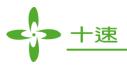


tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. **tenx** does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. **tenx** products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses tenx products for any such unintended or unauthorized application, Buyer shall indemnify and hold tenx and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that tenx was negligent regarding the design or manufacture of the part.

AMENDMENT HISTORY

Version	Date	Description			
V1.0	Dec, 2010	New release			
V1.1	Feb, 2011	Add Pin Assignment figure before Pin Description section.			
		Modify the LVR when the Fosc is 8 MHz.			
V1.2	Aug, 2011	Add description for LVR settings in Features Section.			
		Add figure in External Reset Circuits.			
V1.3	Dec. 2011	Add Ordering Information table in the Packaging Information			
v1.5	Dec, 2011	section.			
		1. Add the Electrical Characteristics specs in the Features section.			
V1.4	Jan, 2012	2. Add description in Reset section.			
v 1.4	Jan, 2012	3. Merge the information about LVR Circuit Characteristics into			
		DC Characteristics table.			
V1.5	Jul, 2012	Modify document format.			
V1.6	Apr 2012	1. Modify Block Diagram.			
v 1.0	Apr, 2013	2. Modify PA0-1 figure.			
V1.7	Jul 2012	1. Add supported EV board on ICE.			
V 1./	Jul, 2013	2. Add Pin Summary.			


CONTENTS

AMENDMENT HISTORY	
CONTENTS	3
FEATURES	5
BLOCK DIAGRAM	7
PIN ASSIGNMENT	8
PIN DESCRIPTION	8
PIN SUMMARY	9
FUNCTIONAL DESCRIPTION	10
1. CPU Core	10
 1.1 Clock Scheme and Instruction Cycle 1.2 Addressing Mode 1.3 Programming Counter (PC) and Stack	11 11 12 12
2. Chip Operation Mode	14
 2.1 Reset 2.2 External Reset Circuit 2.3 System Configuration Register (SYSCFG)	15 16 17
3. Peripheral Functional Block	18
 3.1 Watchdog (WDT) / Wakeup (WKT) Timer	20
4. I/O Port	22
 4.1 PA0-1 4.2 PA2-4 4.3 PA7 	23
MEMORY MAP	25
F-Plane	25
R-Plane	
INSTRUCTION SET	27
ELECTRICAL CHARACTERISTICS	39

1. Absolute Maximum Ratings	
2. DC Characteristics	
3. Clock Timing	41
4. Reset Timing Characteristics	41
5. Characteristic Graphs	
ORDERING INFORMATION	44

FEATURES

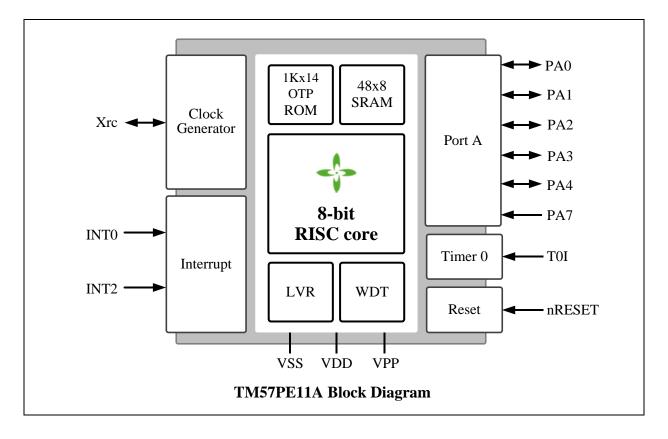

- **1.** ROM: 1K x 14 bits OTP or 512 x 14 bits TTP[™] (Two Time Programmable ROM)
- **2.** RAM: 48 x 8 bits
- 3. STACK: 5 Levels
- 4. I/O port: One Bit programmable I/O port (Max. 6 pins)
- 5. Timer/Counter: One 8-bit timer/counter with divided by 1~256 pre-scale option
- 6. Watchdog Timer
 - Clocked by built-in RC oscillator with 4 adjustable Reset/Interrupt Time (103 ms/52 ms/26 ms/13 ms, @5V; 131 ms/66 ms/33 ms/16 ms, @3V)
 - Watchdog timer can be disabled/enabled in STOP mode
- 7. Reset
 - Power On Reset
 - Watchdog Reset
 - Low Voltage Reset
 - External pin Reset
- 8. System Clock Mode
 - Internal RC: 4/8 MHz. When the IRC is 8 MHz, the LVR can only be set to 2.9V (cannot use 2V).
 - External RC
- 9. 2-Level Low Voltage Reset: 2.0V/2.9V (Can be disabled)

LVR Freq	2.0V	2.9V	Disable
4 MHz	M	M	$\mathbf{\nabla}$
8 MHz	X	\mathbf{N}	\checkmark

- **10.** Operation Voltage: Low Voltage Reset Level to 5.5V
 - fosc = 4 MHz, $2.2V \sim 5.5V$
 - fosc = 8 MHz, 2.5V ~ 5.5V

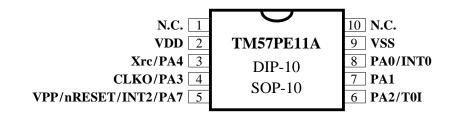
11. I/O Port

- CMOS Output
- Pseudo-Open-Drain or Open-Drain Output
- Schmitt Trigger Input with/without pull-up resistor
- 12. Instruction set: 36 Instructions


- 13. Interrupt
 - Two External Interrupt pins:
 - One pin is falling edge triggered
 - One pin is rising or falling edge triggered
 - Timer0, Wake-up Timer Interrupt
- 14. Power Down Mode Support

15. Supported EV Board on ICE

EV Board: EV2793



BLOCK DIAGRAM

PIN ASSIGNMENT

PIN DESCRIPTION

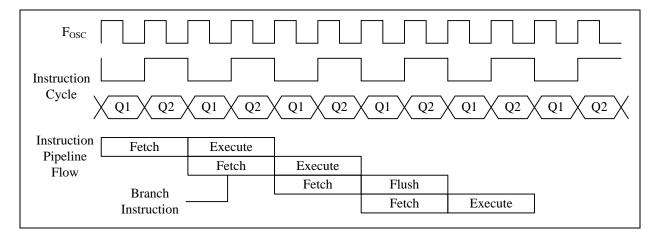
Name	In/Out	Pin Description	
PA0–PA1	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "pseudo-open-drain" output. Pull-up resistors are assignable by software.	
PA2–PA4	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output open-drain output. Pull-up resistors are assignable by software.	
PA7	Ι	Schmitt-trigger input	
nRESET	Ι	External active low reset	
Xrc	_	External RC oscillator connection for system clock	
CLKO	0	CPU Instruction clock output for external/internal RC mode	
VDD, VSS	Р	Power Voltage input pin and ground	
VPP	Ι	PROM programming high voltage input	
INTO, INT2	Ι	External interrupt input	
TOI	Ι	Clock input to Timer0	

PIN SUMMARY

Pin Number			ber GPIO				set	1	Alterna	ite Fun	ction	
			Inj	put	Output		Re					
10-SOP/DIP	Pin Name	Туре	Weak Pull-up	Ext. Interrupt	0.D	P.O.D	P.P	Function After Reset	PWM	Touch Key	ADC	MISC
1	VDD	Р										
2	Xrc/PA4	I/O	0		0		0	PA4				
3	CLKO/PA3	I/O	0		0		0	PA3				CLKO
4	VPP/nRESET/ INT2/PA7	Ι	0	0				PA7				nRESET
5	NC	-										
6	NC	-										
7	PA2/T0I	I/O	0		0		0	PA2				TOI
8	PA1	I/O	0			0	0	PA1				
9	PA0/INT0	I/O	0	0		0	0	PA0				
10	VSS	Р										

Symbol : P.P. = Push-Pull Output $P \cap P$ = Passide On an Duri

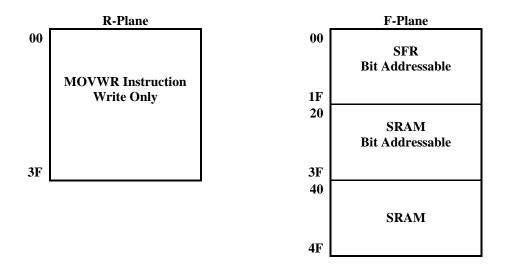
P.O.D. = Pseudo Open Drain O.D. = Open Drain



FUNCTIONAL DESCRIPTION

1. CPU Core

1.1 Clock Scheme and Instruction Cycle


The system clock is internally divided by two to generate Q1 state and Q2 state for each instruction cycle. The Programming Counter (PC) is updated at Q1 and the instruction is fetched from program ROM and latched into the instruction register in Q2. It is then decoded and executed during the following Q1-Q2 cycle. Branch instructions take two cycles since the fetch instruction is 'flushed' from the pipeline, while the new instruction is being fetched and then executed.

1.2 Addressing Mode

There are two Data Memory Planes in CPU, R-Plane and F-Plane. The registers in R-Plane are writeonly. The "MOVWR" instruction copies the W-register's content to R-Plane registers by direct addressing mode. The lower locations of F-Plane are reserved for the SFR. Above the SFR is General Purpose Data Memory, implemented as static RAM. F-Plane can be addressed directly or indirectly. Indirect Addressing is made by INDF register. The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a pointer). The first half of F-Plane is bit-addressable, while the second half of F-Plane is not bit-addressable.

1.3 Programming Counter (PC) and Stack

The Programming Counter is 10-bit wide capable of addressing a 1K x 14 OTP ROM. As a program instruction is executed, the PC will contain the address of the next program instruction to be executed. The PC value is normally increased by one except the followings. The Reset Vector (000h) and the Interrupt Vector (001h) are provided for PC initialization and Interrupt. For CALL/GOTO instructions, PC loads 10 bits address from instruction word. For RET/RETI/RETLW instructions, PC retrieves its content from the top level STACK. For the other instructions updating PC [7:0], the PC [9:8] keeps unchanged. The STACK is 10-bit wide and 5-level in depth. The CALL instruction and hardware interrupt will push STACK level in order. While the RET/RETI/RETLW instruction pops the STACK level in order.

1.4 ALU and Working (W) Register

The ALU is 8-bit wide and capable of addition, subtraction, shift and logical operations. In two-operand instructions, typically one operand is the W register, which is an 8-bit non-addressable register used for ALU operations. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either W register or a file register. Depending on the instruction executed, the ALU may affect the values of Carry (C), Digit Carry (DC), and Zero (Z) Flags in the STATUS register. The C and DC flags operate as a /Borrow and /Digit Borrow, respectively, in subtraction.

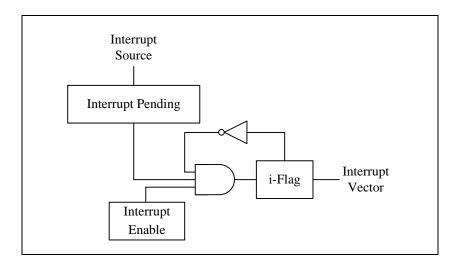
Note: /Borrow represents inverted of Borrow register.

/Digit Borrow represents inverted of Digit Borrow register.

1.5 STATUS Register

This register contains the arithmetic status of ALU and the reset status. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. It is recommended, therefore, that only BCF, BSF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect those bits.

STATUS	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Reset Value	-	_	_	0	0	0	0	0	
R/W	_	_	_	R	R	R/W	R/W	R/W	
Bit				Desci	iption				
7~5	Not Used								
4	0: after P	 FO: Time Out 0: after Power On Reset, LVR Reset, or CLRWDT/SLEEP instruction 1: WDT time out occurs 							
3	0: after P	PD: Power Down 0: after Power On Reset, LVR Reset, or CLRWDT instruction 1: after SLEEP instruction							
2	0: the res	Z: Zero Flag0: the result of a logic operation is not zero1: the result of a logic operation is zero							
	DC: Decimal Carry Flag or Decimal /Borrow Flag								
		ADD in	struction			SUB in	struction		
1	1: a carry from the low nibble bits of the result occurs1: no borrow 0: a borrow from the low nibble bits of the result occurs						ts of the		
	C: Carry Fl	C: Carry Flag or /Borrow Flag							
0		ADD instruction SUB instruction							
0	1: a carry o 0: no carry	occurs from	the MSB		1: no borro 0: a borroy	ow w occurs from	m the MSB		



1.6 Interrupt

The TM57PE11A has 1 level, 1 vector and 4 interrupt sources. Each interrupt source has its own enable control bit. An interrupt event will set its individual pending flag; no matter its interrupt enable control bit is 0 or 1. Because TM57PE11A has only 1 vector, there is not an interrupt priority register. The interrupt priority is determined by F/W.

If the corresponding interrupt enable bit has been set (INTE), it would trigger CPU to service the interrupt. CPU accepts interrupt in the end of current executed instruction cycle. In the mean while, A "CALL 001" instruction is inserted to CPU, and i-flag is set to prevent recursive interrupt nesting.

The i-flag is cleared in the instruction after the "RETI" instruction. That is, at least one instruction in main program is executed before service the pending interrupt. The interrupt event is level triggered. F/W must clear the interrupt event register while serving the interrupt routine.

2. Chip Operation Mode

2.1 Reset

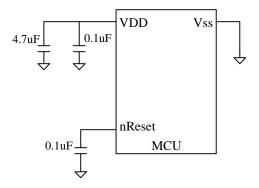
The TM57PE11A can be RESET in four ways.

- Power-On-Reset
- Low Voltage Reset (LVR)
- External Pin Reset (PA7)
- Watchdog Reset (WDT)

After Power-On-Reset, all system and peripheral control registers are then set to their default hardware Reset values. The clock source, LVR level and chip operation mode are selected by the SYSCFG register value. The Low Voltage Reset features static reset when supply voltage is below a threshold level. There are two threshold levels can be selected. The LVR's operation mode is defined by the SYSCFG register.

There are two voltage selections for the LVR threshold level, one is higher level which is suitable for application with VDD is more than 3.3V, while another one is suitable for application with VDD is less than 3.3V. See the following LVR Selection Table; user must also consider the lowest operating voltage of operating frequency.

LVR Selection Table:


LVR Threshold Level	Consider the operating voltage to choose LVR
LVR2.9	$5.5V > V_{DD} > 3.3V$
LVR2.0	V _{DD} is wide voltage range

The External Pin Reset and Watchdog Reset can be disabled or enabled by the SYSCFG register. These two resets also set all the control registers to their default reset value. The TO/PD flag is not affected by these resets.

2.2 External Reset Circuit

External reset pin is low level active. The system is running when reset pin is high level voltage input. The reset pin receives the low voltage and the system is reset. The external reset can reset the system during power on duration, and good external reset circuit can protect the system to avoid working at unusual power condition.

2.3 System Configuration Register (SYSCFG)

The System Configuration Register (SYSCFG) is located at ROM address 3FCh. The SYSCFG determines the option for initial condition of MCU. It is written by PROM Writer only. User can select clock source, LVR threshold voltage and chip operation mode by SYSCFG register. The default value of SYSCFG is 3FFFh. The 13th bit of SYSCFG is code protection selection bit. If this bit is 0, the data in PROM will be protected, when user reads PROM.

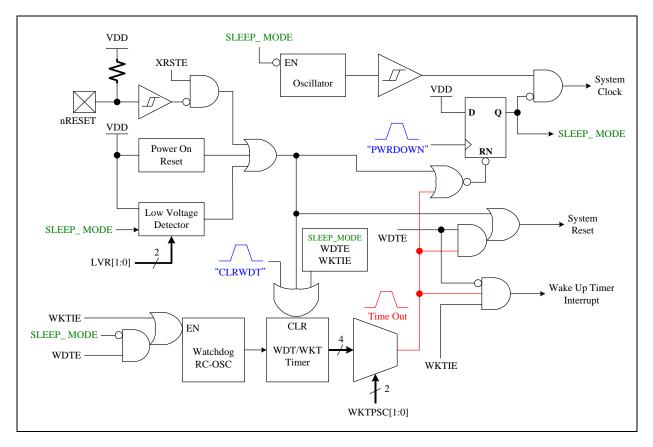
Bit	13~0					
Default Value	11111111111					
Bit		Description				
13	nPROTECT: (Code protection selection				
	1	No protect				
	0	Code protection				
12	nREUSE: PRO	M Re-use control				
	1	Not Re-use				
	0	Re-use				
11-10	LVR: LV Rese	t Mode				
	11	LVR threshold is 2.0V, always enable				
	10	LVR threshold is 2.0V, disable in sleep mode				
	01	LVR threshold is 2.9V, always enable				
	00	LVR disable				
9-8	CLKS: Clock S	Source Selection				
	1X	Invalid				
	01	Internal RC (4/8 MHz)				
	00	External RC				
7	XRESETE : Ex	ternal pin Reset Enable				
	1	Enable External pin Reset				
	0	Disable External pin Reset to use as input pin				
6	WDTE: WDT Reset Enable					
	1	Enable WDT Reset				
	0	Disable WDT Reset				
5						
4-0		RC Frequency adjustment control				

2.4 PROM Re-use ROM

The PROM of this device is 1K words. For some F/W program, the program size could be less than 512 words. To fully utilize the PROM, the device allows users to reuse the PROM. This feature is named as Two Time Programmable (TTP) ROM. While the first half of PROM is occupied by a useless program code and the second half of the PROM remains blank, users can re-write the PROM with the updated program code into the second half of the PROM. In the Re-use mode, the Reset Vector and Interrupt Vector are re-allocated at the beginning of the PROM's second half by the Assembly Compiler. Users simply choose the "REUSE" option in the ICE tool interface, and then the Compiler will move the object code to proper location. That is, the user's program still has reset vector at address 000h, but the compiled object code has reset vector at 200h. In the SYSCFG, if nPROTECT=0 and nREUSE=1, the Code protection area is first half of PROM. This allows the Writer tool to write then verify the Code during the Re-use Code programming. After the Re-use Code being written into the PROM's second half, user should write "nREUSE" control bit to "0". In the mean while, the Code protection area becomes the whole PROM except the Reserved Area.

	PROM, nREUSE=1			PROM, nREUSE=0	
000	Reset Vector		000		
001	Interrupt Vector		001		
		Code		Useless	
		Protect		Code	
		Area			
	User				Code
1FF	Code		1FF		Protect
200			200	Reset Vector	Area
201			201	Interrupt Vector	
				•	
				User	
				Code	
3FC	SYSCFG		3FC	SYSCFG	
3FD	Manufacturer		3FD	Manufacturer]
3FE	Reserved		3FE	Reserved	
3FF	Area		3FF	Area	

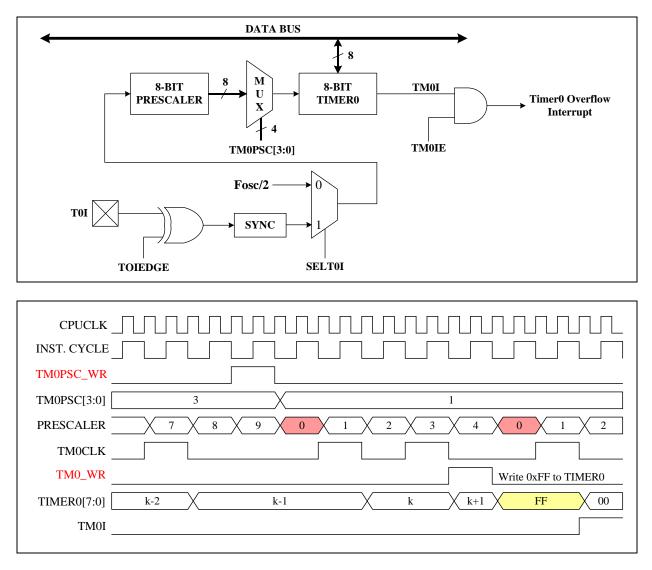
2.5 Power-Down Mode


The Power-down mode is activated by SLEEP instruction. During the Power-down mode, the system clock and peripherals stops to minimize power consumption, while the WDT/WKT Timer is working or not depends on F/W setting. The Power down mode can be terminated by Reset, or enabled Interrupts (External pins and WKT interrupts).

3. Peripheral Functional Block

3.1 Watchdog (WDT) / Wakeup (WKT) Timer

The WDT and WKT share the same internal RC Timer. The overflow period of WDT/WKT can be selected from 13 ms to 131 ms. The WDT/WKT is cleared by the CLRWDT instruction. If the Watchdog Reset is enabled (WDTE=1), the WDT generates the chip reset signal, otherwise, the WKT only generates overflow time out interrupt. The WDT/WKT works in both normal mode and sleep mode. During sleep mode, user can further choose to enable or disable the WDT/WKT by "WKTIE". If WKTIE=0 in sleep mode (no matter WDTE is 1 or 0), the internal RC Timer stops for power saving. In other words, user keeps the WDT/WKT alive in Sleep Mode by setting WKTIE=1. If the WDTE=1 and WKTIE=0, WDT/WKT timer will be cleared and stopped to power saving in sleep mode. If the WDTE=1 and WKTIE=1, WDT/WKT timer keeps counting in sleep/normal mode. Refer to the following table and figure.


If the user program needs the MCU totally shut down for power conservation in sleep mode, the below setting of control bits should be followed.

Mode	WDTE	WKTIE	Watchdog RC Oscillator
	0	0	Stop
Normal Mode	0	1	
Normai Mode	1	0	Run
	1	1	
	0	0	Stop
Sleep Mode	0	1	Run
	1	0	Stop
	1	1	Run

3.2 Timer0: 8-bit Timer/Counter with Pre-scale (PSC)

The Timer0 is an 8-bit wide register of F-Plane. It can be read or written as any other register of F-Plane. Besides, Timer0 increases itself periodically and automatically rolls over based on the pre-scaled clock source, which can be the instruction cycle or T0I input. The Timer0 increase rate is determined by "Timer0 Pre-Scale" (TM0PSC) register in R-Plane. The Timer0 can generate interrupt flag (TM0I) when it rolls over.

Timer0 interrupt frequency by instruction cycle: (Fosc / 2) / div / 256

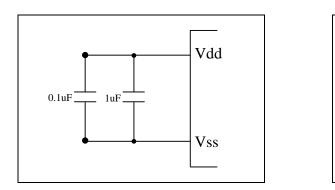
Note: The div variable represents the prescale factor by TM0PSC [3:0] select value (1, 2, ~ 128, 256)

When Fosc = 4 MHz, div = TM0PSC [3:0] when select 4'b0000 = 1

(4M/2)/1/256 = 2 M/256 Hz = 7.8125 KHz

Timer0 interrupt frequency by T0I: (T0I) / div / 256

Note: T0I frequency <= Fosc / 4

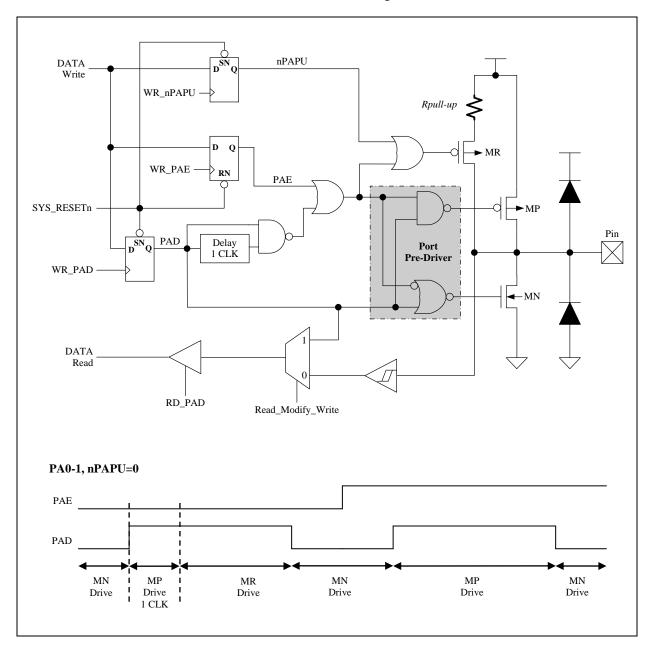


Xrc

3.3 System Clock Oscillator

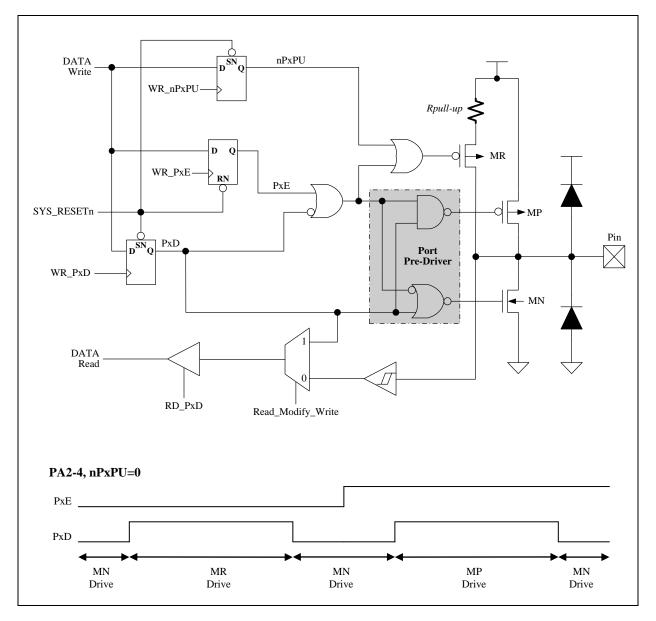
System clock can be operated in two different oscillation modes, which is selected by setting the CLKS in the SYSCFG register. In external RC mode, the external resistor and capacitor determine the oscillation frequency. In the internal RC mode, the on chip oscillator generates 4/8 MHz system clock. When the IRC is 8 MHz, the LVR can only be set to 2.9V (cannot use 2V). In this mode, PCB Layout may have strong effect on the stability of Internal Clock Oscillator. Since power noise degrades the performance of Internal Clock Oscillator, placing power supply bypass capacitors 1 uF and 0.1 uF very close to VDD/VSS pins improves the stability of clock and the overall system.

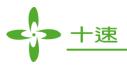
Internal RC Mode


External RC Oscillator

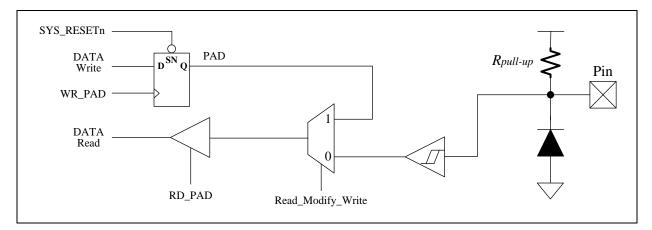
4. I/O Port

4.1 PA0-1


These pins can be used as Schmitt-trigger input, CMOS push-pull output or "pseudo-open-drain" output. The pull-up resistor is assignable to each pin by S/W setting. To use the pin in Schmitt-trigger input mode, S/W needs to set the PAE=0 and PAD=1. To use the pin in pseudo-open-drain mode, S/W sets the PAE=0.The benefit of pseudo-open-drain structure is that the output rise time can be much faster than pure open-drain structure. S/W sets PAE=1 to use the pin in CMOS push-pull output mode. Reading the pin data (PAD) has different meaning. In "Read-Modify-Write" instruction, CPU actually reads the output data register. In the others instructions, CPU reads the pin state. The so-called "Read-Modify-Write" instruction includes BSF, BCF and all instructions using F-Plane as destination.



4.2 PA2-4


These pins are almost the same as PA0-1, except they do not support pseudo-open-drain mode. They can be used in pure open-drain mode, instead.

4.3 PA7

PA7 can be only used in Schmitt-trigger input mode. The pull-up resistor is always connected to this pin.

MEMORY MAP

F-Plane

Name	Address	R/W	Rst	Description
INDF	00.7~0	R/W	-	Not a physical register, addressing INDF actually point to the register whose address is contained in the FSR register
TIMER0	01.7~0	R/W	0	Timer0 content
PC	02.7~0	R/W	0	Programming Counter [7~0]
ТО	03.4	R	0	WDT time out flag
PD	03.3	R	0	Sleep mode flag
ZFLAG	03.2	R/W	0	Zero flag
DCFLAG	03.1	R/W	0	Decimal Carry flag
CFLAG	03.0	R/W	0	Carry flag
FSR	04.6~0	R/W	-	File Select Register, indirect address mode pointer
PAD7	05.7	R	-	PA7 pin state
PAD	05.4~0	R	-	Port A pin or "data register" state
PAD	03.4~0	W	1F	Port A output data register
TM0IE	08.4	R/W	0	Timer0 interrupt enable, 1=enable, 0=disable
WKTIE	08.3	R/W	0	Wakeup Timer interrupt enable, 1=enable, 0=disable
XINT2E	08.2	R/W	0	INT2 pin interrupt enable, 1=enable, 0=disable
XINTOE	08.0	R/W	0	INT0 pin interrupt enable, 1=enable, 0=disable
TM0I	09.4	R	-	Timer0 interrupt event pending flag, set by H/W while Timer0 overflow
1 1/101	09.4	W	0	write 0: clear this flag; write 1: no action
WKTI	09.3	R	-	WKT interrupt event pending flag, set by H/W while WKT time out
WKII	09.5	W	0	write 0: clear this flag; write 1: no action
VINTO	09.2	R	-	INT2 interrupt event pending flag, set by H/W at INT2 pin's falling edge
XINT2	09.2	W	0	write 0: clear this flag; write 1: no action
VINTO	00.0	R	R - INTO interrupt event pending flag, set by H/W at INTO pin's f/r edge	
XINTO 09.0 W 0 write 0: clear this fla		0	write 0: clear this flag; write 1: no action	
SRAM	20~4F	R/W	-	Internal RAM

R-Plane

Name	Address	R/W	Rst	Description
TOIEDGE	02.5	W	0	0: TOI(PA2) rising edge to increase Timer0/PSC count 1: TOI(PA2) falling edge to increase Timer0/PSC count
SELT0I	02.4	w	0	0: Timer0/PSC clock source is "Instruction Cycle" 1: Timer0/PSC clock source is T0I pin
TM0PSC	02.3~0	W	0	0000: Timer0 input clock divided by 1 0001: Timer0 input clock divided by 2 ~ 0111: Timer0 input clock divided by 128 1000: Timer0 input clock divided by 256
PWRDOWN	03	W	-	write this register to enter Power-Down Mode
CLRWDT	04	W	-	write this register to clear WDT/WKT
DAE	05.4~2	W	0	0: the pin is open-drain output or Schmitt-trigger input 1: the pin is CMOS push-pull output
PAE 05.1~0 W	W	0	0: the pin is pseudo-open-drain output or Schmitt-trigger input 1: the pin is CMOS push-pull output	
nPAPU	08.4~0	w	1F	 0: the pin pull up resistor is enable, except a. the pin's output data register (PAD) is 0 b. the pin's CMOS push-pull mode is chosen (PAE=1) c. the pin is working for external RC oscillation 1: the pin pull up resistor is disable
INT0EDGE	0b.4	W	0	0: INT0 pin falling edge to trigger interrupt event 1: INT0 pin rising edge to trigger interrupt event
CLK2PIN	0b.3	W	0	0: No Instruction Clock output to PA3 pin 1: Instruction Clock output to PA3 pin for external/internal RC mode
WKTPSC	0b.1~0	w	11	WDT/WKT pre-scale option select 00: WDT/WKT period is 13 ms, @5V; 16 ms, @3V 01: WDT/WKT period is 26 ms, @5V; 33 ms, @3V 10: WDT/WKT period is 52 ms, @5V; 66 ms, @3V 11: WDT/WKT period is 103 ms, @5V; 131 ms, @3V

INSTRUCTION SET

Each instruction is a 14-bit word divided into an Op Code, which specifies the instruction type, and one or more operands, which further specify the operation of the instruction. The instructions can be categorized as byte-oriented, bit-oriented and literal operations list in the following table.

For byte-oriented instructions, "f" or "r" represents the address designator and "d" represents the destination designator. The address designator is used to specify which address in Program memory is used by the instruction. The destination designator specifies where the result of the operation is placed. If "d" is "0", the result is placed in the W register. If "d" is "1", the result is placed in the address specified in the instruction.

For bit-oriented instructions, "b" represents a bit field designator, which selects the number of the bit affected by the operation, while "f" represents the address designator. For literal operations, "k" represents the literal or constant value.

Field / Legend	Description
f	F-Plane Register File Address
r	R-Plane Register File Address
b	Bit address
k	Literal. Constant data or label
d	Destination selection field. 0 : Working register 1 : Register file
W	Working Register
Z	Zero Flag
С	Carry Flag
DC	Decimal Carry Flag
PC	Program Counter
TOS	Top Of Stack
GIE	Global Interrupt Enable Flag (i-Flag)
[]	Option Field
()	Contents
	Bit Field
В	Before
А	After
←	Assign direction

Mnemon	ic	Op Code	Cycle	Flag Affect	Description		
	Byte-Oriented File Register Instruction						
ADDWF	f,d	00 0111 dfff ffff	1	C,DC,Z	Add W and "f"		
ANDWF	f,d	00 0101 dfff ffff	1	Z	AND W with "f"		
CLRF	f	00 0001 1 fff ffff	1	Z	Clear "f"		
CLRW		00 0001 0100 0000	1	Z	Clear W		
COMF	f,d	00 1001 dfff ffff	1	Z	Complement "f"		
DECF	f,d	00 0011 dfff ffff	1	Z	Decrement "f"		
DECFSZ	f,d	00 1011 dfff ffff	1 or 2	-	Decrement "f", skip if zero		
INCF	f,d	00 1010 dfff ffff	1	Z	Increment "f"		
INCFSZ	f,d	00 1111 dfff ffff	1 or 2	-	Increment "f", skip if zero		
IORWF	f,d	00 0100 dfff ffff	1	Z	OR W with "f"		
MOVFW	f	00 1000 0fff ffff	1	-	Move "f" to W		
MOVWF	f	00 0000 1 fff ffff	1	-	Move W to "f"		
MOVWR	r	00 0000 0 0 rr rrrr	1	-	Move W to "r"		
RLF	f,d	00 1101 dfff ffff	1	С	Rotate left "f" through carry		
RRF	f,d	00 1100 dfff ffff	1	С	Rotate right "f" through carry		
SUBWF	f,d	00 0010 dfff ffff	1	C,DC,Z	Subtract W from "f"		
SWAPF	f,d	00 1110 dfff ffff	1	-	Swap nibbles in "f"		
TESTZ	f	00 1000 1 fff ffff	1	Z	Test if "f" is zero		
XORWF	f,d	00 0110 dfff ffff	1	Z	XOR W with "f"		
		Bit-Oriente	ed File Re	egister Instruc	tion		
BCF	f,b	01 000b bbff ffff	1	-	Clear "b" bit of "f"		
BSF	f,b	01 001b bbff ffff	1	-	Set "b" bit of "f"		
BTFSC	f,b	01 010b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if clear		
BTFSS	f,b	01 011b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if set		
		Literal	and Cont	rol Instruction	n		
ADDLW	k	01 1100 kkkk kkkk	1	C,DC,Z	Add Literal "k" and W		
ANDLW	k	01 1011 kkkk kkkk	1	Z	AND Literal "k" with W		
CALL	k	10 kkkk kkkk kkkk	2	-	Call subroutine "k"		
CLRWDT		00 0000 0000 0100	1	TO,PD	Clear Watch Dog Timer		
GOTO	k	11 kkkk kkkk kkkk	2	-	Jump to branch "k"		
IORLW	k	01 1010 kkkk kkkk	1	Z	OR Literal "k" with W		
MOVLW	k	01 1001 kkkk kkkk	1	-	Move Literal "k" to W		
NOP		00 0000 0000 0000	1	-	No operation		
<u>RET</u>		00 0000 0100 0000	2	-	Return from subroutine		
<u>RETI</u>		00 0000 0110 0000	2	-	Return from interrupt		
<u>RETLW</u>	k	01 1000 kkkk kkkk	2	-	Return with Literal in W		
<u>SLEEP</u>		00 0000 0000 0011	1	TO,PD	Go into standby mode, Clock oscillation stops		
XORLW	k	01 1111 kkkk kkkk	1	Z	XOR Literal "k" with W		

ADDLW	Add Literal "k" and	W
Syntax	ADDLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) + k$	
Status Affected	C, DC, Z	
OP-Code	01 1100 kkkk kkkk	
Description	The contents of the W regi	ister are added to the eight-bit literal 'k' and the result is
	placed in the W register.	
Cycle	1	
Example	ADDLW 0x15	$\mathbf{B}:\mathbf{W}=0\mathbf{x}10$
		A: W = 0x25

ADDWF	Add W and "f"	
Syntax	ADDWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	$(destination) \leftarrow (W) + (f)$	
Status Affected	C, DC, Z	
OP-Code	00 0111 dfff ffff	
Description	Add the contents of the W	register with register 'f'. If 'd' is 0, the result is stored in
-	the W register. If 'd' is 1, t	he result is stored back in register 'f'.
Cycle	1	
Example	ADDWF FSR, 0	B: W = 0x17, FSR = 0xC2
-		A: W = 0xD9, FSR = 0xC2

ANDLW	Logical AND Litera	al ''k'' with W
Syntax	ANDLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) AND k$	
Status Affected	Z	
OP-Code	01 1011 kkkk kkkk	
Description	The contents of W regis	ter are AND'ed with the eight-bit literal 'k'. The result is
	placed in the W register.	
Cycle	1	
Example	ANDLW 0x5F	$\mathbf{B}: \mathbf{W} = 0\mathbf{x}\mathbf{A}3$
		A: W = 0x03

ANDWF	AND W with "f"	
Syntax	ANDWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	$(destination) \leftarrow (W) ANI$	D (f)
Status Affected	Z	
OP-Code	00 0101 dfff ffff	
Description	AND the W register with	h register 'f'. If 'd' is 0, the result is stored in the W
-	register. If 'd' is 1, the rest	ult is stored back in register 'f'.
Cycle	1	
Example	ANDWF FSR, 1	B: W = 0x17, FSR = 0xC2
-		A: W = 0x17, FSR = 0x02

BCF	Clear "b" bit of "f"		
Syntax	BCF f [,b]		
Operands	f : 00h ~ 3Fh, b : 0 ~ 7		
Operation	$(f.b) \leftarrow 0$		
Status Affected	-		
OP-Code	01 000b bbff ffff		
Description	Bit 'b' in register 'f' is cleared.		
Cycle	1		
Example	BCF FLAG_REG, 7	$B : FLAG_REG = 0xC7$ $A : FLAG_REG = 0x47$	

BSF	Set "b" bit of "f"		
Syntax	BSF f[,b]		
Operands	f : 00h ~ 3Fh, b : 0 ~ 7		
Operation	$(f.b) \leftarrow 1$		
Status Affected	-		
OP-Code	01 001b bbff ffff		
Description	Bit 'b' in register 'f' is set.		
Cycle	1		
Example	BSF FLAG_REG, 7	$B : FLAG_REG = 0x0A$	
-		$A : FLAG_REG = 0x8A$	

Test "b" bit of "f", skip i	f clear(0)
BTFSC f [,b]	
f : 00h ~ 3Fh, b : 0 ~ 7	
Skip next instruction if $(f.b) = 0$	
-	
01 010b bbff ffff	
If bit 'b' in register 'f' is 1, then the	ne next instruction is executed. If bit 'b' in register
'f' is 0, then the next instructio	n is discarded, and a NOP is executed instead,
making this a 2nd cycle instructi	on.
1 or 2	
LABEL1 BTFSC FLAG, 1	B : PC = LABEL1
TRUE GOTO SUB1	A : if $FLAG.1 = 0$, $PC = FALSE$
FALSE	if $FLAG.1 = 1$, $PC = TRUE$
	BTFSC f [,b] f: 00h ~ 3Fh, b: 0 ~ 7 Skip next instruction if (f.b) = 0 - 01 010b bbff ffff If bit 'b' in register 'f' is 1, then th 'f' is 0, then the next instruction making this a 2nd cycle instructi 1 or 2 LABEL1 BTFSC FLAG, 1 TRUE GOTO SUB1

BTFSS	Test "b" bit of "f", skip i	if set(1)
Syntax	BTFSS f [,b]	
Operands	f : 00h ~ 3Fh, b : 0 ~ 7	
Operation	Skip next instruction if $(f.b) = 1$	
Status Affected	-	
OP-Code	01 011b bbff ffff	
Description	If bit 'b' in register 'f' is 0, then t	he next instruction is executed. If bit 'b' in register
	'f' is 1, then the next instruction	on is discarded, and a NOP is executed instead,
	making this a 2nd cycle instruct	ion.
Cycle	1 or 2	
Example	LABEL1 BTFSS FLAG, 1	B : PC = LABEL1
•	TRUE GOTO SUB1	A : if $FLAG.1 = 0$, $PC = TRUE$
	FALSE	if $FLAG.1 = 1$, $PC = FALSE$

CALL	Call subroutine ''k''	
Syntax	CALL k	
Operands	k : 000h ~ FFFh	
Operation	Operation: TOS \leftarrow (PC) + 1, PC	$1.11 \sim 0 \leftarrow k$
Status Affected	-	
OP-Code	10 kkkk kkkk kkkk	
Description		dress (PC+1) is pushed onto the stack. The 12-bit into PC bits <11:0>. CALL is a two-cycle
Cycle	2	
Example	LABEL1 CALL SUB1	B : PC = LABEL1 A : PC = SUB1, TOS = LABEL1 + 1

CLRF	Clear "f"	
Syntax	CLRF f	
Operands	f : 00h ~ 7Fh	
Operation	(f) \leftarrow 00h, Z \leftarrow 1	
Status Affected	Z	
OP-Code	00 0001 1fff ffff	
Description	The contents of register 'f' are cleared and the Z bit is set.	
Cycle	1	
Example	CLRF FLAG_REG	$B : FLAG_REG = 0x5A$
-		A : FLAG_REG = $0x00$, Z = 1

CLRW	Clear W	
Syntax	CLRW	
Operands	-	
Operation	$(W) \leftarrow 00h, Z \leftarrow 1$	
Status Affected	Z	
OP-Code	00 0001 0100 0000	
Description	W register is cleared and Z bit is set.	
Cycle	1	
Example	CLRW	B: W = 0x5A
-		A: W = 0x00, Z = 1

CLRWDT	Clear Watchdog T	ìmer
Syntax	CLRWDT	
Operands	-	
Operation	WDT/WKT Timer $\leftarrow 0$	00h
Status Affected	TO, PD	
OP-Code	00 0000 0000 0100	
Description	CLRWDT instruction clears the Watchdog/Wakeup Timer	
Cycle	1	
Example	CLRWDT	B: WDT counter = ?
		A : WDT counter = $0x00$

COMF	Complement "f"	
Syntax	COMF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) $\leftarrow (\bar{f})$	
Status Affected	Ž	
OP-Code	00 1001 dfff ffff	
Description	The contents of register 'I	f are complemented. If 'd' is 0, the result is stored in W.
	If 'd' is 1, the result is stored back in register 'f'.	
Cycle	1	
Example	COMF REG1, 0	B : REG1 = 0x13
		A: REG1 = 0x13, W = 0xEC

DECF	Decrement "f"	
Syntax	DECF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (f) - 1	
Status Affected	Z	
OP-Code	00 0011 dfff ffff	
Description	Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.	
Cycle	1	-
Example	DECF CNT, 1	B : CNT = 0x01, Z = 0
		A : $CNT = 0x00, Z = 1$

DECFSZ	Decrement "f", Skip if 0	
Syntax	DECFSZ f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (f) - 1, skip nex	t instruction if result is 0
Status Affected	-	
OP-Code	00 1011 dfff ffff	
Description	register. If 'd' is 1, the result is p	ecremented. If 'd' is 0, the result is placed in the W placed back in register 'f'. If the result is 1, the next esult is 0, then a NOP is executed instead, making
Cycle	1 or 2	
Example	LABEL1 DECFSZ CNT, 1	B : PC = LABEL1
•	GOTO LOOP	A: CNT = CNT - 1
	CONTINUE	if $CNT = 0$, $PC = CONTINUE$
		if $CNT \neq 0$, $PC = LABEL1 + 1$

GOTO	Unconditional Branch	
Syntax	GOTO k	
Operands	k : 000h ~ FFFh	
Operation	$PC.11 \sim 0 \leftarrow k$	
Status Affected	-	
OP-Code	11 kkkk kkkk kkkk	
Description	GOTO is an unconditional br	anch. The 12-bit immediate value is loaded into PC
-	bits <11:0>. GOTO is a two-	cycle instruction.
Cycle	2	
Example	LABEL1 GOTO SUB1	B : PC = LABEL1 A : PC = SUB1

INCF	Increment "f"	
Syntax	INCF f [,d]	
Operands	f : 00h ~ 7Fh	
Operation	$(destination) \leftarrow (f) + 1$	
Status Affected	Z	
OP-Code	00 1010 dfff ffff	
Description	The contents of register '	f' are incremented. If 'd' is 0, the result is placed in the W
	register. If 'd' is 1, the result is placed back in register 'f'.	
Cycle	1	
Example	INCF CNT, 1	B : CNT = 0xFF, Z = 0
		A : CNT = 0x00, Z = 1

INCFSZ	Increment "f", Skip if 0	
Syntax	INCFSZ f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (f) + 1, skip ne	xt instruction if result is 0
Status Affected	-	
OP-Code	00 1111 dfff ffff	
Description	register. If 'd' is 1, the result is	ncremented. If 'd' is 0, the result is placed in the W placed back in register 'f'. If the result is 1, the next esult is 0, a NOP is executed instead, making it a 2
Cycle	1 or 2	
Example	LABEL1 INCFSZ CNT, 1	B : PC = LABEL1
-	GOTO LOOP	A: CNT = CNT + 1
	CONTINUE	if $CNT = 0$, $PC = CONTINUE$
		if $CNT \neq 0$, $PC = LABEL1 + 1$

IORLW	Inclusive OR Liter	al with W
Syntax	IORLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) OR k$	
Status Affected	Z	
OP-Code	01 1010 kkkk kkkk	
Description	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.	
Cycle	1	
Example	IORLW 0x35	B: W = 0x9A A: W = 0xBF, Z = 0

IORWF	Inclusive OR W with	'f''
Syntax	IORWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (W) OR k	
Status Affected	Z	
OP-Code	00 0100 dfff ffff	
Description	Inclusive OR the W register	with register 'f'. If 'd' is 0, the result is placed in the
-	W register. If 'd' is 1, the res	ult is placed back in register 'f'.
Cycle	1	
Example	IORWF RESULT, 0	B : RESULT = $0x13$, W = $0x91$
-		A : RESULT = $0x13$, W = $0x93$, Z = 0

MOVFW	Move "f" to W		
Syntax	MOVFW f		
Operands	f : 00h ~ 7Fh		
Operation	$(W) \leftarrow (f)$		
Status Affected	-		
OP-Code	00 1000 Offf ffff		
Description	The contents of register 'f' are moved to W register.		
Cycle	1	-	
Example	MOVFW FSR	B : FSR = 0xC2, W = ?	
*		A: FSR = 0xC2, W = 0xC2	

MOVLW	Move Literal to W	
Syntax	MOVLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow k$	
Status Affected	-	
OP-Code	01 1001 kkkk kkkk	
Description	The eight-bit literal 'k' is	loaded into W register. The don't cares will assemble as
-	0's.	
Cycle	1	
Example	MOVLW 0x5A	B: W = ?
		A: W = 0x5A

MOVWF	Move W to "f"	
Syntax	MOVWF f	
Operands	f : 00h ~ 7Fh	
Operation	$(f) \leftarrow (W)$	
Status Affected	-	
OP-Code	00 0000 1fff ffff	
Description	Move data from W register to register 'f'.	
Cycle	1	C C
Example	MOVWF REG1	B : REG1 = 0xFF, W = 0x4F A : REG1 = 0x4F, W = 0x4F

MOVWR	Move W to "r"	
Syntax	MOVWR r	
Operands	r : 00h ~ 3Fh	
Operation	$(r) \leftarrow (W)$	
Status Affected	-	
OP-Code	00 0000 00rr rrrr	
Description	Move data from W register to register 'r'.	
Cycle	1	C .
Example	MOVWR REG1	B : REG1 = 0xFF, W = 0x4F
-		A: REG1 = 0x4F, W = 0x4F

NOP	No Operation	
Syntax	NOP	
Operands	-	
Operation	No Operation	
Status Affected	-	
OP-Code	00 0000 0000 0000	
Description	No Operation	
Cycle	1	
Example	NOP -	
RET	Return from Subroutine	
Syntax	RET	
Operands	-	
Operation	$PC \leftarrow TOS$	
Status Affected	-	
OP-Code	00 0000 0100 0000	
Description	Return from subroutine. The stack is POPed and loaded into the program counter. This is a two-cyc	
Cycle	2	
Example	RET $A : PC = TOS$	
RETI	Return from Interrupt	
Syntax	RETI	
Operands	-	
Operation	$PC \leftarrow TOS, GIE \leftarrow 1$	
Status Affected	-	
OP-Code	00 0000 0110 0000	
Description	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the PC. Interrupts are enabled. This is a two-cycle instruction.	
Cycle	2	
Example	RETI $A: PC = TOS$, GIE = 1
RETLW	Return with Literal in W	
Syntax	RETLW k	
Operands	$k : 00h \sim FFh$	
Operation	$PC \leftarrow TOS, (W) \leftarrow k$	
Status Affected	-	
	01 1000 kkkk kkkk	
OP-Code Description	01 1000 kkkk kkkk The W register is loaded with the eight-bit lite	ral 'k'. The program counter is

The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.

Cycle 2 Example 2 Example CALL TABLE B: W = 0x07: A: W = value of k8TABLE ADDWF PCL, 1 RETLW k1 RETLW k2 :RETLW kn

RLF	Rotate Left "f" through Carry
Syntax	RLF f [,d]
Operands	f : 00h ~ 7Fh, d : 0, 1
Operation	C Register f
Status Affected	С
OP-Code	00 1101 dfff ffff
Description	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.
Cycle	1
Example	RLF REG1, 0 B : REG1 = 1110 0110, C = 0 A : REG1 = 1110 0110 W = 1100 1100, C = 1

RRF	Rotate Right "f" through Carry
Syntax	RRF f [,d]
Operands	f : 00h ~ 7Fh, d : 0, 1
Operation	C Register f
Status Affected	С
OP-Code	00 1100 dfff ffff
Description	The contents of register 'f' are rotated one bit to the right through the Carry Flag.
	If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.
Cycle	1
Example	RRF REG1, 0 B : REG1 = 1110 0110, C = 0
	A : REG1 = 1110 0110
	$W = 0111\ 0011, C = 0$

SLEEP	Go into standby mode, Clock oscillation stops
Syntax	SLEEP
Operands	-
Operation	-
Status Affected	TO, PD
OP-Code	00 0000 0000 0011
Description	Go into SLEEP mode with the oscillator stops.
Cycle	1
Example	SLEEP -

SUBWF	Subtract W from "f"	
Syntax	SUBWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	$(destination) \leftarrow (f) - (W)$	
Status Affected	C, DC, Z	
OP-Code	00 0010 dfff ffff	
Description	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.	
Cycle	1	, U
Example	SUBWF REG1, 1	B : REG1 = 0x03, W = 0x02, C = ?, Z = ?
L.		A : REG1 = $0x01$, W = $0x02$, C = 1, Z = 0
	SUBWF REG1, 1	B : REG1 = 0x02, W = 0x02, C = ?, Z = ?
		A : REG1 = $0x00$, W = $0x02$, C = 1, Z = 1
	SUBWF REG1, 1	B : REG1 = 0x01, W = 0x02, C = ?, Z = ? A : REG1 = 0xFF, W = 0x02, C = 0, Z = 0

SWAPF	Swap Nibbles in ''f''		
Syntax	SWAPF f [,d]		
Operands	f : 00h ~ 7Fh, d : 0, 1		
Operation	$(destination, 7\sim 4) \leftarrow (f.3\sim 1)$	-0), (destination.3~0) \leftarrow (f.7~4)	
Status Affected	-	-	
OP-Code	00 1110 dfff ffff		
Description	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W register. If 'd' is 1, the result is placed in register 'f'.		
Cycle	1		
Example	SWAPF REG, 0	B : REG1 = 0xA5 A : REG1 = 0xA5, W = 0x5A	

TESTZ	Test if "f" is zero	
Syntax	TESTZ f	
Operands	f : 00h ~ 7Fh	
Operation	Set Z flag if (f) is 0	
Status Affected	Z	
OP-Code	00 1000 1fff ffff	
Description	If the content of register 'f' is 0, Zero flag is set to 1.	
Cycle	1	-
Example	TESTZ REG1	B : REG1 = 0, Z = ?
-		A : REG1 = 0, Z = 1

XORLW	Exclusive OR Literal with W	
Syntax	XORLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) XOR k$	
Status Affected	Z	
OP-Code	01 1111 kkkk kkkk	
Description	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register.	
Cycle	1	
Example	XORLW 0xAF	$\mathbf{B}: \mathbf{W} = 0\mathbf{x}\mathbf{B}5$
-		A: W = 0x1A

XORWF	Exclusive OR W with "f"	
Syntax	XORWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	$(destination) \leftarrow (W) XOR$	(f)
Status Affected	Z	
OP-Code	00 0110 dfff ffff	
Description	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is	
1	stored in the W register. If 'd' is 1, the result is stored back in register 'f'.	
Cycle	1	
Example	XORWF REG, 1	B : REG = 0xAF, W = 0xB5
-		A : REG = 0x1A, W = 0xB5

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings $(T_A = 25 \degree C)$

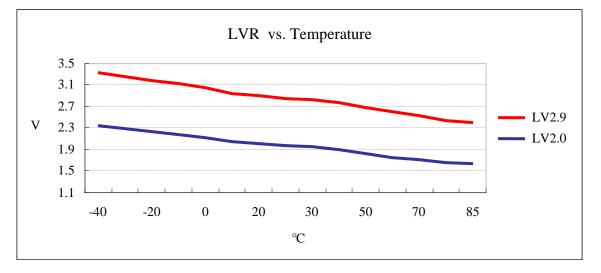
Parameter	Rating	Unit
Supply voltage	V_{SS} - 0.3 to V_{SS} + 6.5	
Input voltage	V_{SS} - 0.3 to V_{DD} + 0.3	V
Output voltage	V_{SS} - 0.3 to V_{DD} + 0.3	
Output current high per 1 PIN	-25	
Output current high per all PIN	-80	
Output current low per 1 PIN	+30	mA
Output current low per all PIN	+150	
Maximum operating voltage	5.5	V
Operating temperature	-40 to +85	°C
Storage temperature	-65 to +150	°Ľ

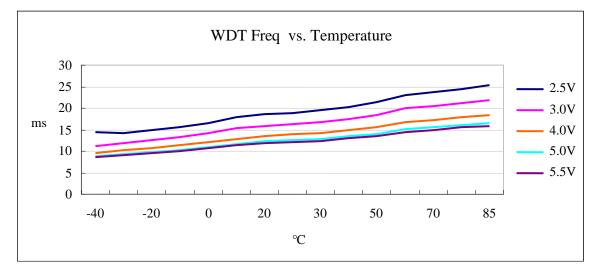
2. DC Characteristics ($T_A = 25 \degree C$, $V_{DD} = 2.0V$ to 5.5V)

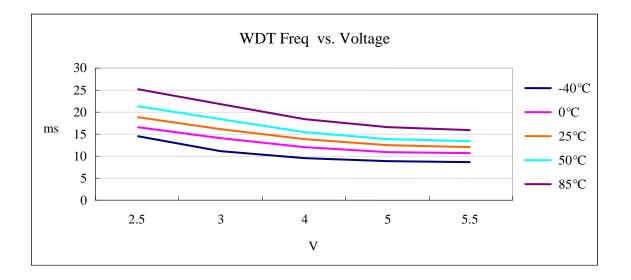
Parameter	Sym	Conditions		Min	Тур	Max	Unit	
		All Input,	$V_{DD} = 5V$	$0.7V_{DD}$	_	-	V	
Input High Voltage V	V _{IH}	except PA7	$V_{DD} = 3V$	$0.7V_{DD}$	_	-	V	
	V IH	PA7 $V_{DD} = 5V$ $0.8V_{DI}$	$0.8V_{DD}$	_	-	V		
		IA/	$V_{DD} = 3V$	$0.8V_{DD}$	—	-	V	
		All Input,	$V_{DD} = 5V$	_	—	$0.2V_{\text{DD}}$	V	
Input Low Voltage	V _{IL}	except PA7	$V_{DD} = 3V$	_	_	$0.2V_{\text{DD}}$	V	
input Low Voltage	▼ IL	PA7	$V_{DD} = 5V$	_	_	$0.2V_{\text{DD}}$	V	
		1.7./	$V_{DD} = 3V$	_	_	$0.2V_{\text{DD}}$	V	
Output High Voltage	V _{OH}	All Output	$V_{DD} = 5V, I_{OH} = 8 \text{ mA}$	4.4	_	_	v	
Output High Voltage	• OH	An Output	$V_{DD} = 3V, I_{OH} = 4 \text{ mA}$	2.6	_	_	v	
Output Low Voltage	V _{OL}	All Output	$V_{DD} = 5V, I_{OL} = 20$ mA	_	_	0.5	v	
1 0	01	1	$V_{DD} = 3V, I_{OL} = 10 \text{ mA}$	-	_	0.3		
Input Leakage Current (pin high)	I _{ILH}	All Input	$V_{\rm IN} = V_{\rm DD}$	_	_	1	μΑ	
Input Leakage Current (pin low)	I _{ILL}	All Input	$\mathbf{V}_{\mathbf{IN}}=0\mathbf{V}$	-	-	-1	μΑ	
		Run 8 MHz, No Load	$V_{\rm DD} = 5.0 V$	_	2.1	_	mA	
		Run 4 MHz, No Load	$V_{DD} = 3.0V$	-	0.6	_	шл	
Power Supply Current	I _{DD}	Stop mode, LVR disable	$V_{DD} = 5V$	_	0.1			
			$V_{DD} = 3V$		0.1	_	μA	
		Stop mode, LVR enable	$V_{DD} = 5V$		0.9		μΑ	
			$V_{DD} = 3V$		0.6			
System Clock Frequency F _{OSC}	V_{DD} >	$V_{DD} = 2.9 V$	_		8	MHz		
	LOSC	LVR _{th}	$V_{DD} = 2.0 V$			4	101112	
LVR Reference Voltage		V _{LVR}	_	2.0	-	V		
			_	2.9	-	V		
LVR Hysteresis Volt	age	V _{HYST}		_	±0.1	-	V	
Low Voltage Detection time			t _{LVR}	100	-	-	μs	
Pull-Up Resistor	R _P	$V_{IN} = 0 V$ Port A	$V_{DD} = 5V$		65		KΩ	
			$V_{DD} = 3V$		130			
i un op Resistor	түр	$V_{IN} = 0 V$	$V_{DD} = 5V$		20		KΩ	
		PA7	$V_{DD} = 3V$		20		1727	

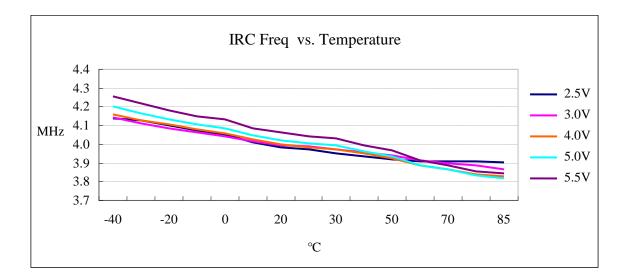
3. Clock Timing $(T_A = -40 \degree C \text{ to } +85 \degree C)$

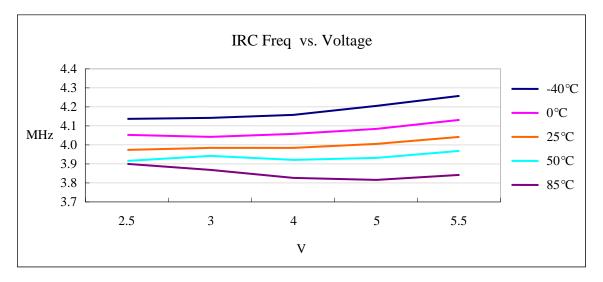
Parameter	Condition			Min	Тур	Max	Unit
External RC Frequency		R = 4.7K	C = 20 pF	_	2.76	_	
	$V_{DD} = 3V$	R = 10K	C = 100 pF	_	0.78	_	
		R = 100K	C = 300 pF	_	0.05	_	
	$V_{DD} = 5V$	R = 4.7K	C = 20 pF	-	3.55	_	MHz
		R = 10K	C = 100 pF	_	0.68	_	MHZ
		R = 100K	C = 300 pF	_	0.03	_	
Internal BC Fragmanay 25° C, $V_{DD} = 2.5 \sim 5.5$ V		- 5.5V	3.9	4	4.1		
Internal RC Frequency	-40°C ~	$\sim 85^{\circ}$ C, V _{DD} = 2.5 ~ 5.5 V		3.75	4	4.25	


Note: The IRC frequency is trimmed in wafer type. After packaging or COB, the frequency will deviation range is about 10~20%.


4. Reset Timing Characteristics ($T_A = -40$ °C to +85 °C, $V_{DD} = 2.0$ V to 5.5V)


Parameter	Conditions	Min	Тур	Max	Unit	
RESET Input Low width	Input $V_{DD} = 5 V \pm 10 \%$	3	_	_	μs	
WDT wakeup time	$V_{DD} = 5V, WKTPSC = 11$	-	103	_	ms	
	$V_{DD} = 3V, WKTPSC = 11$	-	131	-		
CPU start up time	$V_{DD} = 5V$	-	3.5	_	ms	


5. Characteristic Graphs



ORDERING INFORMATION

The ordering information:

Ordering number	Package
TM57PE11A-OTP	Wafer / Dice blank chip
TM57PE11A-COD	Wafer / Dice with code