦ Example: Setup Timer0 works in Counter mode

; Setup Timer0 clock s MOVLW MOVWR	00 <u>110000</u> B	; TM0EDG = 1, counting edge is falling edge ; TM0CKS = 1, Timer0 clock is TM0CKI (PA2) ; TM0PSC = 0000b, divided by 1
; Setup Timer0		
CLRF	TM0	; Clear Timer0 content
; Read Timer0 counter		
MOVFW	TM0	; Read Timer0 content

F01	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0		TM0						
R/W		R/W						
Reset	0	0	0	0	0	0	0	0

F01.7~0 **TM0:** Timer0 content

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	_	-	ATKIE	TM0IE	WKTIE	INT2IE	_	INTOIE
R/W	_	_	R/W	R/W	R/W	R/W	_	R/W
Reset	-	-	0	0	0	0	_	0

F08.4 **TM0IE:** Timer0 interrupt enable

0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	_		ATKIF	TM0IF	WKTIF	INT2IF	—	INT0IF
R/W	-	_	R/W	R/W	R/W	R/W	_	R/W
Reset	_	-	0	0	0	0	—	0

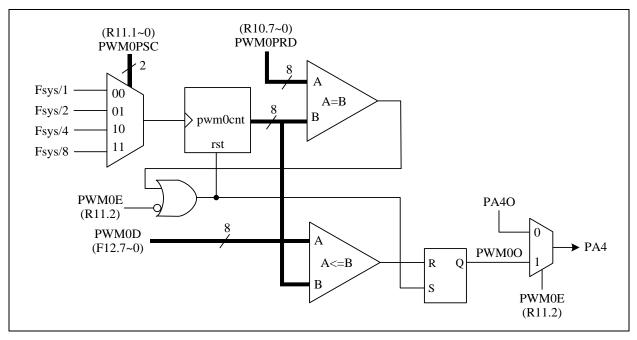
F09.4 **TM0IF:** Timer0 interrupt event pending flag

This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

R02	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0CTL		Ι	TM0EDG	TM0CKS		TMC	PSC	
R/W	_	-	W	W		V	V	
Reset	_	-	0	0	0	0	0	0

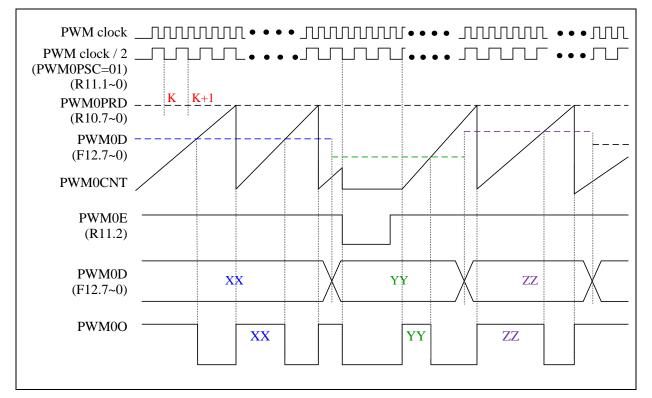
R02.5 **TM0EDG:** TM0CKI (PA2) edge selection for Timer0 Prescaler count 0: TM0CKI (PA2) rising edge for Timer0 Prescaler count 1: TM0CKI (PA2) falling edge for Timer0 Prescaler count

R02.4 **TM0CKS:** Timer0 Prescaler clock select 0: Instruction Cycle as Timer0 Prescaler clock 1: TM0CKI (PA2) as Timer0 Prescaler clock


R02.3~0 **TM0PSC:** Timer0 prescaler. Timer0 clock source 0000: divided by 1 0001: divided by 2 0010: divided by 4 0011: divided by 8 0100: divided by 16 0101: divided by 32 0110: divided by 64 0111: divided by 128 1xxx: divided by 256

3.3 PWM0: 8-bit PWM

The chip has a built-in 8-bit PWM generator. The source clock comes from Fsys divided by 1, 2, 4, and 8 according to PWM0PSC (R11.1~0). The PWM0 duty cycle can be changed with writing to PWM0D (F12.7~0).


The PWM0 will be output to PA4 if PWM0E (R11.2) is set. With I/O mode setting, the PWM0 output can be set as CMOS push-pull or open-drain output mode. When PAE[4] (R05.4) is set, the output is CMOS push-pull output mode, otherwise is open-drain output mode. Figure shows the block diagram of PWM0.

PWM0 Block Diagram

Figure shows the PWM0 waveforms. When PWM0E bit is cleared or PWM0D equals to zero, the PWM0 output is cleared to '0' no matter what its current status is. Once the PWM0E bit is set and PWM0D is not zero, the PWM0 output is set to '1' to begin a new PWM cycle. PWM0 output will be '0' when PWM0CNT is greater than or equals to PWM0D. PWM0CNT keeps counting up when equals to PWM0PRD (R10.7~0), the PWM0 output is set to '1' again.

PWM0 Block Diagram

 \bigcirc Example: PWM0 output and PWM0 clock is divided by 2, Fsys = 4 MHz

-	10 period and MOVLW	l duty FFH	
	MOVWR	PWM0PRD	; Set PWM0 period = $FFH + 1 = 256$
	MOVLW	80H	
	MOVWF	PWM0D	; Set PWM0 duty $= 80H = 128$
; Setup PWN	40 prescaler a	and output enable	
	MOVLW	00000 <u>101</u> B	; $PWM0E = 1$, $PWM0$ output to PA4 pin
	MOVWR	PWMCTL	; $PWMOPSC = 01b$, divided by 2
			-

PWM0 output duty = PWM0D / (PWM0PRD + 1) = 128 / (255 + 1) = 1 / 2

PWM clock = Fsys = 4 MHz, PWM clock divided by 2

PWM0 output frequency = 4 MHz / 2 / (255 + 1) = 7812.5 Hz

DS-TM57PT16_PT16B_PA16_E

F12	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM0D	PWM0D							
R/W	R/W							
Reset	0	0	0	0	0	0	0	0

F12.7~0 PWM0D: PWM0 duty

R10	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM0PRD		PWM0PRD							
R/W		W							
Reset	1	1	1	1	1	1	1	1	

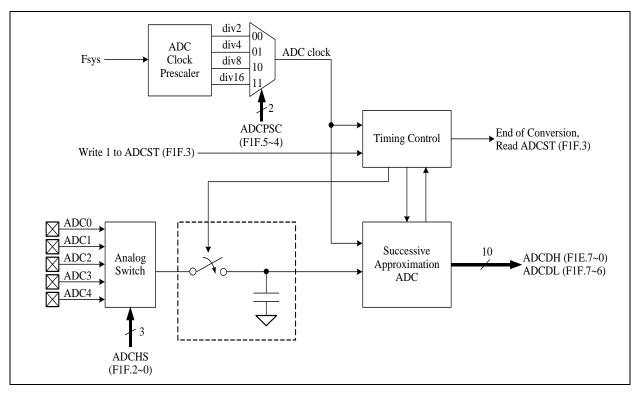
R10.7~0 **PWM0PRD**: PWM0 period data

R11	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCTL	_	_	-	-	_	PWM0E	PWM0PSC	
R/W	_	-	-	-	-	W	W	
Reset	—	-	-	-	-	0	0	0

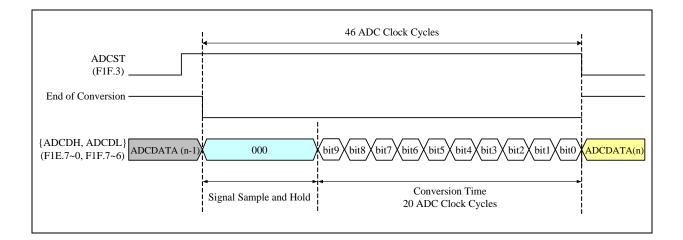
PWM0E: PWM0 positive output to PA4 pin R11.2 0: disable 1: enable

R11.1~0 **PWM0PSC**: PWM0 prescaler, PWM0 clock source

00: divided by 1


01: divided by 2 10: divided by 4

11: divided by 8



3.4 Analog-to-Digital Converter

The 10-bit ADC (Analog to Digital Converter) consists of a 5-channel analog input multiplexer, control register, clock generator, 10-bit successive approximation register, and output data register. To use the ADC, user needs to set ADCPSC (F1F.5~4) to choose a proper ADC clock frequency, which must be less than 2 MHz. User then launches the ADC conversion by setting the ADCST (F1F.3) control bit. After end of conversion, H/W automatic clears the ADCST (F1F.3) bit. User can poll this bit to know the conversion status. The PAIE (R14.4~0) control registers are used for ADC pin configuration, user can write the corresponding bit to "0" when the pin is used as an ADC input. The setting can disable the pin logical input path to save power consumption.

ADC Block Diagram

 \bigcirc Example: ADC clock frequency = 1MHz, ADC channel = ADC2 (PA0), Fsys = 4 MHz

	MOVLW MOVWF	xxxxxxx <u>1</u> B PAD	; Set PA0 = 1
	MOVLW MOVWR	xxxxxxx <u>1</u> B PAPUN	; ADC2 (PA0) pull-high disable
	MOVLW MOVWR	xxxxxxx 0 B PAIE	; Select PA0 input type as analog input
	MOVLW MOVWR	xxxxxxx 0 B PAE	; PA0 CMOS push-pull output disable
	MOVLW MOVWF	00 <u>01</u> 0 <u>010</u> B ADCTL	; ADCPSC = 01B, ADC clock = Fsys/4 = 1MHz ; ADCHS = 010B, select channel ADC2
	BSF	ADCTL, 3	; ADST = 1, ADC start conversion.
Conversing	:		
C	BTFSC GOTO	ADCTL, 3 Conversing	; Polling ADCST ; ADCST = 0, when ADC ended of conversion
	MOVFW MOVWF	ADCDH 20H	; Store ADC MSB data into address 20H
	MOVFW MOVWF : :	ADCTL 21H	; Store ADC LSB data into address 21H

F1E	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ADCDH		ADCDH							
R/W		R							
Reset	0	0	Ο	0	0	Ο	0	0	

F1E.7~0 ADCDH: ADC output data MSB[9:2]

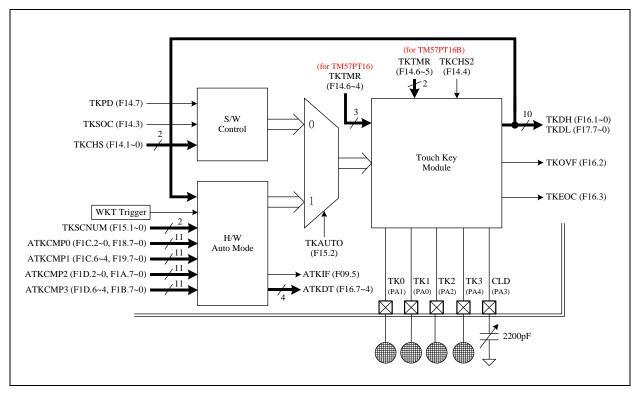
F1F	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCTL	ADO	CDL	ADCPSC		ADCST	ADCHS		
R/W	F	٤	R/W		R/W	R/W		
Reset	0	0	0	0	0	0	0	0

F1F.7~6 ADCDL: ADC output data LSB[1:0]

F1F.5~4 ADCPSC: ADC clock source prescaler. ADC clock source (Fsys) 00: divided by 2 01: divided by 4 10: divided by 8 11: divided by 16

- F1A.3 **ADCST**: ADC start bit 0: H/W clear after end of conversion 1: ADC start conversion
- F1A.2~0 **ADCHS**: ADC channel select 000: ADC0 (PA3) 001: ADC1 (PA1) 010: ADC2 (PA0) 011: ADC3 (PA2) 100: ADC4 (PA4)

R14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PAIE	-	-	-	PAIE					
R/W	-	-	-	W					
Reset	_	_	_	1	1	1	1	1	


R14.4~0 **PAIE**: PA4~0 input type select 0: analog input 1: digital input

3.5 Touch Key (TM57PT16/PT16B only)

Only TM57PT16/PT16B supported the Touch Key function. The Touch Key offers an easy, simple and reliable method to implement finger touch detection. For most applications, it only requires an external capacitor component on CLD pin. The device support 4 channels touch key detection with S/W manual mode and H/W auto (ATK) mode. Only one mode can be active at a time.

With I/O mode setting, The PAIE (R14.4~0) control registers are used for touch key pin configuration, user can write the corresponding bit to "0" when the pin is used as touch key input. The setting can disable the pin logical input path to save power consumption.

Touch Key Block Diagram

S/W Manual Mode Touch Key Detection

All touch key (TK0~TK3) can be used for S/W mode, it can be select by TKCHS (F14.1~0) bits. To start the S/W mode, TKAUTO (F15.2) and TKPD (F14.7) have to be cleared. After setting the TKSOC (F14.3) bit, the touch key starts conversion. The TKSOC bit can be automatically cleared while end of conversion. However, if the system clock is too slow, H/W might lose the auto clear TKSOC capability. "TKEOC=0" means conversion is in process, while "TKEOC=1" means the conversion is finish. After TKEOC's rising edge, user must wait at least 10 us for next conversion. The touch key counting values is stored into the 10 bits touch key data count "TKDH (F16.1~0), TKDL (F17.7~0)". If TKOVF (F16.2) is set, it means the conversion transaction exceeds period time. Reduce/Increase TKTMR (TM57PT16: F14.6~4; TM57PT16B: F14.6~5), can reduce/increase touch key data count to adapt the system board circumstances.

In TM57PT16B, The Touch Key unit has an internal built-in reference capacitor to simulate the Key behavior. Set {TKCHS2(F14.4), TKCHS}=111B and start the Touch Key can get the TKDATA of this reference capacitor. Since the internal capacitor never affected by water or mobile phone, it is useful for comparing the environment background noise.

H/W Auto Mode Touch Key (ATK) Detection

TK0~TK3 are all eligible for H/W auto mode by setting TKSCNUM (F15.1~0). This function can work in normal/IDLE mode and save the S/W effort as well as minimize the chip current consumption. To use this function, TKAUTO has to be set. The WKT will generate an overflow flag after WKT time out to trigger the touch key H/W auto mode starting. That can enable H/W control the touch key module fully. H/W then automatically detects the TK0~TK3's touch key data count at every 22 ms or 224 ms rate by WKTPSC (R0B.1~0). If those keys' data count are less than each pre-set compare thresholds ATKCMP0 (F1C.2~0, F18.7~0), ATKCMP1 (F1C.6~4, F19.7~0), ATKCMP2 (F1D.2~0, F1A.7~0) or ATKCMP3 (F1D.6~4, F1B.7~0), H/W will record the compare result in the ATKDT (F16.7~4). If ATKDT bits are not equal to "0", H/W will also generate interrupt flag ATKIF (F9.5) after touch key module ends conversion. It generates auto touch key interrupt and wake up CPU if the ATKIE (F8.5) bit is set. User can switch the touch key module to S/W manual mode after the touch key interrupt and identify/confirm the Key touch event. About I/O setting, the ATK will control the TK channel's PAPUN and PAIE automatically when this channel is being scanned. To use ATK in TM57PT16B, the TKCHS2 has to be cleared. Otherwise the wrong channel will be scanned. It will cause the function is invalid.

 \bigcirc Example: S/W Mode, Touch key channel = TK1 (PA0).

	MOVLW MOVWF	xxxx <u>1</u> xx <u>1</u> B PAD	; Set PA0=1, PA3=1
	MOVLW MOVWR	xxxxx <u>1</u> xx <u>1</u> B PAPUN	; TK1 (PA0), CLD (PA3) pull-high disable
	MOVLW MOVWR	xxxxx 0 xx 0 B PAIE	; Set PA0 as analog input for touch key input ; Set PA3 as analog input for connecting capacitor
	MOVLW MOVWR	xxxxx 0 xx 0 B PAE	; PA0, PA3 CMOS push-pull output disable
	MOVLW MOVWF BCF BSF	1 <u>100</u> 0x <u>01</u> B TKCTL TKCTL,7 TKCTL,3	; TKTMR=Level 4, TKCHS=01B (TK1) ; TKPD=0 ; TKSOC=1, touch key start conversion
AIT_TK:	BTFSS GOTO	ATKDT,3 WAIT_TK	; Polling TKEOC ; Waiting touch key conversion finish
	MOVFW MOVWF	TKDT 23H	; Read TKDH[1:0] ; Store W data to SRAM 23H
	MOVFW MOVWF	TKDL 24H	; Read TKDL[7:0] ; Store W data to SRAM 24H

WA

 \bigcirc Example: H/W Auto Mode, Touch key auto scan number = 4

v I		, J	
	ORG	000H	; Reset Vector
	GOTO	START	
	0010	START	; Goto user program address
	ORG	001H	; All interrupt vector
	GOTO	INT	
	ORG	002H	
START:	one	00211	
START.	MOVLW	www11111D	; Set PA0=1, PA1=1, PA2=1, PA3=1, PA4=1
		xxx <u>11111</u> B	, Set FA0-1, FA1-1, FA2-1, FA3-1, FA4-1
	MOVWF	PAD	
	MOVLW	xxxx x1xxx B	; Set PA3 pull-high disable
	MOVWR	PAPUN	; ATK will control the TK channels automatically
	MOVLW	xxxx x0xxx B	; Set PA3 as analog input for touch key input
	MOVWR	PAIE	; ATK will control the TK channels automatically
	MOVWR		, ATTA will control the TA chamlers automatically
	MOVLW	www.	Set DAO 4 CMOS much null output disable
		xxxx <u>00000</u> B	; Set PA0~4 CMOS push-pull output disable
	MOVWR	PAE	
		_	
	MOVLW	<u>1</u> 100 0xxxB	; ATK will control the TKPD automatically
	MOVWF	TKCTL	; TKTMR= Level 4
			; Must set TKCHS2=0 in TM57PT16B
	MOVLW	xxxxx <u>0 11</u> B	; TKSCNUM=11B (TK auto scan number=4)
	MOVWF	ATKCTL	
		AIKCIL	
	MOVIW	0011	· Set outo TV compare thresholds
	MOVLW	00H	; Set auto TK compare thresholds
	MOVWF	ATKCMP10H	
	MOVLW	01H	
	MOVWF	ATKCMP32H	
	MOVLW	C8H	
	MOVWF	ATKCMP0	;Set ATKCMP0=200
		AIRCMIO	,Set AT KEIMI 0=200
	MOULW	CALL	
	MOVLW	C4H	
	MOVWF	ATKCMP1	;Set ATKCMP1=196
	MOVLW	0EH	
	MOVWF	ATKCMP2	;Set ATKCMP2=270
			·
	MOVLW	ВСН	
		ATKCMP3	Sot ATECMD2-188
	MOVWF	AIKUMPS	;Set ATKCMP3=188
		00000115	
	MOVLW	000000 <u>11</u> B	
	MOVWR	R0B	; WKTPSC=11B, WKT period = 176ms,@5V
			-
	MOVLW	11 <u>0</u> 11111B	
	MOVWF	INTIF	; Clear ATK interrupt request flag
	1410 4 441		, creat is interrupt request mag

	MOVLW MOVWF	00 <u>1</u> 00000B INTIE	; Enable ATK interrupt
	BSF	TKAUTO	; TKAUTO=1, enable TK H/W auto Mode
MAIN:	(SLEEP) :		; Set system into IDLE mode ; to reduce power consumption (dispensable)
	GOTO	MAIN	
INT:			
	MOVWF MOVFW MOVWF	20H STATUS 21H	; Store W data to SRAM 20H ; Get STATUS data ; Store STATUS data to SRAM 21H
	BTFSC CALL	ATKIF INT_ATK	; Check ATKIF bit ; ATKIF=0, exit interrupt subroutine ; ATKIF interrupt service routine
	GOTO	EXIT_INT	
INT_ATK:	MOVLW	11 0 11111B	
	MOVWF MOVFW	INTIF TKDT	; Clear ATK interrupt request flag
	MOVFW MOVWF RET	22H	; Store ATK scan result to SRAM 22H
EXIT_INT	:		
	MOVFW	21H	; Get SRAM 21H data

ΔП_	_11N1:	
		MC

MOVFW	21H
MOVWF	STATUS
MOVFW	20H
RETI	

Get SRAM 21H data ; Restore STATUS data ; Restore W data ; Return from interrupt

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	-	-	ATKIE	TM0IE	WKTIE	INT2IE	-	INT0IE
R/W	_	-	R/W	R/W	R/W	R/W	_	R/W
Reset	_	—	0	0	0	0	_	0

F08.5 ATKIE: Auto touch key interrupt enable 0: disable 1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	_	_	ATKIF	TM0IF	WKTIF	INT2IF	_	INT0IF
R/W	_	_	R/W	R/W	R/W	R/W	_	R/W
Reset		_	0	0	0	0	_	0

F09.5 ATKIF: Auto touch key interrupt event pending flag

This bit is set by H/W while ATK detected the key touched, write 0 to this bit will clear this flag

DS-TM57PT16_PT16B_PA16_E

F14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TROTI	TKPD	TKTMR			TKSOC	_	TKCHS	
TKCTL	IKFD	ТКТ	MR	TKCHS2	INSUC	_	ткспъ	
R/W	R/W	R/	W	R/W	R/W	_	R/W	
Reset	1	1	0	0	0	_	0	0

F14.7 **TKPD**: Touch key power down 0: Touch key running 1: Touch key power down

F14.6~4 **TKTMR**: Touch key conversion time select (For TM57PT16) 000: Level 0 (shortest) 001: Level 1 010: Level 2 011: Level 3 100: Level 4 101: Level 5

- 110: Level 6
- 111: Level 7 (longest)

F14.6~5 **TKTMR**: Touch key conversion time select (For TM57PT16B)

- 00: Level 0 (shortest)
- 01: Level 2
- 10: Level 4
- 11: Level 6 (longest)
- F14.4 TKCHS2: Touch key channel (bit 2) select (For TM57PT16B)
 0: TK0~TK3 by TKCHS
 1: if TKCHS=11B, Touch key channel select internal reference capacitor if TKCHS≠11B, Touch key channel is invalid
- F14.3 **TKSOC**: Touch key start of conversion, rising edge to start H/W auto cleared while end of conversion
- F14.1~0 **TKCHS**: Touch key channel select 00: TK0 (PA1) 01: TK1 (PA0) 10: TK2 (PA2) 11: TK3 (PA4)

F15	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATKCTL			-	_		TKAUTO	TKSC	NUM
R/W	_	_	_	_	_	R/W	R/W	
Reset	—	—	_	-	—	0	0	0

- F15.2 **TKAUTO**: Touch key auto scan mode enable 0: disable H/W Auto Mode 1: enable H/W Auto Mode
- F15.1~0 **TKSCNUM**: Touch key auto scan channel number 00: only detect TK0 01: detect TK0 and TK1 10: detect TK0, TK1 and TK2 11: detect TK0~TK3

F16	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKDT		ATI	KDT		TKEOC	TKOVF	TK	DH
R/W		ŀ	R		R	R	H	2
Reset	0	0	0	0	0	0	0	0

- F16.7~4 **ATKDT**: Touch key auto scan result xxx1: TK0 has a touch event xx1x: TK1 has a touch event x1xx: TK2 has a touch event 1xxx: TK3 has a touch event
- F16.3 **TKEOC**: Touch key end of conversion 0: conversion is in process 1: end of conversion
- F16.2 **TKOVF**: Touch key counter overflow flag 0: not overflow 1: overflow
- F16.1~0 **TKDH**: Touch key data MSB[9:8]

F17	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKDL		TKDL						
R/W		R						
Reset	0	0	0	0	0	0	0	0

F17.7~0 **TKDL**: Touch key data LSB[7:0]

F18	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ATKCMP0		ATKCMP0							
R/W		R/W							
Reset	0	1	0	0	0	0	0	0	

F18.7~0 ATKCMP0: Touch key auto scan TK0 compare data threshold LSB[7:0]

F19	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATKCMP1		ATKCMP1						
R/W				R/	W			
Reset	0	1	0	0	0	0	0	0

F19.7~0 ATKCMP1: Touch key auto scan TK1 compare data threshold LSB[7:0]

F1A	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATKCMP2		ATKCMP2						
R/W				R/	W			
Reset	0	1	0	0	0	0	0	0

F1A.7~0 ATKCMP2: Touch key auto scan TK2 compare data threshold LSB[7:0]

DS-TM57PT16_PT16B_PA16_E

F1B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATKCMP3		ATKCMP3						
R/W				R/	W			
Reset	0	1	0	0	0	0	0	0

F1B.7~0 ATKCMP3: Touch key auto scan TK3 compare data threshold LSB[7:0]

F1C	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ATKCMP10H	-		ATKCMP1H	I	-	ATKCMP0H			
R/W	_		R/W		_		R/W		
Reset	_	0	0	0	_	0	0	0	

F1C.6~4 ATKCMP1H: Touch key auto scan TK1 compare data threshold MSB[10:8]

F1C.2~0 ATKCMP0H: Touch key auto scan TK0 compare data threshold MSB[10:8]

F1D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATKCMP32H	_		ATKCMP3H			ATKCMP2H		
R/W	_		R/W				R/W	
Reset	_	0	0 0 0			0	0	0

F1D.6~4 ATKCMP3H: Touch key auto scan TK3 compare data threshold MSB[10:8]

F1D.2~0 ATKCMP2H: Touch key auto scan TK2 compare data threshold MSB[10:8]

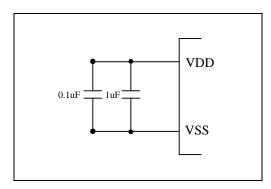
R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	—	—	—	INT0EDG	TCOE	—	WKT	PSC
R/W	_	-	-	W	W	-	W	
Reset	_	_	-	0	0	_	1	1

R0B.1~0 WKTPSC: WDT/WKT pre-scale option select

00: WDT/WKT period is 22 ms, @5V; 28 ms, @3V 01: WDT/WKT period is 44 ms, @5V; 56 ms, @3V 10: WDT/WKT period is 88 ms, @5V; 112 ms, @3V

11: WDT/WKT period is 176 ms, @5V; 224 ms, @3V

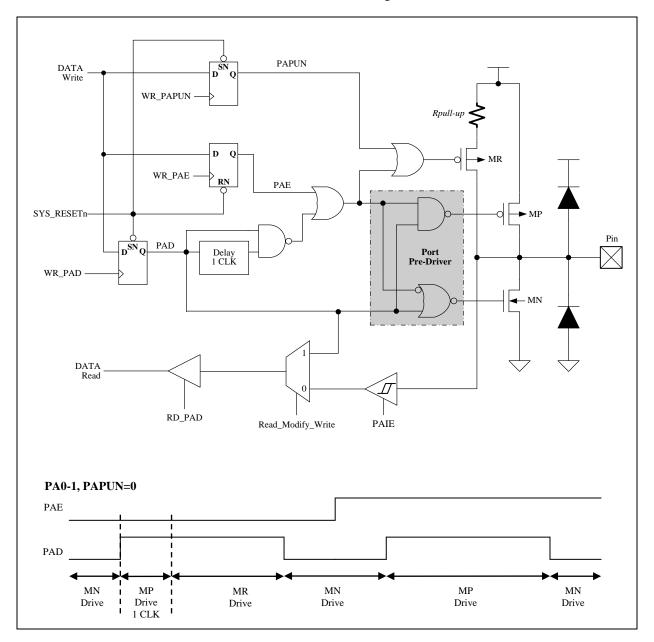
R14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAIE	_	_	_			PAIE		
R/W	_	-	_	W				
Reset	_	-	_	1	1	1	1	1

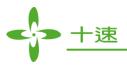

R14.4~0 **PAIE**: PA4~0 input type select 0: analog input 1: digital input

DS-TM57PT16_PT16B_PA16_E

3.6 System Clock Oscillator

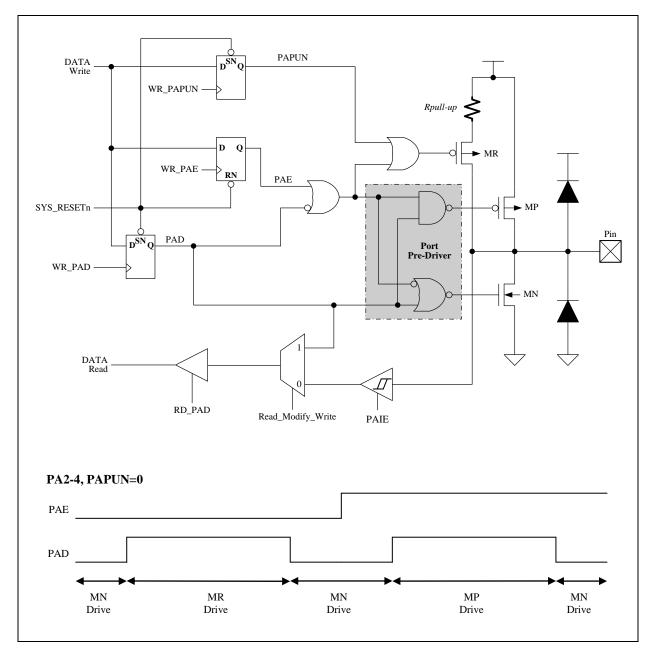
System clock can only be operated in internal RC mode. The on chip oscillator generates 4/8 MHz system clock. When the IRC is 8 MHz, the LVR can only be set to 3.1V (cannot use 2.2V). In this mode, PCB Layout may have strong effect on the stability of Internal Clock Oscillator. Since power noise degrades the performance of Internal Clock Oscillator, placing power supply bypass capacitors 1 uF and 0.1 uF very close to VDD/VSS pins improves the stability of clock and the overall system.


Internal RC Mode

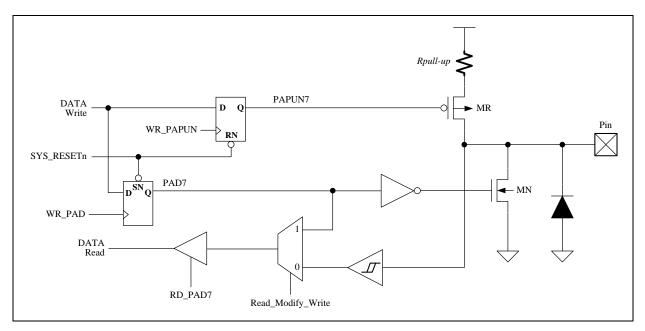


4. I/O Port

4.1 PA0-1


These pins can be used as Schmitt-trigger input, CMOS push-pull output or "pseudo-open-drain" output. The pull-up resistor is assignable to each pin by S/W setting. To use the pin in Schmitt-trigger input mode, S/W needs to set the PAE=0 and PAD=1. To use the pin in pseudo-open-drain mode, S/W sets the PAE=0.The benefit of pseudo-open-drain structure is that the output rise time can be much faster than pure open-drain structure. S/W sets PAE=1 to use the pin in CMOS push-pull output mode. Reading the pin data (PAD) has different meaning. In "Read-Modify-Write" instruction, CPU actually reads the output data register. In the others instructions, CPU reads the pin state. The so-called "Read-Modify-Write" instruction includes BSF, BCF and all instructions using F-Plane as destination.

4.2 PA2-4


These pins are almost the same as PA0-1, except they do not support pseudo-open-drain mode. They can be used in pure open-drain mode, instead.

4.3 PA7

PA7 can be used in Schmitt-trigger input or pure open-drain output. The pull-up resistor connected to this pin default, and can be disabled by S/W.

F05	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAD	PAD7	_	I			PAD		
R/W	R/W	_	_			R/W		
Reset	1	-	-	1	1	1	1	1

F05.7 **PAD7:** PA7 data or pin mode control 0: PA7 is open-drain output mode and output low 1: PA7 is Schmitt-trigger input mode

F05.4~0 **PAD:** PA4~PA0 data

0: output low

1: output high or Schmitt-trigger input mode

R05	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAE	_	I	Ι			PAE		
R/W	_	_	-	W				
Reset	_		Ι	0	0	0	0	0

R05.4~2 **PAE:** PA4~PA2 pin mode control 0: the pin is open-drain output or Schmitt-trigger input 1: the pin is CMOS push-pull output

R05.1~0 **PAE:** PA1~PA0 pin mode control 0: the pin is pseudo-open-drain output or Schmitt-trigger input 1: the pin is CMOS push-pull output

R08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAPUN	PAPUN7	_	_	PAPUN				
D/W	117			W				
R/W	W	—	—			vv		

R08.7 **PAPUN7:** PA7 pull-up resistor enable 0: enable 1: disable

R08.4~0 **PAPUN:** PA4~PA0 pull-up resistor enable 0: enable, except a: the pin's output data register (PAD) is 0 b: the pin's CMOS push-pull mode is chosen (PAE=1) 1: disable

R13	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAWKEN		_			PAW	KEN		
R/W	_	_	_		V	V		_
Reset	—	_		0	0	0	0	_

R13.4~1 PAWKEN: PA4~PA1 pin low level wakeup enable

0: disable

1: enable

R14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAIE	_	I	Ι			PAIE		
R/W	_	_	-			W		
Reset	_	_	_	1	1	1	1	1

R14.4~0 **PAIE**: PA4~0 input type select 0: analog input 1: digital input

DS-TM57PT16_PT16B_PA16_E

MEMORY MAP

F-Plane

Name	Address	R/W	Rst	Description	
(F00) INDF			_	Function related to: RAM W/R	
INDF	00.7~0	R/W	-	Not a physical register, addressing INDF actually point to the register whose address is contained in the FSR register	
(F01) TM0				Function related to: Timer0	
TM0	01.7~0	R/W	0	Timer0 content	
(F02) PCL				Function related to: Programming Counter	
PCL	02.7~0	R/W	0	Programming counter LSB[7:0]	
(F03) STATUS				Function related to: Status	
ТО	03.4	R	0	WDT time out flag	
PD	03.3	R	0	STOP mode flag	
Ζ	03.2	R/W	0	Zero flag	
DC	03.1	R/W	0	Decimal Carry flag or Decimal /Borrow flag	
С	03.0	R/W	0	Carry flag or /Borrow flag	
(F04) FSR					
FSR	04.6~0	R/W	-	File select register, indirect address mode pointer	
(F05) PAD				Function related to: Port A	
		R	-	PA7 pin or "data register" state	
PAD7	05.7	W	1	0: PA7 is open-drain output mode 1: PA7 is Schmitt-trigger input mode	
PAD	05.4~0	R	-	Port A pin or "data register" state	
PAD	05.4~0	W	1F	Port A output data register	
(F08) INTIE Function related to: Interrupt Enable			Function related to: Interrupt Enable		
ATKIE (PT16/PT16B only)	08.5	R/W	0	Auto touch key interrupt enable 0: disable 1: enable	
TMOIE	08.4	R/W	0	Timer0 interrupt enable 0: disable 1: enable	
WKTIE	08.3	R/W	0	Wakeup timer interrupt enable 0: disable 1: enable	
INT2IE	08.2	R/W	0	INT2 (PA7) falling interrupt enable 0: disable 1: enable	
INTOIE	08.0	R/W	0	INTO (PA0) falling/rising interrupt enable 0: disable 1: enable	

Name	Address	R/W	Rst	Description	
(F09) INTIF				Function related to: Interrupt Flag	
ATKIF	09.5	R	-	Auto touch key Interrupt event pending flag, set by H/W while auto touch key detected the key touched	
(PT16/PT16B only) 09	09.5	W	0	0: clear this flag 1: no action	
	00.4	R	-	Timer0 interrupt event pending flag, set by H/W while Timer0 overflows	
TMOIF	09.4	W	0	0: clear this flag 1: no action	
		R	-	WKT interrupt event pending flag, set by H/W while WKT is timeout	
WKTIF	09.3	W	0	0: clear this flag 1: no action	
INT2IF	09.2	R	-	INT2 (PA7) pin falling interrupt pending flag, set by H/W at INT2 pin's falling edge	
111 1 21F	09.2	W	0	0: clear this flag 1: no action	
INTOIF	09.0	R	-	INT0 (PA0) pin falling/rising interrupt pending flag, set by H/W at INT0 pin's falling/rising edge	
INTUIF	09.0	W	0	0: clear this flag 1: no action	
(F12) PWM0D				Function related to: PWM0	
PWM0D	12.7~0	R/W	0	PWM0 duty	
(F14) TKCTL (PT1	6/PT16B	only)		Function related to: Touch Key	
TKPD	14.7	R/W	1	Touch key power down 0: Touch key running 1: Touch key power down	
TKTMR (for TM57PT16)	14.6~4	R/W	4	Touch key conversion time select 000: Level 0 (shortest) 001: Level 1 010: Level 2 011: Level 3 100: Level 4 101: Level 5 110: Level 6 111: Level 7 (longest)	
TKTMR (for TM57PT16B)	14.6~5	R/W	2	Touch key conversion time select 00: Level 0 (shortest) 01: Level 2 10: Level 4 11: Level 6 (longest)	
TKCHS2 (for TM57PT16B)	14.4	R/W	0	 Touch key channel (bit 2) select 0: TK0~TK3 by TKCHS 1: if TKCHS=11B, Touch key channel select internal reference capacitor if TKCHS≠11B, Touch key channel is invalid 	
TKSOC	14.3	R/W	0	Touch key start of conversion, rising edge to start H/W auto cleared while end of conversion	
тксня	14.1~0	R/W	0	H/w auto cleared while end of conversion Touch key channel select 00: TK0 (PA1) 01: TK1 (PA0) 10: TK2 (PA2) 11: TK3 (PA4)	

Name	Address	R/W	Rst	Description
(F15) ATKCTL (P1	16/PT16	B only	·)	Function related to: Touch Key
TKAUTO	15.2	R/W	0	Touch key auto scan mode enable 0: disable H/W auto mode 1: enable H/W auto mode
TKSCNUM	15.1~0	R/W	3	Touch key auto scan channel number 00: only detect TK0 01: detect TK0 and TK1 10: detect TK0, TK1 and TK2 11: detect TK0~TK3
(F16) TKDT (PT16/	PT16B of	nly)		Function related to: Touch Key
ATKDT	16.7~4	R	0	Touch key auto scan result xxx1: TK0 has a touch event xx1x: TK1 has a touch event x1xx: TK2 has a touch event 1xxx: TK3 has a touch event
TKEOC	16.3	R	0	Touch key end of conversion 0: conversion is in process 1: end of conversion
TKOVF	16.2	R	0	Touch key counter overflow flag 0: not overflow 1: overflow
ТКДН	16.1~0	R	0	Touch key data MSB[9:8]
(F17) TKDL (PT16/PT16B only)			Function related to: Touch Key	
TKDL	17.7~0	R	0	Touch key data LSB[7:0]
(F18) ATKCMP0 (F	PT16/PT1	6B on	ly)	Function related to: Touch Key
ATKCMP0	18.7~0	R/W	40	Touch key auto scan TK0 compare data threshold LSB[7:0]
(F19) ATKCMP1 (F	PT16/PT1	6B on	ly)	Function related to: Touch Key
ATKCMP1	19.7~0		40	Touch key auto scan TK1 compare data threshold LSB[7:0]
(F1A) ATKCMP2 (nly)	Function related to: Touch Key
ATKCMP2	1A.7~0		40	Touch key auto scan TK2 compare data threshold LSB[7:0]
(F1B) ATKCMP3 (lly)	Function related to: Touch Key
ATKCMP3	1B.7~0	R/W	40	Touch key auto scan TK3 compare data threshold LSB[7:0]
	(F1C) ATKCMP10H (PT16/PT16B only)		only)	
ATKCMP1H	1C.6~4		0	Touch key auto scan TK1 compare data threshold MSB[10:8]
АТКСМР0Н	1C.2~0		0	Touch key auto scan TK0 compare data threshold MSB[10:8]
(F1D) ATKCMP32			only)	Function related to: Touch Key
АТКСМРЗН	1D.6~4	R/W	0	Touch key auto scan TK3 compare data threshold MSB[10:8]
ATKCMP2H	1D.2~0	R/W	0	Touch key auto scan TK2 compare data threshold MSB[10:8]
(F1E) ADH	(F1E) ADH Function related to: ADC			Function related to: ADC
ADCDH	1E.7~0	R	0	ADC output data MSB[9:2]

Name	Address	R/W	Rst	Description	
(F1F) ADCTL				Function related to: ADC	
ADCDL	1F.7~6	R	0	ADC output data LSB[1:0]	
ADCPSC	1F.5~4	R/W	0	ADC clock source prescaler. ADC clock source (Fsys) 00: divided by 2 01: divided by 4 10: divided by 8 11: divided by 16	
	F	R	-	H/W clear this bit after ADC end of conversion	
ADCST	1F.3	W	0	0: no action 1: start ADC conversion	
ADCHS	1F.2~0	R/W	0	ADC channel select 000: ADC0 (PA3) 001: ADC1 (PA1) 010: ADC2 (PA0) 011: ADC3 (PA2) 100: ADC4 (PA4)	
User Data Memor	ry				
SRAM	20~4F	R/W	_	Internal RAM	

R-Plane

Name	Address	R/W	Rst	Description	
(R02) TM0CTL				Function related to: Timer0	
TM0EDG	02.5	W	0	TM0CKI (PA2) edge selection for Timer0 prescaler count 0: TM0CKI (PA2) rising edge for Timer0 Prescaler count 1: TM0CKI (PA2) falling edge for Timer0 Prescaler count	
TM0CKS	02.4	W	0	Timer0 clock source select 0: Instruction Cycle as Timer0 Prescaler clock 1: TM0CKI as Timer0 Prescaler clock	
TM0PSC	02.3~0	W	0	Timer0 prescaler. Timer0 clock source 0000: divided by 1 0001: divided by 2 0010: divided by 4 0011: divided by 8 0100: divided by 16 0101: divided by 32 0110: divided by 44 0111: divided by 128 1xxx: divided by 256	
(R03) PWRDN				Function related to: Power Down	
PWRDN	03	W	-	Write this register to enter Power Down Mode	
(R04) WDTCLR				Function related to: WDT	
WDTCLR	04	W	-	Write this register to clear WDT/WKT	
(R05) PAE Function related to: Port A					
PAE	05.4~2	w	0	PA4~PA2 I/O mode control Each bit controls its corresponding pin, if the bit is 0: the pin is open-drain output or Schmitt-trigger input 1: the pin is CMOS push-pull output	
	05.1~0	W	0	PA1~PA0 I/O mode control Each bit controls its corresponding pin, if the bit is 0: the pin is pseudo-open-drain output or Schmitt-trigger input 1: the pin is CMOS push-pull output	
(R08) PAPUN	(R08) PAPUN Function related to: Port A				
PAPUN7	08.7	W	0	PA7 pull-up control, if the bit is 0: the pin pull-up resistor is enable 1: the pin pull-up resistor is disable	
PAPUN	08.4~0	W	1F	 PA4~PA0 pull-up control Each bit controls its corresponding pin, if the bit is 0: the pin pull-up resistor is enable, except a. the pin's output data register (PAD) is 0 b. the pin's CMOS push-pull mode is chosen (PAE=1) 1: the pin pull-up resistor is disable 	

Name	Address	R/W	Rst	Description	
(R0B) MR0B				Function related to: INT0 / TCOUT / WKT / WDT	
INT0EDG	0b.4	W	0	INT0 pin (PA0) edge interrupt event 0: INT0 (PA0) pin falling edge to trigger interrupt event 1: INT0 (PA0) pin rising edge to trigger interrupt event	
ТСОЕ	0b.3	W	0	Enable Instruction Cycle (Fsys/2) output to PA3 pin (TCOUT) 0: disable 1: enable	
WKTPSC	0b.1~0	W	3	WDT/WKT pre-scale option select 00: WDT/WKT period is 22 ms, @5V; 28 ms, @3V 01: WDT/WKT period is 44 ms, @5V; 56 ms, @3V 10: WDT/WKT period is 88 ms, @5V; 112 ms, @3V 11: WDT/WKT period is 176 ms, @5V; 224 ms, @3V	
(R10) PWM0PR	D			Function related to: PWM0	
PWM0PRD	10.7~0	W	FF	PWM0 period data	
(R11) PWMCTI				Function related to: PWM0	
PWM0E	11.2	w	0	PWM0 positive output to PA4 pin 0: disable 1: enable	
PWM0PSC	11.1~0	w	0	PWM0 prescaler, PWM0 clock source 00: divided by 1 01: divided by 2 10: divided by 4 11: divided by 8	
(R13) PAWKEN	1			Function related to: Port A / Wake up	
PAWKEN	13.4~1	w	0	PA4~PA1 individual pin low level wake up control Each bit controls its corresponding pin, if the bit is 0: disable 1: enable	
(R14) PAIE				Function related to: Port A / Touch Key / ADC	
PAIE	14.4~0	w	1F	PA input type selection Each bit controls its corresponding pin, if the bit is 0: analog input 1: digital input	

INSTRUCTION SET

Each instruction is a 14-bit word divided into an Op Code, which specifies the instruction type, and one or more operands, which further specify the operation of the instruction. The instructions can be categorized as byte-oriented, bit-oriented and literal operations list in the following table.

For byte-oriented instructions, "f" or "r" represents the address designator and "d" represents the destination designator. The address designator is used to specify which address in Program memory is used by the instruction. The destination designator specifies where the result of the operation is placed. If "d" is "0", the result is placed in the W register. If "d" is "1", the result is placed in the address specified in the instruction.

For bit-oriented instructions, "b" represents a bit field designator, which selects the number of the bit affected by the operation, while "f" represents the address designator. For literal operations, "k" represents the literal or constant value.

Field / Legend	Description			
f	F-Plane Register File Address			
r	R-Plane Register File Address			
b	Bit address			
k	Literal. Constant data or label			
d	Destination selection field. 0 : Working register 1 : Register file			
W	Working Register			
Z	Zero Flag			
С	Carry Flag			
DC	Decimal Carry Flag			
PC	Program Counter			
TOS	Top Of Stack			
GIE	Global Interrupt Enable Flag (i-Flag)			
[]	Option Field			
()	Contents			
	Bit Field			
В	Before			
А	After			
←	Assign direction			

Mnemoni	ic	Op Code	Cycle	Flag Affect	Description
		Byte-Orien	ted File R	egister Instru	ction
ADDWF	f,d	00 0111 dfff ffff	1	C,DC,Z	Add W and "f"
ANDWF	f,d	00 0101 dfff ffff	1	Z	AND W with "f"
CLRF	f	00 0001 1fff ffff	1	Z	Clear "f"
CLRW		00 0001 0100 0000	1	Z	Clear W
COMF	f,d	00 1001 dfff ffff	1	Z	Complement "f"
DECF	f,d	00 0011 dfff ffff	1	Z	Decrement "f"
DECFSZ	f,d	00 1011 dfff ffff	1 or 2	-	Decrement "f", skip if zero
INCF	f,d	00 1010 dfff ffff	1	Z	Increment "f"
INCFSZ	f,d	00 1111 dfff ffff	1 or 2	-	Increment "f", skip if zero
IORWF	f,d	00 0100 dfff ffff	1	Z	OR W with "f"
MOVFW	f	00 1000 0fff ffff	1	-	Move "f" to W
MOVWF	f	00 0000 1 fff ffff	1	-	Move W to "f"
MOVWR	r	00 0000 00rr rrrr	1	-	Move W to "r"
RLF	f,d	00 1101 dfff ffff	1	С	Rotate left "f" through carry
RRF	f,d	00 1100 dfff ffff	1	С	Rotate right "f" through carry
SUBWF	f,d	00 0010 dfff ffff	1	C,DC,Z	Subtract W from "f"
SWAPF	f,d	00 1110 dfff ffff	1	-	Swap nibbles in "f"
TESTZ	f	00 1000 1fff ffff	1	Z	Test if "f" is zero
XORWF	f,d	00 0110 dfff ffff	1	Z	XOR W with "f"
		Bit-Orient	ed File Re	egister Instruc	tion
BCF	f,b	01 000b bbff ffff	1	-	Clear "b" bit of "f"
BSF	f,b	01 001b bbff ffff	1	-	Set "b" bit of "f"
BTFSC	f,b	01 010b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if clear
BTFSS	f,b	01 011b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if set
		Literal	and Cont	rol Instruction	n
ADDLW	k	01 1100 kkkk kkkk	1	C,DC,Z	Add Literal "k" and W
ANDLW	k	01 1011 kkkk kkkk	1	Z	AND Literal "k" with W
CALL	k	10 kkkk kkkk kkkk	2	-	Call subroutine "k"
CLRWDT		00 0000 0000 0100	1	TO,PD	Clear Watch Dog Timer
GOTO	k	11 kkkk kkkk kkkk	2	-	Jump to branch "k"
IORLW	k	01 1010 kkkk kkkk	1	Z	OR Literal "k" with W
MOVLW	k	01 1001 kkkk kkkk	1	-	Move Literal "k" to W
NOP		00 0000 0000 0000	1	-	No operation
<u>RET</u>		00 0000 0100 0000	2	-	Return from subroutine
RETI		00 0000 0110 0000	2	-	Return from interrupt
RETLW	k	01 1000 kkkk kkkk	2	-	Return with Literal in W
<u>SLEEP</u>		00 0000 0000 0011	1	TO,PD	Go into STOP mode, Clock oscillation stops
XORLW	k	01 1111 kkkk kkkk	1	Z	XOR Literal "k" with W

ADDLW	Add Literal "k" and W	
Syntax	ADDLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) + k$	
Status Affected	C, DC, Z	
OP-Code	01 1100 kkkk kkkk	
Description	The contents of the W register	are added to the eight-bit literal 'k' and the result is
	placed in the W register.	
Cycle	1	
Example	ADDLW 0x15	$\mathbf{B}:\mathbf{W}=0\mathbf{x}10$
		A: W = 0x25

ADDWF	Add W and "f"	
Syntax	ADDWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	$(destination) \leftarrow (W) + (f)$	
Status Affected	C, DC, Z	
OP-Code	00 0111 dfff ffff	
Description	Add the contents of the W	/ register with register 'f'. If 'd' is 0, the result is stored in
•	the W register. If 'd' is 1, t	the result is stored back in register 'f'.
Cycle	1	-
Example	ADDWF FSR, 0	B: W = 0x17, FSR = 0xC2
-		A: W = 0xD9, FSR = 0xC2

ANDLW	Logical AND Litera	l ''k'' with W
Syntax	ANDLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) AND k$	
Status Affected	Z	
OP-Code	01 1011 kkkk kkkk	
Description	The contents of W register placed in the W register.	er are AND'ed with the eight-bit literal 'k'. The result is
Cycle	1	
Example	ANDLW 0x5F	$\mathbf{B}: \mathbf{W} = 0\mathbf{x}\mathbf{A}3$
-		$\mathbf{A}:\mathbf{W}=0\mathbf{x}03$

ANDWF	AND W with "f"	
Syntax	ANDWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (W) ANI	D (f)
Status Affected	Z	
OP-Code	00 0101 dfff ffff	
Description	AND the W register wi	th register 'f'. If 'd' is 0, the result is stored in the W
-	register. If 'd' is 1, the res	ult is stored back in register 'f'.
Cycle	1	
Example	ANDWF FSR, 1	B: W = 0x17, FSR = 0xC2
-		A: W = 0x17, FSR = 0x02

Clear "b" bit of "f"	
BCF f [,b]	
f : 00h ~ 3Fh, b : 0 ~ 7	
$(f.b) \leftarrow 0$	
-	
01 000b bbff ffff	
Bit 'b' in register 'f' is cleared.	
1	
BCF FLAG_REG, 7	$B : FLAG_REG = 0xC7$
	$A: FLAG_REG = 0x47$
	BCF f [,b] f: 00h ~ 3Fh, b: 0 ~ 7 (f.b) \leftarrow 0 - 01 000b bbff ffff Bit 'b' in register 'f' is cleared. 1

BSF	Set "b" bit of "f"		
Syntax	BSF f[,b]		
Operands	f : 00h ~ 3Fh, b : 0 ~ 7		
Operation	$(f.b) \leftarrow 1$		
Status Affected	-		
OP-Code	01 001b bbff ffff		
Description	Bit 'b' in register 'f' is set.		
Cycle	1		
Example	BSF FLAG_REG, 7	$B : FLAG_REG = 0x0A$ $A : FLAG_REG = 0x8A$	

Test "b" bit of "f", skip if clear(0)	
BTFSC f [,b]	
f : 00h ~ 3Fh, b : 0 ~ 7	
Skip next instruction if $(f.b) = 0$	
-	
01 010b bbff ffff	
If bit 'b' in register 'f' is 1, then the next instruction is executed. If bit 'b' in register	
'f' is 0, then the next instruction is discarded, and a NOP is executed instead,	
making this a 2nd cycle instruction.	
1 or 2	
LABEL1 BTFSC FLAG, 1 $B: PC = LABEL1$	
TRUE GOTO SUB1 $A: if FLAG.1 = 0, PC = FALSE$	
FALSE if $FLAG.1 = 1$, $PC = TRUE$	

BTFSS	Test "b" bit of "f", skip	if set(1)
Syntax	BTFSS f [,b]	
Operands	f : 00h ~ 3Fh, b : 0 ~ 7	
Operation	Skip next instruction if $(f.b) = 1$	
Status Affected	-	
OP-Code	01 011b bbff ffff	
Description	If bit 'b' in register 'f' is 0, then the next instruction is executed. If bit 'b' in register	
-	'f' is 1, then the next instruction is discarded, and a NOP is executed instead,	
	making this a 2nd cycle instruction.	
Cycle	1 or 2	
Example	LABEL1 BTFSS FLAG, 1	B : PC = LABEL1
	TRUE GOTO SUB1	A : if $FLAG.1 = 0$, $PC = TRUE$
	FALSE	if $FLAG.1 = 1$, $PC = FALSE$

CALL	Call subroutine "k"
Syntax	CALL k
Operands	k : 000h ~ FFFh
Operation	Operation: TOS \leftarrow (PC) + 1, PC.11 \sim 0 \leftarrow k
Status Affected	-
OP-Code	10 kkkk kkkk
Description	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The 12-bit immediate address is loaded into PC bits <11:0>. CALL is a two-cycle instruction.
Cycle	2
Example	LABEL1 CALL SUB1 B : PC = LABEL1 A : PC = SUB1, TOS = LABEL1 + 1

CLRF	Clear "f"	
Syntax	CLRF f	
Operands	f : 00h ~ 7Fh	
Operation	(f) \leftarrow 00h, Z \leftarrow 1	
Status Affected	Z	
OP-Code	00 0001 1fff ffff	
Description	The contents of register 'f' are cleared and the Z bit is set.	
Cycle	1	
Example	CLRF FLAG_REG	$B : FLAG_REG = 0x5A$
		A : FLAG_REG = $0x00$, Z = 1

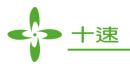
CLRW	Clear W	
Syntax	CLRW	
Operands	-	
Operation	$(W) \leftarrow 00h, Z \leftarrow 1$	
Status Affected	Z	
OP-Code	00 0001 0100 0000	
Description	W register is cleared a	and Z bit is set.
Cycle	1	
Example	CLRW	B: W = 0x5A
-		A: W = 0x00, Z = 1

CLRWDT	Clear Watchdog	Гimer
Syntax	CLRWDT	
Operands	-	
Operation	WDT/WKT Timer $\leftarrow 00h$	
Status Affected	TO, PD	
OP-Code	00 0000 0000 0100	
Description	CLRWDT instruction clears the Watchdog/Wakeup Timer	
Cycle	1	
Example	CLRWDT	B: WDT counter = ?
1.		A : WDT counter = $0x00$

COMF	Complement "f"	
Syntax	COMF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (\overline{f})	
Status Affected	Ž	
OP-Code	00 1001 dfff ffff	
Description	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W.	
	If 'd' is 1, the result is stored back in register 'f'.	
Cycle	1	-
Example	COMF REG1, 0	B: REG1 = 0x13
		A: REG1 = 0x13, W = 0xEC

DECF	Decrement "f"		
Syntax	DECF f [,d]		
Operands	f : 00h ~ 7Fh, d : 0, 1		
Operation	$(destination) \leftarrow (f) - 1$	(destination) \leftarrow (f) - 1	
Status Affected	Z		
OP-Code	00 0011 dfff ffff		
Description	Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.		
Cycle	1		
Example	DECF CNT, 1	B : CNT = $0x01$, Z = 0	
-		A : CNT = 0x00, Z = 1	

DECFSZ	Decrement "f", Skip if 0
Syntax	DECFSZ f [,d]
Operands	f : 00h ~ 7Fh, d : 0, 1
Operation	(destination) \leftarrow (f) - 1, skip next instruction if result is 0
Status Affected	-
OP-Code	00 1011 dfff ffff
Description	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, then a NOP is executed instead, making it a 2 cycle instruction.
Cycle	1 or 2
Example	LABEL1 DECFSZ CNT, 1 $B: PC = LABEL1$
	GOTO LOOP CONTINUE $A : CNT = CNT - 1$ if $CNT = 0$, $PC = CONTINUE$ if $CNT \neq 0$, $PC = LABEL1 + 1$


GOTO	Unconditional Branch	
Syntax	GOTO k	
Operands	k : 000h ~ FFFh	
Operation	PC.11~0 \leftarrow k	
Status Affected	-	
OP-Code	11 kkkk kkkk	
Description	GOTO is an unconditional branch. The 12-bit immediate value is loaded into PC	
-	bits <11:0>. GOTO is a two-cycle instruction.	
Cycle	2	-
Example	LABEL1 GOTO SUB1	B : PC = LABEL1
-		A : PC = SUB1

INCF	Increment "f"	
Syntax	INCF f [,d]	
Operands	f : 00h ~ 7Fh	
Operation	$(destination) \leftarrow (f) + 1$	
Status Affected	Z	
OP-Code	00 1010 dfff ffff	
Description	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the V register. If 'd' is 1, the result is placed back in register 'f'.	V
Cycle	1	
Example	INCF CNT, 1 $B: CNT = 0xFF, Z = 0$	
-	A : $CNT = 0x00, Z = 1$	
INCFSZ	Increment ''f'', Skip if 0	
		_
Syntax	INCFSZ f [,d]	
Operands	f: 00h ~ 7Fh, d: 0, 1	
Operation	(destination) \leftarrow (f) + 1, skip next instruction if result is 0	
Status Affected	-	
OP-Code	00 1111 dfff ffff	
Description	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the V register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead, making it a cycle instruction.	t
Cycle	1 or 2	
Example	LABEL1INCFSZCNT, 1 GOTO $B : PC = LABEL1$ $A : CNT = CNT + 1$ if $CNT = 0$, $PC = CONTINUE$ CONTINUEif $CNT = 0$, $PC = CONTINUE$ if $CNT \neq 0$, $PC = LABEL1 + 1$	

IORLW	Inclusive OR Liter	al with W
Syntax	IORLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) OR k$	
Status Affected	Z	
OP-Code	01 1010 kkkk kkkk	
Description	The contents of the W r placed in the W register	register are OR'ed with the eight-bit literal 'k'. The result is
Cycle	1	
Example	IORLW 0x35	B: W = 0x9A A: W = 0xBF, Z = 0

IORWF	Inclusive OR W with	"f"
Syntax	IORWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (W) OR k	
Status Affected	Z	
OP-Code	00 0100 dfff ffff	
Description	Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the	
I	6	ult is placed back in register 'f'.
Cycle	1	1 0
Example	IORWF RESULT, 0	B : RESULT = $0x13$, W = $0x91$
1		A : RESULT = $0x13$, W = $0x93$, Z = 0

MOVFW	Move "f" to W	
Syntax	MOVFW f	
Operands	f : 00h ~ 7Fh	
Operation	$(W) \leftarrow (f)$	
Status Affected	-	
OP-Code	00 1000 Offf ffff	
Description	The contents of register 'f' are moved to W register.	
Cycle	1	-
Example	MOVFW FSR	B : FSR = 0xC2, W = ?
-		A: FSR = 0xC2, W = 0xC2

MOVLW	Move Literal to W	
Syntax	MOVLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow k$	
Status Affected	-	
OP-Code	01 1001 kkkk kkkk	
Description	The eight-bit literal 'k' is 0's.	s loaded into W register. The don't cares will assemble as
Cycle	1	
Example	MOVLW 0x5A	$\mathbf{B}:\mathbf{W}=?$
		A: W = 0x5A

MOVWF	Move W to "f"	
Syntax	MOVWF f	
Operands	f : 00h ~ 7Fh	
Operation	$(f) \leftarrow (W)$	
Status Affected	-	
OP-Code	00 0000 1fff ffff	
Description	Move data from W register to register 'f'.	
Cycle	1	
Example	MOVWF REG1	B: REG1 = 0xFF, W = 0x4F
-		A: REG1 = 0x4F, W = 0x4F

MOVWR	Move W to "r"	
Syntax	MOVWR r	
Operands	r : 00h ~ 3Fh	
Operation	$(r) \leftarrow (W)$	
Status Affected	-	
OP-Code	00 0000 00rr rrrr	
Description	Move data from W registe	r to register 'r'.
Cycle	1	-
Example	MOVWR REG1	B : REG1 = 0xFF, W = 0x4F A : REG1 = 0x4F, W = 0x4F

NOP	No Operation		
Syntax	NOP		
Operands	-		
Operation	No Operation		
Status Affected	-		
OP-Code	00 0000 0000		
Description	No Operation		
Cycle	1		
Example	NOP -		
RET	Return from Subroutine		
Syntax	RET		
Operands			
Operation	$PC \leftarrow TOS$		
Status Affected	16 ~ 105		
	-		
OP-Code	00 0000 0100 0000 Determ from submitting. The stack is DODed and the tag of the stack (TOS) is		
Description	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.		
Cycle	2		
Example	RET $A : PC = TOS$		
RETI	Return from Interrupt		
Syntax	RETI		
Operands	-		
Operation	$PC \leftarrow TOS, GIE \leftarrow 1$		
Status Affected	-		
OP-Code	- 00 0000 0110 0000		
Description	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the PC. Interrupts are enabled. This is a two-cycle instruction.		
Cycle	2		
Example	RETI $A : PC = TOS, GIE = 1$		
RETLW	Return with Literal in W		
Syntax	RETLW k		
Operands	k: 00h ~ FFh		
Operation	$PC \leftarrow TOS, (W) \leftarrow k$		
Status Affected	-		
OP-Code	01 1000 kkkk kkkk		
Description	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction		
Coult	instruction.		
Cycle	$2 \qquad \qquad \mathbf{P} \cdot \mathbf{W} = 0.07$		
Example	CALL TABLE $B: W = 0x07$		
	A: W = value of k8		
	TABLE ADDWF PCL, 1		
	RETLW k1		
	RETLW k2		
	: RETLW kn		
	ALILW KI		

RLF	Rotate Left "f" throu	igh Carry
Syntax	RLF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	C Reg	gister f
Status Affected	C	
OP-Code	00 1101 dfff ffff	
Description	e	are rotated one bit to the left through the Carry Flag. If in the W register. If 'd' is 1, the result is stored back in
Cycle	1	
Example	RLF REG1, 0	B : REG1 = 1110 0110, C = 0
		A : REG1 = 1110 0110
		$W = 1100 \ 1100, C = 1$

RRF	Rotate Right "f" through Carry
Syntax	RRF f [,d]
Operands	f : 00h ~ 7Fh, d : 0, 1
Operation	C Register f
Status Affected	С
OP-Code	00 1100 dfff ffff
Description	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.
Cycle	1
Example	RRF REG1, 0 B : REG1 = 1110 0110, C = 0
-	A : REG1 = 1110 0110
	$W = 0111\ 0011, C = 0$

SLEEP	Go into standby mode, Clock oscillation stops
Syntax	SLEEP
Operands	-
Operation	-
Status Affected	TO, PD
OP-Code	00 0000 0000 0011
Description	Go into STOP mode with the oscillator stops.
Cycle	1
Example	SLEEP -

SUBWF	Subtract W from "f"	
Syntax	SUBWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	$(destination) \leftarrow (f) - (W)$	
Status Affected	C, DC, Z	
OP-Code	00 0010 dfff ffff	
Description	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result	
	is stored in the W register. I	f 'd' is 1, the result is stored back in register 'f'.
Cycle	1	
Example	SUBWF REG1, 1	B : REG1 = $0x03$, W = $0x02$, C = ?, Z = ?
		A : REG1 = $0x01$, W = $0x02$, C = 1, Z = 0
	SUDWE DEC1 1	$\mathbf{D} \cdot \mathbf{D} = \mathbf{C} + $
	SUBWF REG1, 1	B : REG1 = $0x02$, W = $0x02$, C = $?$, Z = $?$
		A : REG1 = $0x00$, W = $0x02$, C = 1, Z = 1
	SUBWF REG1, 1	B : REG1 = $0x01$, W = $0x02$, C = ?, Z = ?
		A : REG1 = 0xFF, W = 0x02, C = 0, Z = 0

SWAPF	Swap Nibbles in ''f'	•
Syntax	SWAPF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination, $7 \sim 4$) \leftarrow (f. $3 \sim$	-0), (destination.3~0) \leftarrow (f.7~4)
Status Affected	-	
OP-Code	00 1110 dfff ffff	
Description		bles of register 'f' are exchanged. If 'd' is 0, the result is ' is 1, the result is placed in register 'f'.
Cycle	1	
Example	SWAPF REG, 0	B : REG1 = 0xA5 A : REG1 = 0xA5, W = 0x5A

TESTZ	Test if "f" is zero	
Syntax	TESTZ f	
Operands	f : 00h ~ 7Fh	
Operation	Set Z flag if (f) is 0	
Status Affected	Z	
OP-Code	00 1000 1fff ffff	
Description	If the content of register 'f' is	s 0, Zero flag is set to 1.
Cycle	1	
Example	TESTZ REG1	B : REG1 = 0, Z = ?
		A : $REG1 = 0, Z = 1$

XORLW	Exclusive OR Litera	l with W
Syntax	XORLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) XOR k$	
Status Affected	Z	
OP-Code	01 1111 kkkk kkkk	
Description	The contents of the W register is placed in the W register	gister are XOR'ed with the eight-bit literal 'k'. The result
Cycle	1	
Example	XORLW 0xAF	$\mathbf{B}: \mathbf{W} = 0\mathbf{x}\mathbf{B}5$
-		A: W = 0x1A

XORWF	Exclusive OR W wit	h ''f''
Syntax	XORWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (W) XOR	L (f)
Status Affected	Z	
OP-Code	00 0110 dfff ffff	
Description		s of the W register with register 'f'. If 'd' is 0, the result is f 'd' is 1, the result is stored back in register 'f'.
Cycle	1	
Example	XORWF REG, 1	B : REG = $0xAF$, W = $0xB5$ A : REG = $0x1A$, W = $0xB5$

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings $(T_A = 25 \degree C)$

Parameter	Rating	Unit
Supply voltage	V_{SS} - 0.3 to V_{SS} + 6.5	
Input voltage	V_{SS} - 0.3 to $V_{DD}+0.3$	V
Output voltage	V_{SS} - 0.3 to V_{DD} + 0.3	
Output current high per 1 PIN	- 25	
Output current high per all PIN	- 80	
Output current low per 1 PIN	+ 30	— mA
Output current low per all PIN	+ 150	
Maximum operating voltage	5.5	V
Operating temperature	- 40 to + 85	°C
Storage temperature	- 65 to + 150	°C

Parameter	Sym		Min	Тур	Max	Unit	
On anotin a Walters	V	25°C	, Fsys = 8 MHz	2.3	_	5.5	V
Operating Voltage	V_{DD}	$25 ^{\circ}$ C, Fsys = 4 MHz		1.9	_	5.5	V
		All Input,	$V_{DD} = 5V$	$0.7 V_{DD}$	_	_	V
Input High	V	except PA7	$V_{DD} = 3V$	0.7 V _{DD}	_	_	V
Voltage	V_{IH}	D 4 7	$V_{DD} = 5V$	0.8 V _{DD}	_	_	V
		PA7	$V_{DD} = 3V$	$0.8 V_{DD}$	_	-	V
Innut I ou Voltogo	V	All Input	$V_{DD} = 5V$	-	_	$0.2 V_{\text{DD}}$	V
Input Low Voltage	V_{IL}	All Input	$V_{DD} = 3V$	-	_	$0.2 V_{\text{DD}}$	V
			$V_{DD} = 5V,$	4	8	_	
I/O Port Source Current	I _{OH}	All Output	$\frac{V_{OH} = 0.9 V_{DD}}{V_{DD} = 3V,}$		0		mA
Current			$v_{DD} = 3v,$ $V_{OH} = 0.9 V_{DD}$	1.5	3	_	
			$V_{DD} = 5V,$	10	20		
I/O Port Sink	I _{OL}	All Output	$V_{OL} = 0.1 V_{DD}$	10	20	_	mA
Current	TOL	The output	$V_{DD} = 3V,$	5	10	-	
Input Leakage			$V_{OL} = 0.1 V_{DD}$				
Current (pin high)	I_{ILH}	All Input	$V_{\rm IN} = V_{\rm DD}$	-	_	1	μA
Input Leakage Current (pin low)	I _{ILL}	All Input	$V_{IN} = 0V$	-	_	-1	μΑ
		Run 8 MHz,	$V_{DD} = 5V$		1.8		
		LVR enable	$V_{DD} = 3V$	_	0.8	_	mA
		Run 4 MHz,	$V_{DD} = 5V$		1.4		ШA
Power Supply	т	LVR enable	$V_{DD} = 3V$		0.6		
Current	I _{DD}	Stop mode,	$V_{DD} = 5V$		1.8		
		LVR enable	$V_{DD} = 3V$		0.5		
		Stop mode,	$V_{DD} = 5V$			0.1	μA
		LVR disable	$V_{DD} = 3V$	_	_	0.1	
System Clock	F		$V_{DD} = 3.1 V$	_	_	8	NUT
Frequency	Fsys	$V_{DD} > LVR_{th}$	$V_{DD} = 2.2V$	_	_	4	MH
LVR Reference	V		T 25%C	_	2.2	_	V
Voltage	V_{LVR}		$T_A = 25 ^{\circ}C$	_	3.1	_	V
LVR Hysteresis Voltage	V _{HYST}		$T_A = 25 \degree C$	-	± 0.1	_	v
Low Voltage Detection time	t _{LVR}	$T_A = 25 ^{\circ}C$		100	_	_	μs
		$V_{IN} = 0 V$	$V_{DD} = 5V$		68		
	_	Port A	$V_{DD} = 3V$		133	1 –	KΩ
Pull-Up Resistor	R _P	$V_{IN} = 0 V$	$V_{DD} = 5V$		60		
		PA7	$V_{DD} = 3V$	-	133	-	KΩ

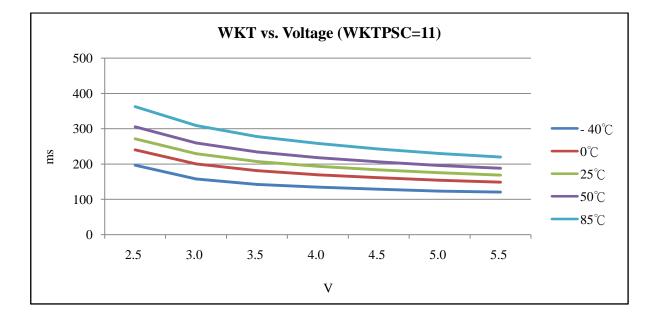
2. DC Characteristics ($T_A = 25$ °C, $V_{DD} = 1.9$ V to 5.5V)

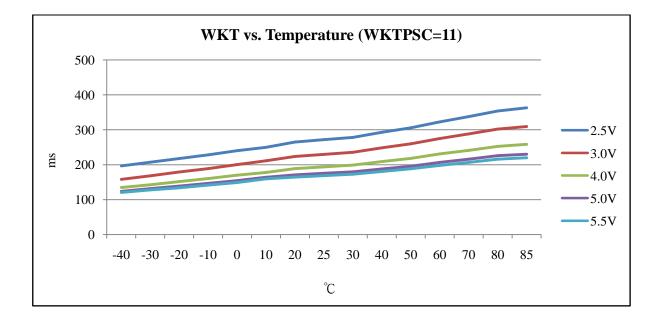
3. Clock Timing $(T_A = -40 \degree C \text{ to } +85 \degree C)$

Parameter	Condition	Min	Тур	Max	Unit
Internal RC Frequency	25° C, $V_{DD} = 3.0 \sim 5.5$ V	3.88	4	4.12	
	25° C, $V_{DD} = 2.6 \sim 3.0$ V	3.8	4	4.2	MHz
	-40° C ~ 85°C, V _{DD} = 2.6 ~ 5.5V	3.72	4	4.28	

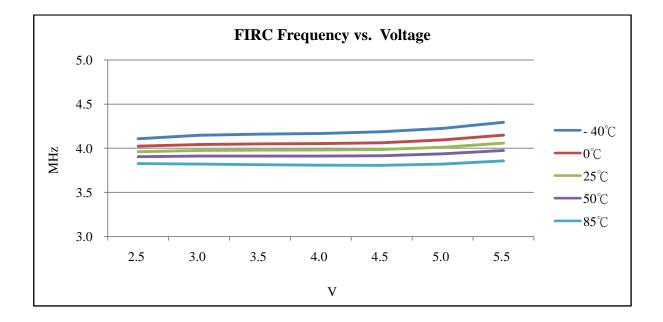
Note: The IRC frequency is trimmed in wafer type. After packaging or COB, the frequency will deviation range is about 10~20%.

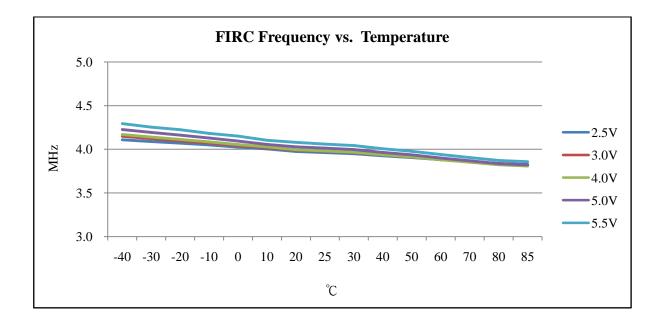
4. Reset Timing Characteristics ($T_A = -40$ °C to +85 °C)

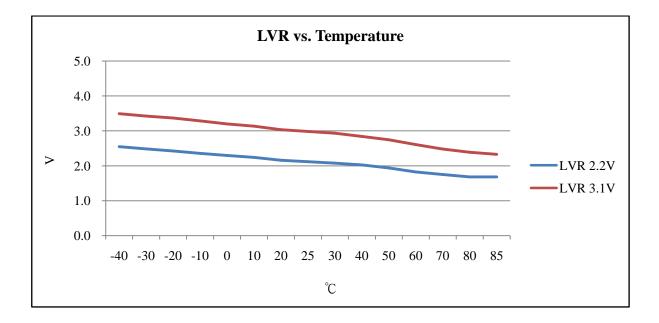

Parameter	Conditions	Min	Тур	Max	Unit
RESET Input Low width	Input $V_{DD} = 5V \pm 10 \%$	3	_	_	μs
WDT welcoup time	$V_{DD} = 5V, WKTPSC = 11$	-	176	_	
WDT wakeup time	$V_{DD} = 3V, WKTPSC = 11$	_	224	_	ms
CDU start un time	$V_{DD} = 5V$	-	22.5	_	
CPU start up time	$V_{DD} = 3V$	_	30.5	_	ms

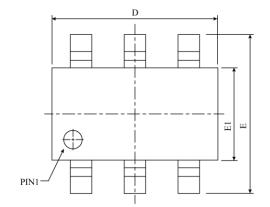

5. ADC Electrical Characteristics $(T_A = 25^{\circ}C)$

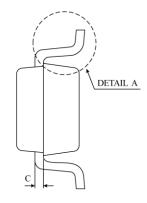
Parameter	Conditions	Min	Тур	Max	Unit
Total Accuracy	$\mathbf{Y} = 5\mathbf{Y} \cdot \mathbf{Y} = 0\mathbf{Y}$	-	±2.5	<u>±</u> 5	LSB
Internal Nob-Linearity	$V_{DD} = 5V, V_{SS} = 0V$	_	±3.2	<u>±</u> 6	LSD
Max Input Clock (f _{ADC})	_	_	-	2	MHz
Conversion Time	$f_{ADC (max)} = 2 \text{ MHz}$	_	25	_	μs
Input Voltage	_	V _{SS}	_	V _{DD}	V

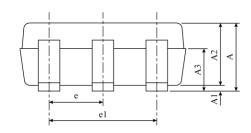


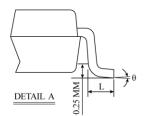

6. Characteristic Graphs



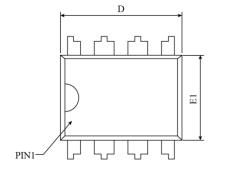

ORDERING INFORMATION

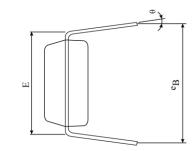

The ordering information:

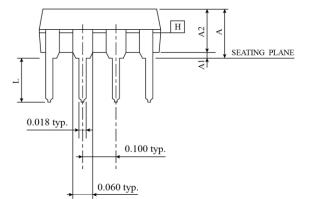

Ordering number	Package
TM57PT16-OTP	Wafer / Dice blank chip
TM57PT16-COD	Wafer / Dice with code
TM57PT16AS-OTP-A8	SOT23-6
TM57PT16-OTP-01	DIP-8 (300mil)
TM57PT16-OTP-14	SOP-8 (150mil)
TM57PT16-OTP-52	MSOP-8 (118mil)
TM57PT16B-OTP	Wafer / Dice blank chip
TM57PT16B-COD	Wafer / Dice with code
TM57PT16BS-OTP-A8	SOT23-6
TM57PT16B-OTP-01	DIP-8 (300mil)
TM57PT16B-OTP-14	SOP-8 (150mil)
TM57PT16B-OTP-52	MSOP-8 (118mil)
TM57PA16-OTP	Wafer / Dice blank chip
TM57PA16-COD	Wafer / Dice with code
TM57PA16AS-OTP-A8	SOT23-6
TM57PA16-OTP-01	DIP-8 (300mil)
TM57PA16-OTP-14	SOP-8 (150mil)
TM57PA16-OTP-52	MSOP-8 (118mil)



SOT23-6 Package Dimension




CVA (DOL	DI	MENSION IN M	ſM	DIMENSION IN INCH		
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
А	-	-	1.45	-	-	0.057
A1	0	0.08	0.15	0	0.003	0.006
A2	0.90	1.10	1.30	0.035	0.043	0.051
A3	0.60	0.65	0.70	0.024	0.026	0.028
с	0.12	0.16	0.19	0.005	0.006	0.007
D	2.82	2.92	3.02	0.111	0.115	0.119
Е	2.70	2.90	3.10	0.106	0.114	0.122
E1	1.52	1.62	1.72	0.060	0.064	0.068
e	0.85	0.95	1.05	0.033	0.037	0.041
e1	1.80	1.90	2.00	0.071	0.075	0.079
L	0.35	0.48	0.60	0.014	0.019	0.024
θ	0°	4°	8°	0°	4°	8°
JEDEC		M0-178 (AB)				


* NOTES : ALL DIMENSIONS REFER TO JEDEC STANDARD MO-178 AB DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

DIP-8 (300mil) Package Dimension

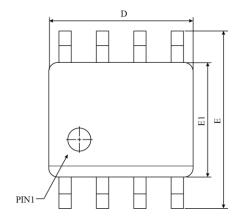
SYMDOL	DIMENSIO	N IN MM	DIMENSION IN INCH		
SYMBOL	MIN	MAX	MIN	MAX	
А	-	5.334	-	0.210	
A1	0.381	-	0.015	-	
A2	3.175	3.429	0.125	0.135	
D	9.017	10.160	0.355	0.400	
Е	7.620 BSC		0.300 BSC		
E1	6.223	6.477	0.245	0.255	
L	2.921	3.810	0.115	0.150	
eB	8.509	9.525	0.335	0.375	
θ	0°	15°	0°	15°	
JEDEC	MS-001 (BA)				

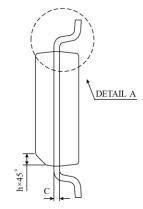
NOTES :

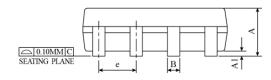
1. $\mathbf{\tilde{D}''}$, $\mathbf{\tilde{E}1''}$ dimensions do not include mold flash or protrusions. Mold flash or

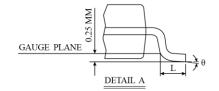
PROTRUSIONS SHALL NOTEXCEED .010 INCH.

2. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.

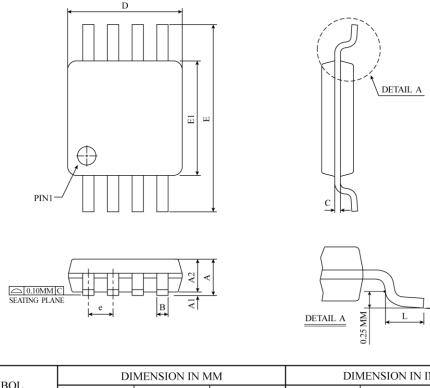

3. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.


4. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.


5. DATUM PLANE I COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.



SOP-8 (150mil) Package Dimension



SYMBOL	DIMENSIO	N IN MM	DIMENSION IN INCH				
	MIN	MAX	MIN	MAX			
А	1.35	1.75	0.0532	0.0688			
A1	0.10	0.25	0.004	0.0098			
В	0.33	0.51	0.013	0.020			
С	0.19	0.25	0.0075	0.0098			
D	4.80	5.00	0.1890	0.1988			
Е	5.80	6.20	0.2284	0.2440			
E1	3.80	4.00	0.1497	0.1574			
e	1.27	BSC	0.050 BSC				
h	0.25	0.50	0.0099	0.0196			
L	0.40	1.27	0.016	0.050			
θ	0°	8°	0°	8°			
JEDEC	MS-012 (AA)						

* NOTES : DIMENSION " D " DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

MSOP-8 (118mil) Package Dimension

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH		
	MIN	NOM	MAX	MIN	NOM	MAX
А	0.81	0.96	1.10	0.032	0.038	0.043
Al	0.05	0.10	0.15	0.002	0.004	0.006
A2	0.76	0.86	0.95	0.030	0.034	0.037
В	0.28	0.33	0.38	0.011	0.013	0.015
С	0.13	0.18	0.23	0.005	0.007	0.009
D	2.90	3.00	3.10	0.114	0.118	0.122
Е	4.75	4.90	5.05	0.187	0.193	0.199
E1	2.90	3.00	3.10	0.114	0.118	0.122
e	0.65 BSC			0.026 BSC		
L	0.40	0.55	0.70	0.016	0.022	0.028
θ	0°	3°	6°	0°	3°	6°
JEDEC						

* NOTES : DIMENSION "D" DOES NOT INCLUDE MOLD PROTRUSIONS OR GATE BURRS.

MOLD PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE. DIMENSION "E1 " DOES NOT INCLUDE MOLD PROTRUSIONS

MOLD PROTRUSIONS SHALL NOT EXCEED 0.25 MM (0.010 INCH) PER SIDE.