

TM56M7842 DATA SHEET

Rev 0.91

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. tenx does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. tenx products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses tenx products for any such unintended or unauthorized application, Buyer shall indemnify and hold tenx and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that tenx was negligent regarding the design or manufacture of the part.

AMENDMENT HISTORY

Version	Date	Description	
V0.90	Aug, 2025	New Release	
V0.91	Oct, 2025	*EV board is EV8278 *The initial value of the ADCVREFS register is 0	

DS-TM56M7842_E 1 Rev 0.91, 2025/10

CONTENTS

FEA	TUR	ES	4
SYS	STEM	BLOCK DIAGRAM	7
PIN	ASS	IGNMENT DIAGRAM	8
PIN	DES	CRIPTIONS	10
		IMARY	
		ON DESCRIPTION	
1.		J Core	
1.	1.1	ROM	
	1.2	RAM and special function registers	
	1.3	Program Counter and Stack	
	1.4	ALU and Work (W) Registers	
	1.5	Status Register (STATUS)	
2.		et	
_,	2.1	Power on Reset (POR)	
	2.2	Low Voltage Reset (LVR) (LVR)	
	2.3	External Pin Reset (XRST)	
	2.4	Watchdog Timer Reset (WDT)	
3.	Clo	ck Circuitry and Operation Mode	
	3.1	System Clock	
	3.2	Dual System Clock Modes Transition	27
	3.3	External capacitors	
	3.4	Calculating the ratio of slow clock to fast clock	
4.	Inte	rrupt	
5.		Port	
	5.1	PA0-4, PA7, PB0-7, PD0-7	35
	5.2	Pin Level Change Interrupt Wake-up	41
6.	Peri	pheral Functional Block	43
	6.1	Wakeup Timer (WKT)	43
	6.2	Timer0	45
	6.3	Timer1	49
	6.4	T2	52
	6.5	PWM	54
	6.6	UART	61
	6.7	Analog-to-Digital Converter (ADC)	66
	6.8	Touch buttons	
	6.9	Cyclic Redundancy Check (CRC)	78
ME	MOR	Y MAP	79
INS	TRU	CTION SET	92
ELF	ECTR	ICAL CHARACTERISTICS	106
1.	Abs	olute Maximum Ratings	106
		Characteristics	106

PA (CKAGING INFORMATION	114
7.	Characteristic Graphs	110
	ADC Electrical Characteristics	
5.	LVR Circuit Characteristics	108
4.	Reset Timing Characteristics	108
3.	Clock Timing	107

FEATURES

- 1. ROM: 4K*16-bit Flash program memory
- 2. RAM: 464-bit
- 3. STACK: 8 level
- 4. System clock(Fsys):
 - Supports 1/2/4/8 crossover options
 - Fast-clock
 - Internal RC fast clock(FIRC): 18.432 MHz ±1% @25°C,V_{CC}=5V (can be calibrated)
 - Slow-clock
 - Internal RC slow clock(SIRC): 50 KHz or 60KHz @VCC=5V
 - External slow clock(SXT): 32.768KHz

5. Power Saving Operation Mode

- FAST Mode: Fast-clock keeps CPU running. Slow-clock can be enabled.
- SLOW Mode: Slow-clock keeps CPU running. Fast-clock can be disabled or enabled.
- IDLE Mode: CPU stops. Slow clock enabled. T2 and WKT can be stopped or enabled
- STOP Mode: CPU stops. All clocks stop.

6. I/O port: up to 22 programmable I/O pins

- Open drain output
- CMOS push-pull output
- Schmitt trigger input with pull-up resistor options

7. Timer

- Timer0
 - 8-bit timer with auto-reload/count/interrupt/pause/reset functions
 - Clock source: (Fsys/2 or external pin (PA2) or SXT/16) divided by 1 to 32768
- Timer1
 - 8-bit timer with auto-reload/interrupt/pause functions
 - Clock source: (Fsys/2) divided by 1 to 256
 - Overflow and Toggle out
- T2
 - 15-bit timer with interrupt/reset function
 - Clock source: Slow clock or Fsys/128, with 4 division options
 - Purpose: idle mode wake-up timer or simple 15-bit time base

8. Interrupt

- Timer0 / Timer1 / T2 / WKT / LVD Interrupt
- ADC / TK / UART Interrupt

• All GPIOs support pin level change interrupts (except PD4 and PD5).

9. Wake-up timer (WKT)

• Clocked by built-in RC oscillator with 4 adjustable interrupt times

10. Watchdog Timer (WDT)

• Clocked by built-in RC oscillator with 4 adjustable reset times

11. 6 groups of 16-bit PWM

- PWM clock is system clock (Fsys), FIRC/256, FIRC (18.432 MHz), or FIRC*2 (36.864 MHz)
- Shared cycle, cycle adjustable
- Independent duty cycle, duty cycle adjustable
- PWM0 supports complementary output (PWM0P, PWM0N), with adjustable dead

12. TKTouch Key

- 13 channels
- 3-bit TK reference clock capacitance adjustment
- 8-bit touch key clock frequency selection (fixed frequency or automatic change)
- 14-bit TK scan length adjustment
- Interrupt/wake up CPU when key is pressed

13. UART

- 7/8/9 bits mode TX/RX selectable
- Supported Baud-Rate range from 9600bps to 115200 bps with proper selected oscillation frequency and baud rate clock divide
- Automatic parity generation and detection
- Detects Overrun, Frame Error and Parity Error

14. 14-bit ADC converter

- 21 input channels and 2 internal reference voltages (VBG and 1/4VCC)
- ADC reference voltage: VCC, VBG
- Four voltage options for VBG (1.18V/2V/2.5V/3V), which are determined by the VBGSEL register. 1.18V and 2.5V offer the highest accuracy.

15. Reset

• Power On Reset/Watchdog Reset/Low Voltage Reset/External Pin Reset

16. Low Voltage Reset (LVR) /Low Voltage Detection Flag (LVD) Option

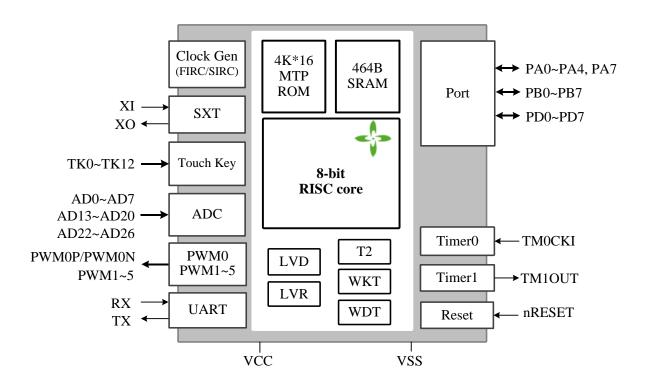
- 16-Level Low Voltage Reset: 1.61V ~ 3.49 V
- 15-Level Low Voltage Detection: 1.87V ~3.49V, 4.3V

17. Operating Voltage : $2.2V \sim 5.5V @ F_{SYS} = 18.432MHz, 25 °C$

- Users must switch the program ROM read signal delay control register RDCTL to "4ns" to increase the minimum operating voltage.
- When powering up, VCC must exceed POR 1.6V and the selected LVR level. Please refer to the "Electrical Characteristics" chapter to avoid entering the ROM dead zone.

18. Operating Temperature Range: -40°C to + 105°C

DS-TM56M7842 E 5 Rev 0.91, 2025/10


- 19. Integrated 16-bit Cyclic Redundancy Check (CRC)
- 20. Table Read Instruction: 16-bit ROM data lookup table
- 21. Instruction set: 43 Instructions
- 22. Instruction Execution Time
 - 2 system clocks (Fsys) per instruction except branch
- 23. Package Types
 - SSOP-24
 - SOP-20
 - SOP-16

24. Supported EV board (ICE)

• EV8278

SYSTEM BLOCK DIAGRAM

TM56M7842

DS-TM56M7842_E 7 Rev 0.91, 2025/10

PIN ASSIGNMENT DIAGRAM

DS-TM56M7842_E 8 Rev 0.91, 2025/10

TM56M78422S:

TM1OUT/PWM0PM/TK0_00/AD0/PB0 1 TCOUT/PWM5M/TK0_01/AD1/PB1 2 TK0_02/AD2/PB2 3 TK0_03/AD3/PB3 4 RX/TK0_04/AD4/PB4 5 TX/TK0_05/AD5/PB5 6 VSS 7 VCC 8	SOP16	16 PA0/AD25/TK0_11/PWM0N 15 PA2/AD26/TK0_12/PWM2/TM0CKI 14 PA1/AD24/TK0_10/PWM1 13 PA3/AD23/TK0_09/PWM3 12 PA4/AD22/TK0_08/PWM4 11 PA7/PWM0P/PWM5/VPP 10 PD0/AD13/XI 9 PD1/AD14/XO
---	-------	--

TM56M78422S1:

VSS 1 PWM0N/TK0_11/AD25/PA0 2 PWM1/TK0_10/AD24/PA1 3 PWM3/TK0_09/AD23/PA3 4	SOP16	16 VCC 15 PB0/AD0/TK0_00/PWM0PM/TM1OUT 14 PB7/AD7/TK0_07 13 PB6/AD6/TK0_06
VPP/PWM5/PWM0P/PA7 5 PWM4/TK0_08/AD22/PA4 6 TK0CKI/PWM2/TK0_12/AD26/PA2 7 TK0_03/AD3/PB3 8	SOP16	12 PB5/AD5/TK0_05/TX 11 PB4/AD4/TK0_04/RX 10 PB1/AD1/TK0_01/PWM5M/TCOUT 9 PB2/AD2/TK0_02

DS-TM56M7842_E 9 Rev 0.91, 2025/10

PIN DESCRIPTIONS

Name	In/Out	Pin Description
nRESET	I	External low-level effective reset
VCC, VSS	P	Power supply input pin and ground
PA7, PA4–PA0	I/O	Bit-programmable I/O port for Schmitt trigger input, CMOS push-pull output, or open-drain output. Pull-up resistors can be assigned by software.
PB7-PB0	I/O	Bit-programmable I/O port for Schmitt trigger input, CMOS push-pull output, or open-drain output. Pull-up resistors can be assigned by software.
PD7-PD0	I/O	Bit-programmable I/O ports for Schmitt trigger inputs, CMOS push-pull outputs, or open-drain outputs. Pull-up resistors can be assigned by software.
PWM0P/PWM0N	O	PWM0 Complementary output
PWM1/PWM2/ PWM3/PWM4/ PWM5	0	PWM1/PWM2/PWM3/PWM4/PWM5 output
PWM0PM	О	The PWM0PSEL register determines whether to change the PWM0P output from PA7 to PB0.
PWM5M	О	The PWM5SEL register determines whether to change the PWM5 output from PA7 to PB1.
AD0~AD7/ AD13~AD20/ AD22~AD26	I	ADC input pin
TK0_0~TK0_12	I	Key module 0 (TKM0) input
TM0CKI	I	Timer0 input pin in counter mode
TCOUT	0	Fsys/2 clock output
TM1OUT	О	Timer1 overflow switch output
XI, XO	-	Connection for quartz crystal resonator for system clock
RX	I	UART receive pin
TX	О	UART transmit pin

Programming pins:

6-wire programming: VCC / VSS / PA0 / PA1 / PB0 / PA7 5-wire programming: VCC / VSS / PA0 / PA1 / PA7

Pin Summary

1	TM1OUT/PWM0PM/TK0_00/AD0/PB0
2	TCOUT/PWM5M/TK0_01/AD1/PB1
3	TK0_02/AD2/PB2
4	TK0_03/AD3/PB3
5	RX/TK0_04/AD4/PB4
6	TX/TK0_05/AD5/PB5
7	TK0_06/AD6/PB6
8	TK0_07/AD7/PB7
9	VSS
10	VCC
11	AD17/PD4
12	AD18/PD5
13	PA0/AD25/TK0_11/PWM0N
14	PA2/AD26/TK0_12/PWM2/TM0CKI
15	PA1/AD24/TK0_10/PWM1
16	PA3/AD23/TK0_09/PWM3
17	PA4/AD22/TK0_08/PWM4
18	PA7/PWM0P/PWM5/VPP
19	PD3/AD16/TX
20	PD2/AD15/RX
21	PD0/AD13/XO
22	PD1/AD14/XI
23	PD7/AD20
24	PD6/AD19

FUNCTION DESCRIPTION

1. CPU Core

1.1 ROM

The ROM can be written to multiple times. The program ROM has a size of $4K \times 16$ and includes an additional 32×16 information ROM.

Under the programmer, when the PROTECT bit in SYSCFG is set to 0, both the program ROM and information ROM can be read and written normally. When the PROTECT bit is set to 1, the program ROM cannot be read, and only the information ROM can be read.

The PROTECT bit can only be cleared after the program ROM has been erased to 0.

	程序ROM		信息ROM		
000	复位向量	000	保留		
004	中断向量	001	系统配置		
005	用户代码区	002	生产信息区		
FFF		1F			

106h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RDCTL	_	_	_	_	_	_	RDO	CTL
R/W	-	-	-	-	-	-	R/W	R/W
Reset	_	_	_	_	_	_	0	1

191h.1~0 **RDCTL:** Program ROM read signal delay control (this feature is not simulated)

00: Program ROM read signal delay 4ns

01: Program ROM read signal delay 8ns

10: Program ROM read signal delay 12ns

11: Program ROM read signal delay 16ns

*For safety reasons, please change the register under a slow clock.

DS-TM56M7842_E 12 Rev 0.91, 2025/10

^{*}Users must switch this register to "4ns" to increase the chip's minimum operating voltage.

1.1.1. Reset Vector (000H)

After reset, system will restart the program counter (PC) at address 000h, all registers will be restored to the default values.

1.1.2. Interrupt Vector (004H)

When an interrupt occurs, the program counter (PC) will be pushed onto the stack and jumps to address $004H_{\circ}$

1.1.3. System Configuration Register (SYSCFG))

The production information area is located at the beginning of the information ROM and stores information such as production code, checksum, and adjustment values. The 16-bit system configuration (SYSCFG) is also located here, as shown in the table below. Many system initial conditions are determined by SYSCFG. The 15th bit of SYSCFG is the code protection selection bit. If this bit is set to 1, the data in the program ROM will be protected and cannot be read.

Bit	Description					
	PROTECT: Code Protection Selection					
15	0	Close				
	1	Enable				
	XRSTE	: External Pin (PA7) Reset Enable				
14	0	Close				
	1	Enable				
	LVR: L	ow Voltage Reset Voltage Option				
	0000	LVR 1.61V				
13~10	0001	LVR 1.74V				
13 10						
	1110	LVR 3.37V				
	1111	LVR 3.49V				
	WDTE:	Watchdog Reset Enable				
9~8	0X	WDT disabled				
9~0	10	WDT enabled in FAST/SLOW mode, disabled in IDLE/STOP mode				
	11	WDT always enabled				
	TKD: T	ouch Function Option				
7	0	Touch function enabled				
	1	Touch function disabled				
	PORSE	L: POR Power-Saving Function Option				
4	0	Disabled				
	1	Enabled. POR operates at 1/8 duty cycle (this feature is not simulated)				
	ATDOF	F: Automatic Transient Detection				
3	0	Enable				
	1	Disable				

System Configuration Area (SYSCFG)

DS-TM56M7842_E 13 Rev 0.91, 2025/10

1.2 RAM and special function registers

The total size of the RAM on this chip is 464 bytes. The Special Function Registers (SFR) and RAM share a 9-bit address for addressing, divided into Banks 0–3 and Bank 4. The addresses F0–FF, 170–17F, and 1F0–1FF in Banks 0–3 all point to the 16-byte addresses 70–7F. Special Function Registers are located in lower positions within Banks 0–3, and some frequently used Special Function Registers, such as STATUS, are designed to be mirrored across multiple Banks to reduce code size and enable faster access. In addition to direct addressing, RAM also supports indirect addressing access.

	BANK0		BANK1		BANK2		BANK3		BANK4
	00~7Fh		80h~FFh		100h~17Fh		180h~1FFh		00~7Fh
00h	INDF0	80h	INDF0	100h	INDF0	180h	INDF0	00h	
01h	TM0	81h	OPTION	101h	TM0	181h	OPTION		
02h	PCL	82h	PCL	102h	PCL	182h	PCL		
03h	STATUS	83h	STATUS	103h	STATUS	183h	STATUS		
04h	FSR	84h	FSR	104h	FSR	184h	FSR		
05h	PAD	85h	PAMODH	105h	TESTREG	185h	DPL		
06h	PBD	86h	PAMODL	106h	RDCTL	186h	DPH		
07h	-	87h	PBMODH	107h	LVRPD	187h	UARTCTL		
08h	PDD	88h	PBMODL	108h	-	188h	UARTSTA		
09h	INDF1	89h	INDF1	109h	INDF1	189h	INDF1		
0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah	PCLATH		
0Bh	INTIE	8Bh	INTIE	10Bh	INTIE	18Bh	INTIE		
0Ch	INTIF	8Ch	-	10Ch	PCH	18Ch	TABR		
0Dh	FSR1	8Dh	PDMODH	10Dh	UBAUD	18Dh	URDATA		
0Eh	INTIE1	8Eh	PDMODL	10Eh	BGTRIM	18Eh	CRCDL		
0Fh	CLKCTL	8Fh	OPTION2	10Fh	IRCF	18Fh	CRCDH		
10h	TM0RLD	90h	PWMOE	110h	-	190H	CRCIN		
11h	TM0CTL	91h	PWMCTL	111h	-	191h	-		
12h	TM1	92h	PWMPRDH	112h	_	192h	-		SRAM
13h	TM1RLD	93h	PWMPRDL	113h	_	193h	-		128 Bytes
14h	TM1CTL	94h	PWM0DH	114h	_		TKM0TMRL		120 D j tes
15h	T2CTL	95h	PWM0DL	115h	_		TKM0TMRH		
16h	LVCTL	96h	PWM1DH	116h	TKM0DL	196h	-		
17h	ADCDH	97h	PWM1DL	117h	TKM0DH	197h	-		
18h	ADCTL	98h	PWM2DH	118h	ATKUBL	198h			
19h	ADCTL2	99h	PWM2DL	119h	ATKUBH	199h			
1Ah	INTIF1	9Ah	PWM3DH	11Ah	ATKLBL		TKM0REFC		
1Bh	-	9Bh	PWM3DL	11Bh	ATKLBH	19Bh	SFR19B		
1Ch	PAWKE	9Ch	PWM4DH	11Ch	TKMCON0	19Ch	ATKCON		
1Dh	PBWKE	9Dh	PWM4DL	11Dh	TKMCON1	19Dh	TKMCHS		
1Eh	-	9Eh	PWM5DH	11Eh	TKMCTL0	19Eh	-		
1Fh	PDWKE	9Fh	PWM5DL	11Fh	TKMCTL1	19Fh	-		
20h		A0h		120h		1A0h			
	SRAM		SRAM		SRAM		SRAM		
	80 Bytes		80 Bytes		80 Bytes		80 Bytes		
6Fh		EFh		16Fh		1EFh			
70h		F0h		170h		1F0h			
	SRAM		accesses		accesses		accesses		
	16 Bytes		70h~7Fh	4.5	70h~7Fh	4	70h~7Fh		
7Fh		FFh		17Fh		1FFh		7Fh	

Special Function Registers (SFR) and RAM

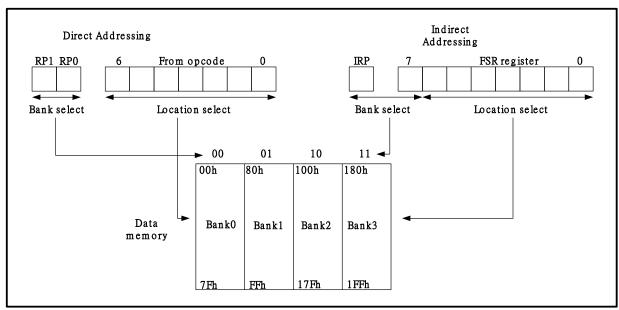
1.2.1 Addressing Mode

Direct addressing of BANK0~3:

When directly addressing special function registers (SFR) and RAM, RP1 and RP0 represent the most significant bit and second most significant bit of the address, respectively, which together with the 7-bit address supported by the direct addressing instruction constitute a 9-bit effective address. In other words, the two register bits RP1 and RP0 determine which BANK to point to.

RP1,RP0	BANK
(03h.6~5)	
00	0
01	1
10	2
11	3

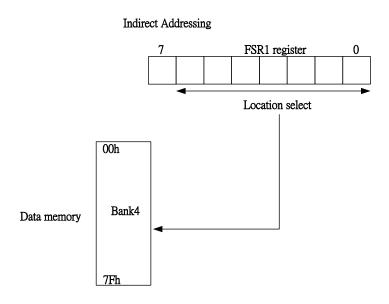
When users use the new instruction set, keeping RP0=RP1=0 allows them to ignore the BANK position of the register and save code size. By replacing the "F" in the old instruction with "X," the old instruction can be easily replaced with the new instruction.


BC F	TM0IE	→	BCX	TM0IE
DECF	CNT, 1	→	DECX	CNT,1
INCFSZ	RAM25, 0	→	INCXSZ	RAM25, 0
MOVWF	PAMODL	→	MOVWX	PAMODL
RLF	RAMA0, 0	→	RLX	RAMA0, 0
SWAP F	ADCTL, 0	→	SWAPX	ADCTL, 0

Indirect addressing between BANK0 and BANK3:

When RAM is accessed via indirect addressing, the IRP register represents the most significant bit of the address. Together with the FSR register, the IRP register forms a 9-bit effective address. Indirect addressing is achieved by using the FSR register and the INDF register. The FSR represents the pointer and stores the address. The INDF is not a physical register; any instruction using INDF actually accesses the memory pointed to by the FSR.

DS-TM56M7842_E 15 Rev 0.91, 2025/10



BANK0/1/2/3 Direct/indirect addressing

BANK4 Indirect Addressing:

RAM can achieve indirect addressing by using the FSR1 register and the INDF1 register. FSR1 represents the pointer and stores the address. INDF1 is not a physical register; any instruction that uses INDF1 actually accesses the memory pointed to by FSR1.

BANK4 Indirect Addressing

DS-TM56M7842_E 16 Rev 0.91, 2025/10

Example: Use direct addressing (RP0=RP1=0) to read/write registers for bank0/1/2/3.

```
TM1
                  equ
                         12h
                                 ;SFR in Bank0
PWM1DH
                         96h
                                 :SFR in Bank1
                  equ
TKMCTL1
                         11Fh
                                 ;SFR in Bank2
                  equ
TKM0TMRL
                         194h
                                 ;SFR in Bank3
                  equ
                         20h
                                 ;RAM in Bank0
RAM20
                  equ
RAMA0
                         A0h
                                 ;RAM in Bank1
                  equ
RAM120
                         120h
                                 ;RAM in Bank2
                  equ
                         1A0h
                                 ;RAM in Bank3
RAM1A0
                  equ
```

MOVXW TM1 ; read TM1 (Bank0) to W MOVXW PWM1DH ; read PWM1PRD (Bank1) to W MOVXW TKMCTL1 ; read TKMCTL1 (Bank2) to W MOVXW TKM0TMRL ; read TKM0TMRL (Bank4) to W

MOVLW 16h

 $\begin{array}{lll} MOVWX & RAM20 & ; W=16h \ Write \ to \ RAM[0x20] \\ MOVWX & RAMA0 & ; W=16h \ Write \ to \ RAM[0xA0] \\ MOVWX & RAM120 & ; W=16h \ Write \ to \ RAM[0x120] \\ MOVWX & RAM1A0 & ; W=16h \ Write \ to \ RAM[0x1A0] \end{array}$

MOVLW 037H ; W=37H

MOVWX LVRPD ; force LVR+POR close

♦ Example: Use indirect addressing (RP0=RP1=0, IRP=1) to read/write registers for bank2/3.

```
BSX IRP ; IRP=1 =>Bank2/3
```

MOVLW 1Fh ; W=1Fh

MOVWX FSR ; FSR = W = 10h

MOVXW INDF ; read SFR TKMCTL1 (11Fh) to W

BSX IRP ; IRP=1 => Bank2/3

 $\begin{array}{lll} MOVLW & 1Fh & ; W=1Fh \\ MOVWX & FSR & ; FSR=W=1Fh \end{array}$

MOVLW 37h ; W=37h

MOVWX INDF ; TKMCTL1 (11FH) = W = 37h

♦Example: Use indirect addressing (RP0=RP1=0, IRP=0) to read/write registers using bank0/1.

BCX IRP ; IRP=0 => Bank0/1

MOVLW 10h ; W=10h

 $MOVWX \quad FSR \qquad \qquad ; FSR = W = 10h$

MOVXW INDF ; read SFR TM0RLD (10h) to W

BCX IRP ; $IRP=0 \Rightarrow Bank0/1$

MOVLW 10h ; W=10h

 $MOVWX \quad FSR \qquad \qquad ; FSR = W = 10h$

MOVLW 37h ; W=37h

MOVWX INDF ; TM0RLD (10h) = W = 37h

DS-TM56M7842_E 17 Rev 0.91, 2025/10

♦Example: Use indirect addressing to read/write registers using bank4.

; Write data to BANK4 memory

MOVLW 20h ; W=20h

 $MOVWX \quad FSR1 \qquad \qquad ; FSR1 = W = 20h$

MOVLW 5Ah ; W=5AH

MOVWX INDF1 ; Write data 5AH to BANK4 memory @20h

; Write data to BANK5 memory

MOVLW A7h ; W=A7h

MOVWX FSR1 ; FSR1 = W = A7h

MOVLW 69h ; W=69h

MOVWX INDF1 ; Write data 69h to BANK5 memory @A7h

; Read data from BANK4 memory

MOVLW 20h ; W=20h

MOVWX FSR1 ; FSR1 = W = 20h

MOVXW INDF1 ; Write data BANK4 data @20h to W

00h/80h/100h/180h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
INDF		INDF										
R/W		R/W										
Reset		0										

00h/80h/100h/ INDF: Used for indirect addressing between bank0 and bank3.

180h.7~0 It is not a physical register; any instruction that uses INDF actually accesses the memory poi

nted to by FSR.

04h/84h/104h/184h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
FSR		FSR									
R/W		R/W									
Reset		0									

04h/84h/104h/ **FSR:** Used for indirect addressing between bank0 and bank3.

184h.7~0 FSR stands for pointer, which stores addresses. Any instruction that uses INDF actually acc

esses the memory pointed to by FSR.

09h/89h/109h/189h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
INDF1		INDF1										
R/W		R/W										
Reset	0											

09h/89h/109h/ INDF1: Used for indirect addressing of bank 4.

189h.7~0 This is not a physical register; any instruction that uses INDF1 actually accesses the memo

ry pointed to by FSR1.

0Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
FSR1		FSR1											
R/W				R/	W								
Reset		•	0										

0Dh.7~0 **FSR1:** Used for indirect addressing of bank 4.

FSR1 represents a pointer that stores an address. Any instruction that uses INDF1 actually acce es the memory pointed to by FSR1.

1.3 Program Counter and Stack

1.3.1. Program Counter (PC)

The program counter is 12 bits wide and is used to address a 4Kx16 program ROM.

When executing a program instruction, the program counter contains the address of the next program instruction to be executed. The program counter value typically increments by 1 continuously unless a reset, interrupt, call, jump, or return instruction is encountered.

The initial reset vector (000h) and interrupt vector (004h) are used for program counter initialization and interrupt events. For return (RET/RETI/RETLW) instructions, the program counter retrieves its contents from the top of the stack. For call (CALL) and jump (GOTO) instructions, the lower 11 bits of the program counter are obtained from the instruction code, and the most significant bit of the program counter is obtained from the PCLATH.3 register. Therefore, before executing a CALL/GOTO instruction, if the target address is greater than 2K, the PCLATH.3 register must be set; otherwise, the PCLATH.3 register remains at 0.

For users who use assembly code, the chip also provides new LCALL/LGOTO instructions to replace the CALL/GOTO instructions. When using the new instructions, users do not need to worry about the destination address; they only need to keep PCLATH.3 at 0. The instruction replacements are as follows.

CALL	TABLE	→	L CALL	TABLE
GOTO	TABLE	→	LGOTO	TABLE

Users can read PC[11:8] (i.e., the upper 4 bits of the program counter) via the PCH register.

Users can read and write PC[7:0] (i.e., the lower byte of the program counter) via the PCL register.

When the CPU executes any instruction that modifies the PCL register, PC[11:8] is defaulted by the PCLATH register. For users working with assembly code, this default behavior can be altered. After writing 1Ch to the PCH register, when the CPU executes any instruction that modifies the PCL, PC[11:8] remains unchanged, facilitating lookup table operations for users.

1.3.2. STACK

The stack is 12 bits wide and 8 levels deep, used to store the addresses of program instructions. When a call (CALL/LCALL) instruction is executed or an interrupt event occurs, the instructions are pushed onto the stack in order. Following the last-in, first-out (LIFO) principle, when a return (RET/RETI/RETIW) instruction is executed, the instructions are popped off the stack in order.

002h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
PCL	PCL											
R/W		R/W										
Reset	0	0	0	0	0	0	0	0				

002h.7~0 **PCL:** PC[7:0], i.e., the lower byte of the program counter.

00Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PCLATH		Gl	PR		PCLATH				
R/W		R/	W			R/	W		
Reset	0	0	0	0	0	0	0	0	

00Ah.3~0 **PCLATH:** PC[11:8] (i.e., the upper 4 bits of the program counter) is written to the buffer register. When the CPU executes any instruction that modifies the PCL register, PC[11:8] is provided by the PCLATH register by default. This function can be disabled by the PCH register.

10Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
PCH		PCH										
R/W		V	V			R/	W					
Reset	0	0	0	0	0	0	0	0				

10Ch.7~0 **PCH:** (read)

(Only available to users of assembly language; not applicable to users of C language)

After writing 1Ch to this register, when the CPU executes any instruction that modifies the PCL,

PC[11:8] remains unchanged.

After writing other values to this register, when the CPU executes any instruction that modifies the PCL, PC[11:8] is provided by the PCLATH register.

10Ch.3~0 **PCH:** (write)

Read PC[11:8], i.e., the upper 4 bits of the program counter.

DS-TM56M7842_E 20 Rev 0.91, 2025/10

1.4 ALU and Work (W) Registers

The ALU is 8 bits wide and can perform addition, subtraction, shifting, and logical operations. In two-operand instructions, one operand is typically the W register, which is an 8-bit non-addressable register used for ALU operations. The other operand is either a file register or a direct constant. In a single-operand instruction, the operand is either the W register or a file register. Depending on the instruction being executed, the ALU may affect the values of the carry (C), carry-done (DC), and zero (Z) flags in the status register. The C and DC flags also serve as the borrow and half-borrow flags for subtraction, respectively.

*The borrow state is the opposite of the borrow value. The half-borrow state is the opposite of the half-borrow value.

1.5 Status Register (STATUS)

This register contains the arithmetic status and reset status of the ALU. Like other registers, the STATUS register can be the destination of any instruction. If the STATUS register is the destination of an instruction that affects the Z bit, DC bit, or C bit, then write operations to these three bits will be disabled. These bits will be set or cleared according to device logic. Therefore, it is recommended to use only the BCX, BSX, and MOVWX instructions to modify the STATUS register, as these instructions do not affect these bits.

STATUS	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W					
Reset	0	0	0	0	0	0	0	0					
Bit				Descr	iption								
7	0 = Bank	RP: The register is located in the Bank selection bit (used for indirect addressing). 0 = Bank 0,1 (00h - FFh) 1 = Bank 2,3 (100h - 1FFh)											
6~5	$00 = Ban^{2}$ $01 = Ban^{2}$ $10 = Ban^{2}$	RP1:RP0 : Register located in the Bank selection bit (used for direct addressing) 00 = Bank 0 (000h - 07Fh) 01 = Bank 1 (080h - 0FFh) 10 = Bank 2 (100h - 17Fh) 11 = Bank 3 (180h - 1FFh)											
4	0: After p	TO: Timeout flag 0: After power-on reset or CLRWDT/SLEEP instruction 1: WDT timeout											
3				DT instruction	on								
2	1: The res	sult of the lo sult of the lo	gical operati		0.								
1	0: No car	DC: Decimal carry flag or borrow flag ADD instruction 0: No carry 1: Carry in lower half byte SUB instruction 0: Low half-byte has borrow position 1: No borrow position											
0		ng or borrow ADD ins	flag			SUB instance SUB i							

♦Example: Write immediate data to the status register STATUS register

MOVLW 00h

MOVWX STATUS ; Clear the STATUS register

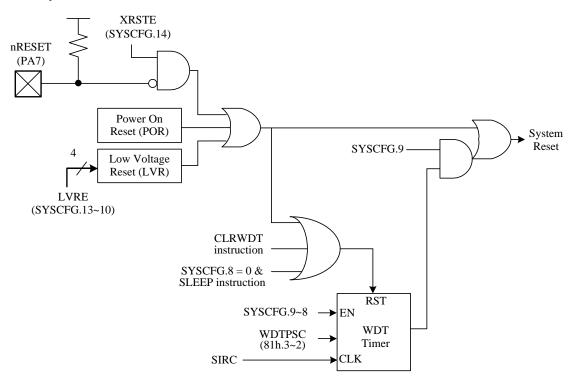
♦ Example: Bit addressing, setting and clearing the STATUS register.

 $\begin{array}{lll} BSX & STATUS, 0 & ; Setup C=1. \\ BCX & STATUS, 0 & ; Setup C=0. \end{array}$

♦Example: Determine the C flag using the BTXSS instruction.

BTXSS STATUS, 0 ; Check the carry flag LGOTO LABEL_1 ; If C=0, go to label_1 LGOTO LABEL_2 ; If C=1, go to label_2

DS-TM56M7842_E 22 Rev 0.91, 2025/10



2. Reset

The chip can be reset in four ways.

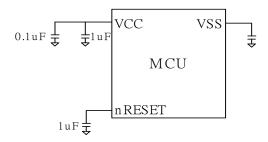
- Power-on reset (POR)
- Low voltage reset (LVR)
- External pin reset (XRST)
- Watchdog Reset (WDTR)

After a reset, the program counter (PC) is cleared, the system starts running from reset vector 000h, and the registers return to their default values. The TO and PD flags at status register (STATUS) are indicate system reset status.

2.1 Power on Reset (POR)

After Power-On-Reset, all system and peripheral control registers are then set to their default hardware Reset values.

2.2 Low Voltage Reset (LVR) (LVR)


The function of low voltage reset is to perform static reset when the power supply voltage is below the threshold level. 16 threshold levels can be selected. The voltage threshold for the low voltage reset function is defined by SYSCFG.

DS-TM56M7842_E 23 Rev 0.91, 2025/10

2.3 External Pin Reset (XRST)

The external reset pin is valid for low, which must be longer than 2 SIRC (Slow Internal RC) clock cycles to be detected by the chip. The external pin reset feature can be disabled or enabled by configuring SYSCFG.

2.4 Watchdog Timer Reset (WDT)

The watchdog cycle can be selected by the WDTPSC register. The watchdog timer clock is provided by SIRC (slow internal RC), and the watchdog timer value is cleared by other resets or by the CLRWDT instruction. The watchdog overflow reset function can be disabled or enabled by setting SYSCFG.

♦ Example: Clear the watchdog timer using the CLRWDT instruction.

MAIN:

... ; execution program

CLRWDT ; Execute CLRWDT instruction.

• • •

GOTO MAIN

81h/181h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	HWAUTO	INT0EDG	FINTIEGE FREQL WDTPSC WKTF		WDTPSC		PSC	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	1	1	1	1	1

81h.4 **FREQL:** SIRC frequency selection

0: 60KHz

1: 50KHz

81h.3~2 **WDTPSC:** Watchdog cycle

FREQL=1:

00: 188ms@3V, 169ms@5V 01: 371ms@3V, 333ms@5V

10: 749ms@3V, 668ms@5V

11: 1492ms@3V, 1355ms@5V

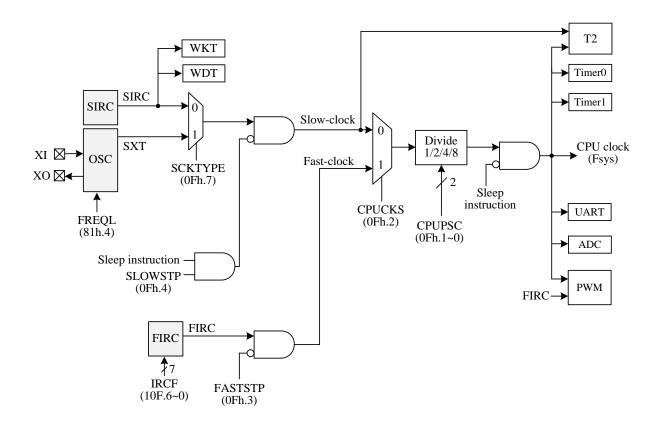
FREQL=0:

00: 147ms@3V, 135ms@5V

01: 293ms@3V, 272ms@5V

10: 580ms@3V, 529ms@5V

11: 1180ms@3V, 1058ms@5V


3. Clock Circuitry and Operation Mode

3.1 System Clock

The device features a dual-clock system design. There are two clock sources: the slow clock (Slow-clock) and the fast clock (Fast-clock). The fast clock is the FIRC (Fast Internal RC), and its frequency can be adjusted via the IRCF register. The slow clock can be selected via the SCKTYPE register to use either SIRC (Slow Internal RC) or SXT (Slow External Crystal Oscillator, 32 kHz). If FREQL (81h.4) is set to 0, the SIRC frequency can be switched from 50 kHz to 60 kHz. After a system reset, the CPU clock operates in slow mode with the slow clock set to SIRC.

The CLKCTL register controls the operation of the system clock. The hardware automatically prevents software from making abnormal settings to this register. It is recommended that users use a bitwise write method to modify the CLKCTL register.

The Timer0 and Timer1 modules are driven by Fsys. The T2 module can be driven by either the slow clock or Fsys/128 by setting the T2CKS register. The PWM module can be driven by Fsys, FIRC/256, FIRC (18.4 MHz), or FIRC*2 (36.8 MHz) by setting the PWMCKS register.

Clock Scheme Block Diagram

DS-TM56M7842_E 25 Rev 0.91, 2025/10

Fast Mode (FAST):

The CPU clock (Fsys) is the fast clock.

Slow Mode (SLOW):

The CPU clock (Fsys) is the slow clock.

The fast clock can be set to stop or run via the FASTSTP register.

After device reset, this mode is entered with the slow clock set to "SIRC".

Idle Mode (IDLE):

The CPU clock (Fsys) is stopped. The slow clock remains active.

If SLOWSTP (0Fh.4) is 0 or WKTIE (0Bh.3) is 1 or WDTE (SYSCFG.9~8) is 3, the chip enters idle mode after executing the SLEEP instruction.

If T2CKS is 0, T2 can be used to wake the device from Idle mode.

If WKTIE is 1, WKT can be used to wake the device from Idle mode.

The touch key can be used to wake the device from Idle mode.

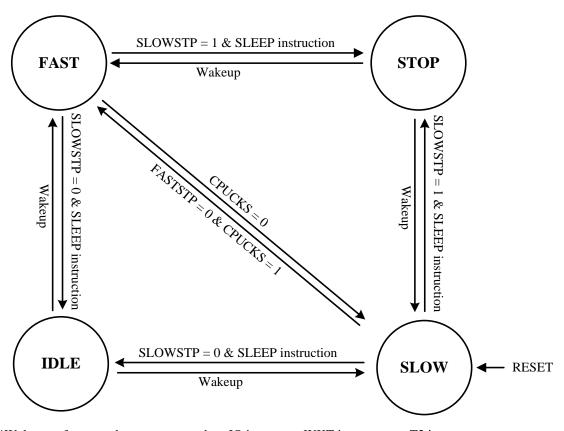
The pin interrupt (PXIF) can be used to wake the device from Idle mode.

Stop Mode (STOP):

The CPU clock (Fsys) stops. All clocks in the device stop.

If SLOWSTP (0Fh.4) is 1, WKTIE (0Bh.3) is 0, and WDTE (SYSCFG.9~8) is not 3, the chip will enter stop mode after executing the SLEEP instruction. If both the LVRSAV register and the LVDSAV register are set to 1, the lowest power consumption can be achieved.

The touch key can be used to wake the device from Stop mode.


The pin interrupt (PXIF) can be used to wake the device from Stop mode.

DS-TM56M7842_E 26 Rev 0.91, 2025/10

3.2 Dual System Clock Modes Transition

The device is operated in one of four modes: FAST mode, SLOW mode, IDLE mode, and STOP mode

*Wakeup refers to wake-up events such as IO interrupts, WKT interrupts, or T2 interrupts.

Clock system switching

_			Clock by	stelli Swittlilli	•		
Mode	Fsys	Fast-clock	Slow-clock	Timer0 Timer1	T2	Wakeup event (WKT)	Wakeup event
FAST	Fast-clock	Run	Run	Run	Run	Set by WKTIE	-
SLOW	Slow-clock	Set by FASTSTP	Run	Run	Run	Set by WKTIE	-
IDLE	ı	Stop	Run	Stop	Set by T2CKS	Set by WKTIE	IO/WKT/T2
STOP	-	Stop	Stop	Stop	Stop	Stop	IO

Clock Mode and Power Consumption Control

DS-TM56M7842_E 27 Rev 0.91, 2025/10

• Switch from FAST mode to SLOW mode

Perform the following steps in order:

Enable Slow-clock (SLOWSTP=0)

Switch to Slow-clock (CPUCKS=0)

Stop Fast-clock (FASTSTP=1)

♦ Example: Switch from FAST mode to SLOW mode.

BCX SLOWSTP ; enable Slow-clock

NOP

BCX CPUCKS ; Fsys=Slow-clock BSX FASTSTP ; close Fast-clock

• Switch from SLOW mode to FAST mode

Perform the following steps in order:

Enable Fast-clock (FASTSTP=0)

Switch to Fast-clock (CPUCKS=1)

♦ Example: Switch from SLOW mode to FAST mode.

BCX FASTSTP ; enable Fast-clock.

NOP

BSX CPUCKS ; Fsys=Fast-clock

• Enter IDLE mode from FAST/SLOW mode

Perform the following steps:

Execute the sleep command (SLEEP)

♦ Example: Switch the FAST/SLOW mode to IDLE mode

BCX SLOWSTP ; enable Slow-clock SLEEP ; Enter IDLE mode

• Enter STOP mode from FAST/SLOW mode

Perform the following steps:

Stop slow clock (SLOWSTP=1)

Stop WKT (WKTIE=0)

Execute sleep command (SLEEP)

♦ Example: Switch FAST/SLOW mode to STOP mode

BSX SLOWSTP ; close Slow-clock. MOVLW 0000<u>0</u>000B ; close WKT

MOVWX INTIE

SLEEP ; Enter STOP mode

0Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCTL	SCKTYPE	_	_	SLOWSTP	FASTSTP	CPUCKS	CPU	PSC
R/W	R/W	_	_	R/W	R/W	R/W	R/W	R/W
Reset	0	-	-	0	1	0	1	1

0Fh.7 **SCKTYPE:** Slow clock type. This bit can only be changed in FAST mode (CPUCKS=1).

 $0 \cdot SIRC$

1: SXT, PD0 and PD1 are crystal oscillator pins.

0Fh.4 **SLOWSTP**: turn off the slow clock

0: Slow clock continues to run after the SLEEP instruction.

1: If no other peripheral function blocks use the slow clock, the slow clock stops running after the

SLEEP instruction.

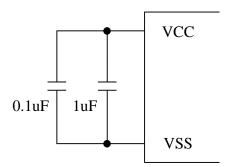
0Fh.3 **FASTSTP**: Turn off the fast clock.

0: System clock is slow, fast clock remains running

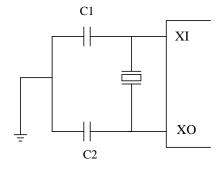
1: System clock is slow, fast clock is turned off

0Fh.2 **CPUCKS**: System clock source selection

0: Slow clock


1: Fast clock

0Fh.1~0 CPUPSC: System clock source prescaler. System clock source


00: Divide by 8 01: Divide by 4 10: Divide by 2 11: Divide by 1

3.3 External capacitors

The system clock can operate in three different oscillation modes: FIRC, SIRC, and SXT. Since power supply noise reduces the performance of the clock oscillator, placing 1 uF and 0.1 uF power bypass capacitors close to the VCC/VSS pins can improve the stability of the clock and the entire system.

Power supply bypass capacitor

Crystal oscillator and matching capacitor

3.4 Calculating the ratio of slow clock to fast clock

Allow users to calculate the current ratio of slow clock to fast clock. Given the fast clock frequency, the slow clock rate can be calculated. The sampling time is fixed at 1 slow clock cycle, during which the Timer0 counter is occupied, and the count value can be obtained from register TM0.

The formula is as follows:

Slow clock period = TM0 value \times 2 \times fast clock period

For example, if the fast clock period is known to be 54.25 ns, and the TM0 value obtained after sampling is 205, the current slow clock period can be calculated as $205 \times 2 \times 54.25 = 22,242$ ns.

Example program:

```
;---- The system clock must be set to the fast clock -----
             faststp
    bcx
    bsx
              cpucks
    bcx
             tm0stp
                      ; Keep the Timer0 pause control bit at 0
                       ; During the period when cfen is 1, the Timer0 clock source switches
    bsx
             cfen
from the system clock to the internal fast clock
                       ; During the period when cfen is 1, user input to Timer0 is not accepted
    bsx
             tm0clr
                       ; Timer0 value reset to zero
    bcx
             tm0clr
    bsx
              cfst
                       ; Start sampling
cfwait:
    btxsc
             cfst
                      ; Waiting for sampling
    lgoto
             cfwait
                       ; Read the Timer0 count value after completing
    movxw
             tm0
```

DS-TM56M7842_E 30 Rev 0.91, 2025/10

19Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SFR19B	CFEN	CFST	TM0CLR	ULEDMASK	TXSEL	RXSEL	PWM0PSEL	PWM5SEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

19Bh.7 **CFEN**: Capture frequency function enabled.

When CFEN=1, the hardware switches the clock source of the Timer0 counter to the fast clock.

19Bh.6 **CFST**: Capture frequency function start flag.

CFST=1 starts sampling, and the hardware automatically clears this bit when sampling is complete.

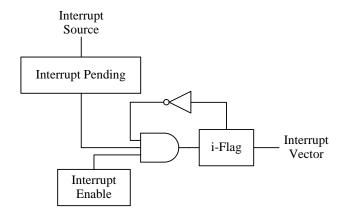
19Bh.5 **TM0CLR:** Timer0 reset. Resets Timer0 to zero.

01h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TM0		TM0							
R/W									
Reset	0	0	0	0	0	0	0	0	

01h.7~0 **TM0:** Timer0 data

11h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0CTL	T0ISRC	TM0STP	TM0EDG	TM0CKS	TM0PSC			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

11h.6 **TM0STP:** Timer0 counter pause


0: Timer0 running 1: Timer0 paused

4. Interrupt

This chip has 1 level, 1 vector, and 9 interrupt sources. Each interrupt source has its own interrupt enable bit in the register. An interrupt event will set its own suspend flag, regardless of whether its enable control bit is 0 or 1.

If the corresponding register interrupt enable bit (INTIE/INTIE1) is set, it will trigger a CPU service interrupt. The CPU accepts the interrupt at the end of the current instruction cycle. Simultaneously, an "LCALL 004" instruction is inserted into the CPU, and the i-Flag is set to prevent recursive interrupt nesting. The i-Flag is cleared in the instruction following the "RETI" instruction. In other words, at least one instruction in the main program must be executed before the service suspend interrupt. After the interrupt event is triggered, the F/W must clear the interrupt event flag on its own.

0Bh/8Bh/10Bh/18Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	-	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

INTIE.7 **ADCIE:** ADC interrupt enable

0: Disabled1: Enabled

INTIE.6 **T2IE:** T2 Interrupt Enable

0: Disabled1: Enabled

INTIE.5 TM1IE: Timer1 interrupt enable

0: Disable 1: Enable

INTIE.4 TM0IE: Timer0 interrupt enable

0: Disable 1: Enable

INTIE.3 WKTIE: Wake-up timer interrupt enable and wake-up timer enable

0: Disabled1: Enabled

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	-	-	-
R/W								
Reset	0	0	0	0	0	0	0	0

OCh.7 **ADCIF:** ADC interrupt event suspend flag

Set by H/W after ADC conversion is complete. Writing 0 to this bit clears the flag.

OCh.6 **T2IF:** T2 Interrupt Event Suspend Flag

Set by H/W when T2 overflows. Writing 0 to this bit clears the flag.

0Ch.5 **TM1IF:** Timer1 interrupt event suspend flag

Set by H/W when Timer1 overflows. Writing 0 to this bit clears the flag.

0Ch.4 **TM0IF:** Timer0 interrupt event suspension flag

Set by H/W when Timer0 overflows. Writing 0 to this bit clears the flag.

0Ch.3 **WKTIF:** Timer0 interrupt event suspension flag

Set by H/W when Timer0 overflows. Writing 0 to this bit clears the flag.

0Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE1	LVDIE	-	-	-	TKIE	-	UARTIE	PXIE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

0Eh.7 LVDIE: LVD interrupt enable

0: Disabled 1: Enabled

0Eh.3 **TKIE:** Touch key interrupt enable

0: Disabled 1: Enabled

0Eh.1 **UARTIE:** UART TX/RX Full Interrupt Enabled

0: Disabled 1: Enabled

0Eh.0 **PXIE:** Pin change wake-up interrupt enable

0: Disabled 1: Enabled

1Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF1	LVDIF	-	-	TKM0IF	TKIF	-	UARTIF	PXIF
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

1Ah.7 **LVDIF:** Low voltage detection interrupt suspend flag

This bit is set by H/W. Writing 0 to this bit with S/W will clear this flag.

1Ah.4 **TKM0IF:** Touch key module 0 interrupt suspend flag

This is set by H/W after the TK0 conversion is complete.

S/W Writing 0 to this bit, writing 0 to TKIF, and writing 1 to TKM0SOC will all clear this flag.

1Ah.3 **TKIF:** Touch key interrupt hang flag

This is set by H/W after ATK or TKM0 conversion is complete.

S/W Writing 0 to this bit or writing 1 to TKM0SOC will clear all touch key interrupt flags.

1Ah.1 **UARTIF:** UART interrupt suspend flag

When TX/RX transmission is complete, this bit is set by H/W. Writing 0 to this bit clears the flag.

1Ah.0 **PXIF:** Pin Change Interrupt Suspend Flag

This bit is set by H/W, and the corresponding pin change will clear the flag by writing 0 to this bit.

113h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
I2CFLG	-	-	TXD1F	TXD0F	RCD10VF	RCD1F	RCD0OVF	RCD0F
R/W	-	-	R/W	R/W	R/W	R/W	R/W	R/W
Reset	-	-	0	0	0	0	0	0

113h.5 **TXD1F:** I2C data transmission register 1 flag

When I2CTXD1 data transmission is complete, this bit is set by H/W. Writing 0 to this bit will clear the flag.

113h.4 **TXD0F:** I2C data transmission register 0 flag

When I2CTXD0 data transmission is complete, this bit is set by H/W. Writing 0 to this bit clears the flag.

113h.3 **RCD10VF:** Receive data register 1 overflow from I2C

This bit is set by H/W when receiving I2CRCD1 overflow. Writing 0 to this bit will clear this flag.

113h.2 **RCD1F:** Receive data register 1 flag from I2C

When data reception to I2CRCD1 is complete, this bit is set by H/W. Writing 0 to this bit clears the flag.

113h.1 **RCD0OVF:** Receive data register 0 overflow from I2C

This bit is set by H/W when receiving I2CRCD0 overflow. Writing 0 to this bit will clear this flag.

113h.0 **RCD0F:** Receive data register 0 flag from I2C

When data reception to I2CRCD0 is complete, this bit is set by H/W. Writing 0 to this bit clears the flag.

5. I/O Port

5.1 PA0-4, PA7, PB0-7, PD0-7

The chip has multiple pin modes, which are defined by registers PAMODx, PBMODx, and PDMODx. Pin data is defined by registers PAD, PBD, and PDD. Its functions are shown in the table below.

Pin Mode	Pin Data	Description	Digital Output Switch	Digital Input Switch
Mode 0	0	Low output	ON	OFF
Wiode 0	1	Input with pull-up resistor	OFF	ON
Mode 1	0	Low output	ON	OFF
Wiode 1	1	High impedance input	OFF	ON
Mode 2	0	CMOS low output	ON	OFF
Wiode 2	1	CMOS high output	ON	OFF
Mode 3	X	High impedance, for analog signals:	OFF	OFF

GPIO Function Table

Mode 1 disables digital output and enables digital input, while Mode 3 disables both digital output and digital input. Both Mode 1 and Mode 3 can be used for analog signals, but Mode 1, which enables digital input, may consume more power when used for analog signals. It is recommended to use pin mode 3 for analog signals such as ADC/VBGO.

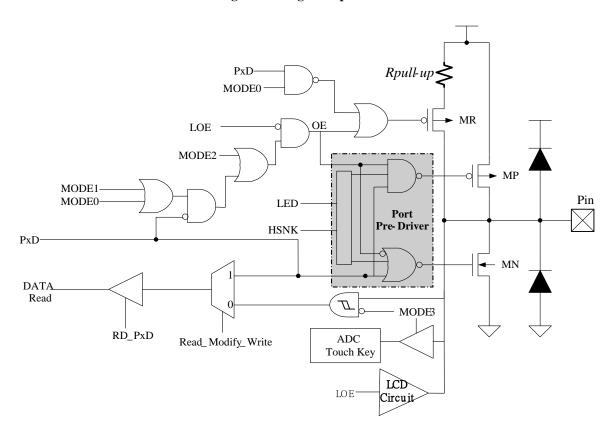
All general-purpose I/O (GPIO) pins default to pin mode 1 with pin data set to 1, i.e., high-impedance state, to prevent voltage conflicts between the pins and external circuits after power-on. For low-power applications, all digital pins (including unused or unrouted pins) should avoid being set to high-impedance state.

Reading pin data (PxD) has different meanings under different instructions. In "Read-Modify-Write" instructions, the CPU actually reads the output data register. In other instructions, the CPU reads the pin state.

DS-TM56M7842_E 35 Rev 0.91, 2025/10

In addition to I/O port functions, each pin has one or more alternative functions, such as ADC and touch keys.

Pin Name	ADC	Touch Key	PWM	Other
PA0	AD25	TK0_11	PWM0N	
PA1	AD24	TK0_10	PWM1	
PA2	AD26	TK0_12	PWM2	TM0CKI
PA3	AD23	TK0_9	PWM3	
PA4	AD22	TK0_8	PWM4	
PA7	-	-	PWM0P/ PWM5	nRESET
PB0	AD0	TK0_0/ATK	PWM0P	TM1OUT
PB1	AD1	TK0_1	PWM5	TCOUT
PB2	AD2	TK0_2		
PB3	AD3	TK0_3		
PB4	AD4	TK0_4		RX
PB5	AD5	TK0_5		TX
PB6	AD6	TK0_6		
PB7	AD7	TK0_7		
PD0	AD13			XI
PD1	AD14			XO
PD2	AD15			RX
PD3	AD16			TX
PD4	AD17			
PD5	AD18			
PD6	AD19			
PD7	AD20			


GPIO Optional features menu

Other Functions	Pin Mode	Pin Data	Description	Other Necessary Register Settings
TM0CKI	0	1	Input with pull-up resistor	TM0CTL
TWOCKI	1	1	Input high impedance state	TMOCTE
RX	0	1	Input with pull-up resistor	UARTCTL
KA	1	1	Input high impedance state	UARTEIL
TX	2	X	CMOS output	UARTCTL
TK0_0~TK0_12	2	0	The touch key keeps the CMOS output low to resist interference, and the hardware automatically switches to high resistance mode during scanning.	TKM0CHS
AD0~AD7 AD13~20 AD22~26	3	X	High impedance state, used for analog signals.	ADCHS
TCOUT	2	X	CMOS output	OPTION2
TM1OUT	2	X	CMOS output	OPTION2
PWM0N PWM0P PWM1/2/3/4/5	2	X	CMOS output	PWMOE SFR19B
XI, XO	0	1	Input with pull-up resistor	CLKCTL

DS-TM56M7842_E 36 Rev 0.91, 2025/10

GPIO Register settings for optional functions

GPIO Pin structure (except PA7)

05h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAD	PAD7			PAD4	PAD3	PAD2	PAD1	PAD0
R/W	R/W			R/W	R/W	R/W	R/W	R/W
Reset	1			1	1	1	1	1

05h.7~0 **PAD:** PA7~PA0 Data

06h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PBD		PBD							
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	

06h.7~0 **PBD:** PB7~PB0 Data

08h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PDD		PDD								
R/W		R/W								
Reset	1	1 1 1 1 1 1 1 1								

08h.7~0 **PDD:** PD7~PD0 Data

85h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAMODH	PA7MOD						PA4N	MOD
R/W	R/W						R/	W

DS-TM56M7842_E 37 Rev 0.91, 2025/10

Reset	0	1			0	1
85h.7~6	PA7MOD: 1	PA7 Pin Mod	le Control			
	00: Mode0					
	01: Mode1					
	10: Mode2					

11: Mode3 85h.1~0 **PA4MOD:** PA4 Pin Mode Control 00: Mode0 01: Mode1

10: Mode2 11: Mode3

86h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAMODL	PA31	MOD	PA21	MOD	PA1N	MOD	PA01	MOD
R/W	R/	W	R/W		R/	W	R/	W
Reset	0	1	0	1	0	1	0	1

86h.7~6 **PA3MOD:** PA3 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Mode3

86h.5~4 **PA2MOD:** PA2 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Mode3

86h.3~2 **PA1MOD:** PA1 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Mode3

86h.1~0 **PA0MOD:** PA0 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Mode3

87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBMODH	PB71	MOD	PB6MOD		PB5MOD		PB4MOD	
R/W	R/	W	R/	R/W		W	R/	W
Reset	0	1	0	1	0	1	0	1

87h.7~6 **PB7MOD:** PB7 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Mode3

87h.5~4 **PB6MOD:** PB6 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Mode3

87h.3~2 **PB5MOD:** PB5 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2

11: Mode3

87h.1~0 **PB4MOD:** PB4 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Mode3

88h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBMODL	PB31	MOD	PB2MOD		PB1MOD		PB0MOD	
R/W	R/	W	R/	W	R/	W	R/	W
Reset	0	1	0	1	0	1	0	1

88h.7~6 **PB3MOD:** PB3 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Mode3

88h.5~4 **PB2MOD:** PB2 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Mode3

88h.3~2 **PB1MOD:** PB1 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Mode3

88h.1~0 **PB0MOD:** PB0 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Mode3

8Dh Bit 5 Bit 7 Bit 6 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 PDMODH PD7MOD PD6MOD PD5MOD PD4MOD R/W R/W R/W R/W R/W 0 1 0 1 0 Reset 0 1

8Dh.7~6 **PD7MOD:** PD7 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Mode3

8Dh.5~4 **PD6MOD:** PD6 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Mode3

8Dh.3~2 **PD5MOD:** PD5 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Mode3

8Dh.1~0 **PD4MOD:** PD4 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Mode3

8Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PDMODL	PD31	MOD	PD2MOD		PD1MOD		PD0MOD	
R/W	R/	W	R/	W	R/	W	R/	W
Reset	0	1	0	1	0	1	0	1

8Eh.7~6 **PD3MOD:** PD3 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Mode3

8Eh.5~4 **PD2MOD:** PD2 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Mode3

8Eh.3~2 **PD1MOD:** PD1 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Mode3

8Eh.1~0 **PD0MOD:** PD0 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2 11: Mode3

5.2 Pin Level Change Interrupt Wake-up

Except for PD4 and PD5, all I/O pins on the chip support pin level change interrupt wake-up functionality (including rising edge and falling edge triggering).

When a pin level change occurs, if the corresponding PxWKE (x=A, B, D) register is set to 1 and PXIE is set to 1, this feature will pull PXIF high, wake the device from IDLE/STOP mode, and trigger the interrupt routine.

When a pin level change occurs, if the corresponding pin's PxWKE (x=A,B,D) register is set to 1 and PXIE is 0, this feature will pull up PXIF and wake the device from IDLE/STOP mode, but will not trigger the interrupt routine.

♦Example: Set port B to wake up when the pin level changes.

ORG 00h ; reset vector **START**

ORG 004h ; interrupt vector INT LGOTO

START:

LGOTO

MOVLW 00000000B

> **MOVWX PBMODH** ; Set pin mode

> > **PBMODL**

MOVWX

MOVLW 11111111B

MOVWX PBWKE; ; Set PB as pin level change wake-up **BSX PXIE** ; Pin level change interrupt enable

MAIN:

SLEEP

LGOTO **MAIN**

INT:

MOVLW 11111110B

; Clear PXIF **MOVWX** INTIF1

RET

 $DS\text{-}TM56M7842_E$ 41 Rev 0.91, 2025/10

1Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAWKE	PAWKE7			PAWKE4	PAWKE3	PAWKE2	PAWKE1	PAWKE0
R/W	R/W			R/W	R/W	R/W	R/W	R/W
Reset	0			0	0	0	0	0

1Ch.7~0 **PAWKE:** PA Pin wake-up enable

1Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PBWKE		PBWKE								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

1Dh.7~0 **PBWKE:** PB Pin wake-up enable

1Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PDWKE		PDWKE								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

1Fh.7~0 **PDWKE:** PD Pin wake-up enable (Not included PD5,PD4)

0Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE1	LVDIE	-			TKIE	-	UARTIE	PXIE
R/W	R/W	R/W			R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0

0Eh.0 **PXIE:** Pin wake-up interrupt enable

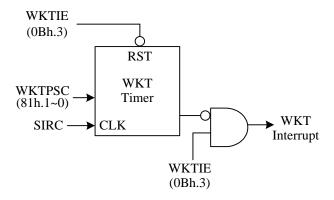
0: Disabled 1: Enabled

1Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF1	LVDIF	-	-	TKM0IF	TKIF	-	UARTIF	PXIF
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

1Ah.0 **PXIF:** Pin Interrupt Flag

This bit is set by H/W. Writing 0 to this bit will clear the flag.

DS-TM56M7842_E 42 Rev 0.91, 2025/10


6. Peripheral Functional Block

6.1 Wakeup Timer (WKT)

The wake-up timer uses SIRC (Slow Internal RC) as its clock, and the WKT overflow period can be adjusted via the WKTPSC register. If the WKTIE register is set to 1, the system will enter the WKT interrupt routine when WKT overflows.

In addition to enabling the interrupt function, the WKTIE register also serves as a function switch for the wake-up timer.

Users cannot read or write the wake-up timer value.

WDT and WKT Block Diagram

♦Example:

MOVLW 00010110B ;

MOVWX OPTION ; Select WKT period

MOVLW 1111<u>0</u>111B ; Use byte operations to clear the WKT interrupt flag.

MOVWX INTIF ; Do not use bit manipulation "BCX WKTIF" to clear the interrupt flag.

MOVLW 00001000B ; Enable WKT interrupt function

MOVWX INTIE

DS-TM56M7842_E 43 Rev 0.91, 2025/10

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

OCh.3 **WKTIF:** Wake-up timer interrupt event suspend flag
When the wake-up timer times out, this bit is set by H/W. Writing 0 to this bit clears the flag.

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

OBh.3 WKTIE: Wake-up timer interrupt enable

0: Disable 1: Enable

81h/181h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	HWAUTO	INT0EDG	INT1EGE	FREQL	WD7	ΓPSC	WKT	PSC
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	1	1	1	1	1

81h.4 **FREQL:** SIRC Frequency Selection

0: 60KHz 1: 50KHz

81h.1~0 **WKTPSC:** WKT cycle

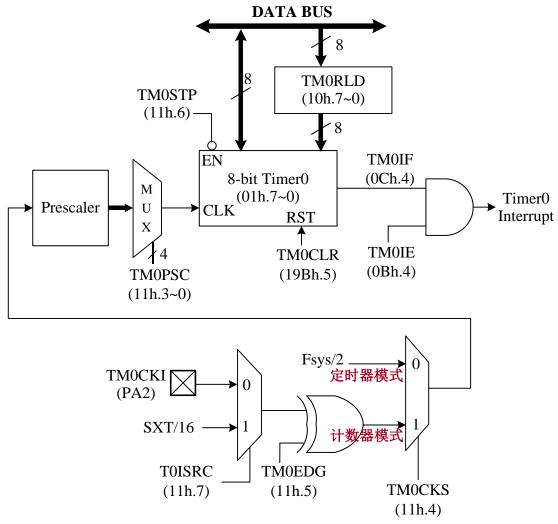
FREQL=1:

00: 22ms@3V, 20ms@5V 01: 44ms@3V, 40ms@5V 10: 89ms@3V, 80ms@5V 11: 177ms@3V, 160ms@5V

FREQL=0:

00: 18ms@3V, 16ms@5V 01: 35ms@3V, 32ms@5V 10: 70ms@3V, 63ms@5V 11: 139ms@3V, 125ms@5V

DS-TM56M7842_E 44 Rev 0.91, 2025/10

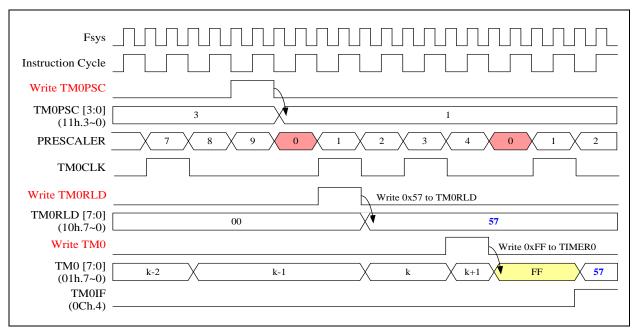


6.2 Timer0

Timer0 is an 8-bit timer whose clock rate is selected by the TM0PSC register. If TM0IE is set to 1, it will generate a Timer0 interrupt routine when an overflow occurs. The Timer0 period can be adjusted via the TM0RELOAD register. The TM0STP register can be used to pause/resume Timer0 counting.

When the TM0CKS register is set to 1, Timer0 switches from timer mode to counter mode.

In counter mode, it is recommended to keep the TM0PSC register at 0. The TM0EDG register determines whether the counter mode uses rising edge or falling edge triggering, and the T0ISRC register determines the count source as either the PA2 pin input or SXT/16.


Timer0 Block Diagram

	定时器Mode Fsys/2	计数器Mode TM0CKI (PA2 pin)	计数器Mode SXT/16
TM0CKS	0	1	1
T0ISRC	X	0	1

Timer0 Clock Source and Mode Control

DS-TM56M7842_E 45 Rev 0.91, 2025/10

Timer0 in timer mode (TM0CKS=0)

The formula for calculating the Timer0 interrupt time is as follows:

Timer0 interrupt interval period time = Fsys / 2 / TM0PSC / (256-TM0)

♦ Example: TM0 operates in timer mode.

; Set TM0 clock source and divider

MOVLW 0000<u>**0101**</u>B

MOVWX TM0CTL; Timer0 clock is the clock source (Fsys/2) divided by 32.

; Pause TM0 counting

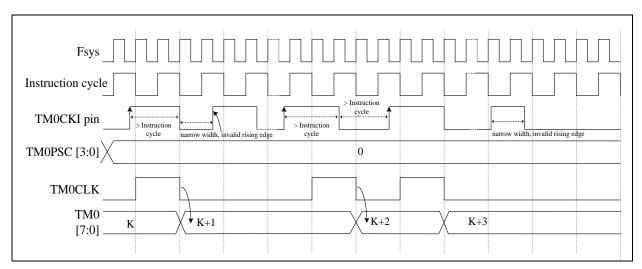
BSX TM0STP ; Pause TM0 counting

MOVLW 156 ;
MOVWX TM0 ;
MOVLW 156 ;
MOVWX TM0RLD ;

; Enable the TM0 timer and interrupt function.

MOVLW 111<u>0</u>1111B ; Clear the Timer0 interrupt flag through byte operations.

MOVWX INTIF


MOVLW 000<u>1</u>0000B ; Enable Timer0 interrupt function

MOVWX INTIE ;

BCX TM0STP ; Start TM0 counting

DS-TM56M7842_E 46 Rev 0.91, 2025/10

Timer0 in counter mode (TM0CKS=1, T0ISRC=0, TM0EDG=0)

♦ Example: TM0 operates in counter mode.

MOVLW 00110000B ; Pause TM0 counting and set to counter mode

MOVWX TM0CTL; The counter count source is the PA2 pin, and it is set to trigger on the

falling edge.

MOVLW 00H

MOVWX TM0

BCX TM0STP ; Start TM0 counting

01h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TM0		TM0								
R/W										
Reset	0	0	0	0	0	0	0	0		

01h **TM0:** Timer0 data

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Bh.4 **TM0IE:** Timer0 interrupt enabled

0: Disabled 1: Enabled

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.4 **TM0IF:** Timer0 interrupt event suspend flag

When Timer0 overflows, this bit is set by H/W. Writing 0 to this bit clears this flag.

10h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TM0RLD		TM0RLD								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

10h TM0RLD: Timer0 reloads data

11h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0CTL	T0ISRC	TM0STP	TM0EDG	TM0CKS		TMO	PSC	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

11h.7 **T0ISRC:** Timer0 counting mode clock source selection

0: TM0CKI pin (PA2)

1: SXT/16

11h.6 **TM0STP:** Timer0 counter pause

0: Timer0 running
1: Timer0 paused

11h.5 **TM0EDG:** Timer0 prescaler count edge of TM0CKI pin

0: indicates rising edge1: indicates falling edge

11h.4 **TM0CKS**: Timer0 clock source selection

0: Fsys/2

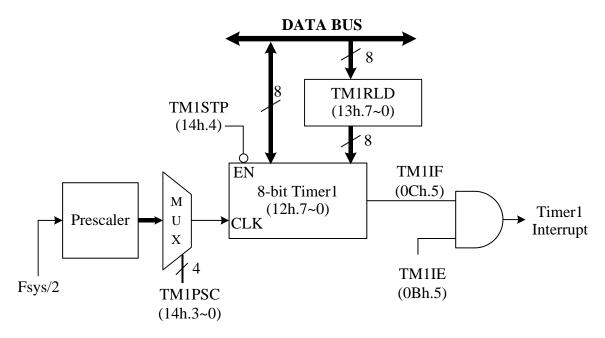
1: TM0CKI (PA2 pin) or SXT/16

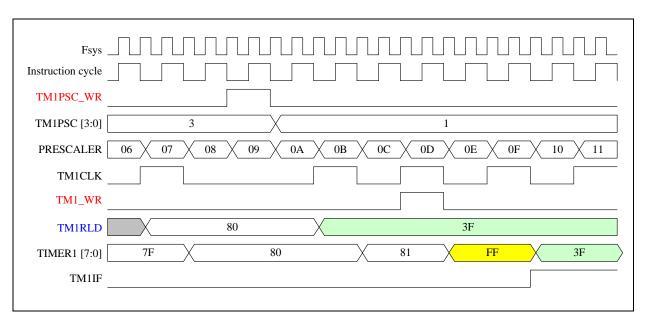
11h.3~0 **TM0PSC**: Timer0 frequency division. *When TM0CKS=1, it is recommended that TM0PSC be kept at the default value of 0000.

Timer0 clock is the clock source (Fsys/2 or TM0CKI or SXT/16) divided by

0000: /1 0001:/2 0010: /4 0011:/8 0110: /64 0100: /16 0101: /32 0111: /128 1010: /1024 1000: /256 1001: /512 1011: /2048 1100: /4096 1101: /8192 1110: /16384 1111:/32768

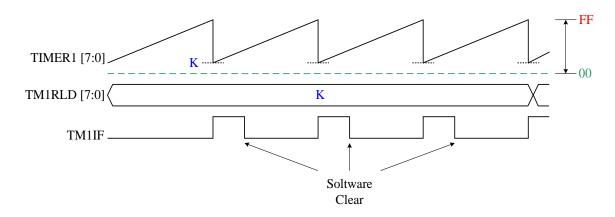
19Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SFR19B	CFEN	CFST	TM0CLR	ULEDMASK	TXSEL	RXSEL	PWM0PSEL	PWM5SEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0


19Bh.5 **TM0CLR:** Timer0 reset Reset Timer0 to zero.


6.3 Timer1

Timer1 is an 8-bit timer whose clock rate is selected by the TM1PSC register. If TM1IE is set to 1, it will generate a Timer1 interrupt routine when an overflow occurs. The Timer1 period can be adjusted via the TM1RELOAD register. The TM1STP register can be used to pause/resume Timer1 counting.

Timer1 can output the overflow flag signal to PB0 (TM1OUT).


Timer1 Block Diagram

Timer1 Sequence Diagram

DS-TM56M7842_E 49 Rev 0.91, 2025/10

Timer1 Reload diagram

◇ 例:

MOVLW	0001 0001 B	; Pause TM1 counting
MOVWX	TM1CTL	; Set Timer1 clock to Fsys/4.
BSX	TM1OE	; Enable Timer1 output pin (PB0)
MOVLW	F0H	
MOVWX	TM1	; Set Timer1 period
MOVLW	11 <u>0</u> 11111B	; Clear TM1 interrupt flag by byte operation
MOVWX	INTIF	;
MOVLW	00 <u>1</u> 00000B	; Enable the TM1 interrupt function.
MOVWX	INTIE	;
BCX	TM1STP	; Start TM1 counting

Timer0 cycle calculation:

Given that Fsys = 4 MHz, TM1PSC = 1, and TM1RLD = 0xF0, then the TM1 clock source = Fsys/4 = 1 MHz. The TM1 cycle is 1 MHz * (0xFF - 0xF0) = 1 us * 16 = 16 us, and the TM1OUT output cycle is 16 * 2 = 32 us.

DS-TM56M7842_E 50 Rev 0.91, 2025/10

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Bh.5 **TM1IE:** Timer1 interrupt enable

0: Disable1: Enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.5 **TM1IF:** Timer1 interrupt event suspend flag

Set by H/W when Timer1 overflows. Writing 0 to this bit clears the flag.

12h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM1				TI	M1			
R/W								
Reset	0	0	0	0	0	0	0	0

12h **TM1:** Timer1 count data

13h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM1RLD				TM1	RLD			
R/W	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0

13h.7~0 TM1RLD: Timer1 reloads data

14h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM1CTL	_	_	_	TM1STP		TM1	PSC	
R/W	_	_	_	R/W	W	W	W	W
Reset	_	_	_	0	0	0	0	0

14h.4 **TM1STP:** Pause Timer1

0: Timer1 running

1: Timer1 paused

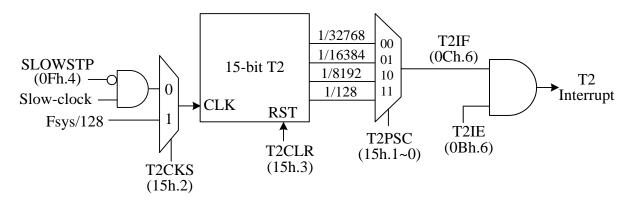
14h.3~0 TM1PSC: Timer1 frequency division. The Timer1 clock is the clock source (Fsys/2) divided by

0000: Fsys/1 0001: Fsys/2 0010: Fsys/4 0011: Fsys/8 0100: Fsys/16 0101: Fsys/32 0110: Fsys/64 0111: Fsys/128

1xxx: Fsys/256

08Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION2	TCOE	TM10E	PWMCKS					-
R/W	R/W	R/W	R/W	R/W				-
Reset	0	0	0	0				-

08F.6 **TM10E:** Enable Timer1 overflow to switch output to PB0 pin (TM10UT)


DS-TM56M7842_E 51 Rev 0.91, 2025/10

6.4 T2

T2 is a 15-bit timer. Users cannot read or write the value of the T2 timer. The T2CKS register determines whether the T2 clock source comes from Fsys/128 or the slow clock, and the clock rate used is selected by the T2PSC register. If T2IE is set to 1, it will generate the T2 interrupt routine when an overflow occurs. Setting the T2CLR register can reset T2.

To keep T2 running after executing the SLEEP instruction, the T2CKS register must be set to 0 and the SLOWSTP register must be set to 0.

T2 Block Diagram

♦ Example:

MOVLW	0000 <u>1111</u> B	; Stop T2
MOVWX	T2CTL	; The T2 clock is (Fsys/128) divided by 16384.
MOVLW	1 <u>0</u> 111111B	; Clear the T2 interrupt flag through byte operations.
MOVWX	INTIF	;
MOVLW	0 <u>1</u> 000000B	; Enable T2 interrupt function.
MOVWX	INTIE	;
BCX	T2CLR	: Start T2

T2 calculation:

If Fsys is 4.608MHz, then T2 clock = (4.608MHz/128)/16384 = 2.197Hz

DS-TM56M7842_E 52 Rev 0.91, 2025/10

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Bh.6 **T2IE:** T2 interrupt enable

0: Disabled 1: Enabled

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.6 **T2IF:** T2 interrupt event flag

When T2 overflows, this bit is set by H/W. Writing 0 to this bit clears the flag.

15h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T2CTL					T2CLR	T2CKS	T2F	PSC
R/W					R/W	R/W	R/W	R/W
Reset					1	0	0	0

15h.3 **T2CLR:** Reset the T2 counter.

Reset Timer0 to zero.

15h.2 **T2CKS:** T2 clock source selection.

0: Slow clock; 1: Fsys/128

15h.1~0 **T2PSC:** T2 frequency division. T2 clock is the clock source (slow clock or Fsys/128) divided by

0Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCTL	SCKTYPE	_	_	SLOWSTP	FASTSTP	CPUCKS	CPU	PSC
R/W	R/W	-	-	R/W	R/W	R/W	R/W	R/W
Reset	0	_	_	0	1	0	1	1

0Fh.4 **SLOWSTP**: Disable slow clock

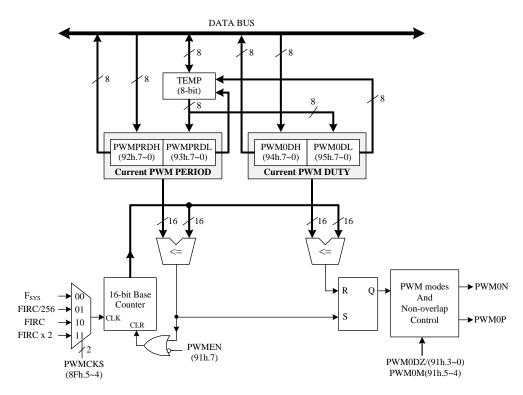
0: Slow clock continues to run after SLEEP instruction

1: Slow clock stops running after SLEEP instruction if no other peripheral function blocks use slow clock

DS-TM56M7842_E 53 Rev 0.91, 2025/10

6.5 PWM

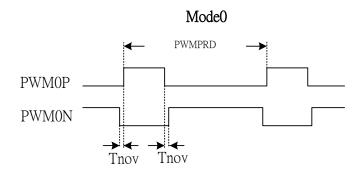
The chip features six 16-bit PWM modules, designated PWM0 through PWM5. Each PWM module (PWM0 to PWM5) has its own independent 16-bit duty cycle register and shares the same set of 16-bit period registers. PWM can generate various frequency waveforms based on PWMCLK, with a duty cycle resolution of 65,536. The frequency can be selected as Fsys, FIRC, FIRC*2, or FIRC/256, determined by PWMCKS.

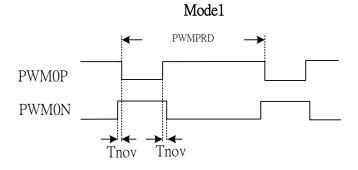

The 16-bit PWM period PWMPRD and PWM duty cycle PWM0D to PWM5D registers all have a low-byte and high-byte structure. Writing to these register pairs must be done in a specific order. **That is, the low-byte register must be written first, followed by the high-byte register.** For example, the period value is written to the PWMPRDL register (93h), followed by the PWMPRDH register (92h). When the high-byte data is written to the register, the PWMPRD register is immediately updated to the new value.

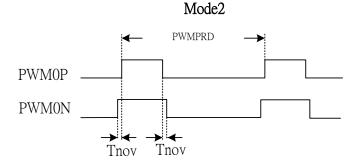
If PWMEN is cleared, PWM0–5 will be cleared and stopped; otherwise, PWM0–5 will continue to run. The PWM0 structure is shown below. The PWM0 duty cycle can be changed by writing to PWM0DL and PWM0DH. The PWM0 period can be set by writing the period value to the PWMPRDL and PWMPRDH registers. There is a digital comparator that compares the PWM counter with PWMPRD. If the PWM counter is greater than PWMPRD, the PWM counter is cleared, and the PWM output signal is set to a high level. When the 16-bit base counter matches the PWM duty cycle registers PWM0D to PWM5D, the PWM output signals PWM0 to PWM5 are reset to a low level.

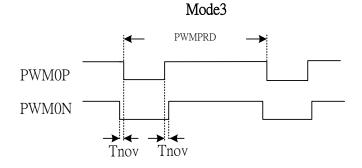
Only PWM0 has dead-time control (PWM0DZ), which is divided into PWM0P and PWM0N outputs. The remaining PWM1–5 do not have dead-time control. The PWM1–5 outputs are PWM10–PWM5O.

DS-TM56M7842_E 54 Rev 0.91, 2025/10




PWM Block Diagram (using PWM0 as an example)


As shown in the figure below, PWM0 has four output modes (PWM0OM). The edges of the PWM pulses can be separated by 16 different dead time intervals, i.e., non-overlapping clock intervals (Tnov). The width of Tnov can be selected within the range of 0 to 15 PWM clock cycles. The default output mode is Mode 0.


DS-TM56M7842_E 55 Rev 0.91, 2025/10

PWM0 Dead Zone and Output Mode

♦Example: [CPU running in fast mode, Fsys=FIRC 18.432Mhz]

MOVLW 00000000B ;

MOVWX OPTION2 ; PWMCKS=00B, PWM clock source = Fsys = FIRC 18.432 MHz

; Tpwmclk=(1/18.432M)

MOVLW 20h

MOVWX PWMPRDL ; Set PWM cycle low byte = 20h

; The low byte data is stored in TEMP instead of the PWMPRD register.

DS-TM56M7842_E 56 Rev 0.91, 2025/10

MOVLW 03h

MOVWX PWMPRDH ; Set PWM cycle high byte = 03h

; PWMPRD = 0320h (TEMP data is also saved to PWMPRD)

MOVLW 90h

MOVWX PWM0DL ; Set PWM0 cycle low byte = 90h

; The low byte data is stored in TEMP, not in the PWM0D register.

MOVLW 01h

MOVWX PWM0DH ; Set PWM0 cycle high byte = 01h

; PWM0D = 0190h (TEMP data is also saved to PWM0D)

MOVLW 10010100B ; Set PWMEN=1, PWM00M=10B=Mode 2,

MOVWX PWMCTL ; PMW0DZ=0100B= 4*Tpwmclk

MOVLW 10xxxx10B

MOVWX PAMODL ; Set PA7 and PA0 as CMOS outputs.

MOVLW 11000000B

MOVWX PWMOE ; Enable PWM0P output to PA7, enable PWM0N output to PA0

08Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION2	TCOE	TM10E	PWMCKS					-
R/W	R/W	R/W	R/W	R/W				-
Reset	0	0	0	0				-

08Fh.7 **TCOE:** TCOUT allows output.

0: Not enabled.

1: Enabled, output to PB1.

08Fh.6 **TM10E:** Timer1 overflow switch enables output.

0: Disabled.

1: Enabled, output to PB0.

08Fh.5~4 **PWMCKS:** PWM clock source

00: Fsys 01:FIRC/256 10:FIRC 11:FIRC*2

90h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMOE	PWM0POE	PWM0NOE	PWM5OE	PWM4OE	PWM3OE	PWM2OE	PWM10E	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
Reset	0	0	0	0	0	0	0	-

90h.7 **PWM0POE:** PWM0P allows output

0: Disabled

1: Enabled, PWM0P outputs to PA7 or PB0

90h.6 **PWM0NOE:** PWM0N allows output

0: Disabled

1: Enabled, PWM0N outputs to PA0

90h.5 **PWM50E:** PWM5 allows output

0: Disabled

1: Enabled, PWM5 outputs to PA7 or PB1; For PA7, the output priority of PWM0P is higher than that

of PWM5

90h.4 **PWM4OE:** PWM4 allows output

0: Disabled

1: Enabled, PWM4 outputs to PA4

90h.3 **PWM3OE:** PWM3 allows output

0: Disabled

1: Enabled, PWM3 output to PA3

90h.2 **PWM2OE:** PWM2 allows output

0: Disabled

1: Enabled, PWM2 output to PA2

90h.1 **PWM10E:** PWM1 allows output

0: Disabled

1: Enabled, PWM1 output to PA1

91h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWMCTL	PWMEN	-	PWM00M		PWM0DZ				
R/W	R/W	-	R/W			R/	W		
Reset	0	-	0	0	0	0	0	0	

91h.7 **PWMEN:** PWM clock enable

0: Disabled 1: Enabled

91h.5~4 **PWM0OM:** PWM0 output mode

00: PWM0 Mode 0 01: PWM0 Mode 1 10: PWM0 Mode 2 11: PWM0 Mode 3

91h.3~0 **PWM0DZ:** PWM0 Dead Zone (Non-Overlapping) Control

0000: No non-overlapping

0001: Non-overlapping width is 1 PWM clock cycle 0010: Non-overlapping width is 2 PWM clock cycles

.

1111: Non-overlapping width is 16 PWM clock cycles

92h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWMPRDH		PWMPRDH								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	1	1	1	1	1	1	1	1		

92h.7~0 **PWMPRDH:** PWM cycle data high byte

93h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWMPRDL		PWMPRDL								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	1	1	1	1	1	1	1	1		

93h.7~0 **PWMPRDL:** PWM cycle data low byte

94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM0DH		PWM0DH								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	1	0	0	0	0	0	0	0		

94h.7~0 **PWM0DH:** PWM0 duty cycle data high byte

95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM0DL		PWM0DL								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

95h.7~0 **PWM0DL:** PWM0 duty cycle data low byte

96h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM1DH		PWM1DH								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	1	0	0	0	0	0	0	0		

96h.7~0 **PWM1DH:** PWM1 duty cycle data high byte

97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM1DL		PWM1DL								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

97h.7~0 **PWM1DL:** PWM1 duty cycle data low byte

98h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM2DH		PWM2DH								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	1	0	0	0	0	0	0	0		

98h.7~0 **PWM2DH:** PWM2 duty cycle data high byte

99h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM2DL				PWN	12DL			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

99h.7~0 **PWM2DL:** PWM2 duty cycle data low byte

9Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM3DH				PWN	13DH			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	0	0	0	0	0	0	0

9Ah.7~0 **PWM3DH:** PWM3 duty cycle data high byte

9Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM3DL				PWN	13DL			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

9Bh.7~0 **PWM3DL:** PWM3 duty cycle data low byte

9Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM4DH				PWM	14DH			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	0	0	0	0	0	0	0

9Ch.7~0 **PWM4DH:** PWM4 duty cycle data high byte

9Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM4DL				PWN	14DL			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

9Dh.7~0 **PWM4DL:** PWM4 duty cycle data low byte

9Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM5DH				PWN	15DH			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	0	0	0	0	0	0	0

9Eh.7~0 **PWM5DH:** PWM5 duty cycle data high byte

9Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM5DL				PWN	15DL			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

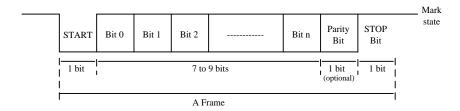
9Fh.7~0 **PWM5DL:** PWM5 duty cycle data low byte

19Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SFR19B	CFEN	CFST	TM0CLR	ULEDMASK	TXSEL	RXSEL	PWM0PSEL	PWM5SEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

19Bh.1 **PWM0PSEL:** PWM0P pin selection.

0: PA7 as PWM0P output

1: PB0 as PWM0P output


19Bh.0 **PWM5SEL:** PWM5 pin selection.

0: PA7 as PWM5 output 1: PB1 as PWM5 output

6.6 UART

The chip's built-in standard UART (Universal Asynchronous Receiver/Transmitter) is responsible for serial communication between devices. The transmitting device converts parallel data into serial data and sends the bit stream data via the TX line. The receiving device receives the data in serial form via the RX line, converts it back into parallel data, and stores it in a register for the microcontroller to read. The TX/RX module also handles data synchronization, parity bit generation and detection, frame errors, overflow errors, and interrupt generation. The UART data format is shown in Figure 6.6.1.

UART Data Format

The transmission line typically remains in the 1 mark state (logic 1) until transmission or reception begins and transitions to the 0 space state (logic 0). The first bit transmitted is the start bit, which is 1 bit wide (1 bps). This is followed by the data bit stream. The least significant bit (LSB) is sent first. The number of bits transmitted or received is defined by the UMODE control bit, which can be set to 7-bit, 8-bit, or 9-bit mode. The parity bit follows the data bits and can be optionally sent, but in 9-bit mode transmission, the parity bit is not sent.

UART Mode

UART can operate in three modes: Mode 0 (7-bit data), Mode 1 (8-bit data), and Mode 2 (9-bit data). The data format for Mode 0 and Mode 1 can be transmitted and received with parity bits based on the PRE bit. If PRE = 1, the TX data format will append a parity bit after the data bits; otherwise, TX will only transmit the data bits. Mode 2 does not support the transmission or reception of parity bits. It is important to note that the UART settings between two communicating devices must be identical so that the RX section can verify the data format and parity in the same way as the TX section. The parity selection bit is the even parity bit in the UARTS control register. If even = 1, even parity is used; otherwise, odd parity is used. Each UART transmission ends with a STOP bit. If the STOP bit is not received by the RX, the RX will set the FMERR bit in the UARTS control register to indicate that the transmission may not have been correctly received/transmitted, and it must be resent or handled by the firmware. Figure 6.6.2 shows the data formats for the three UART modes.

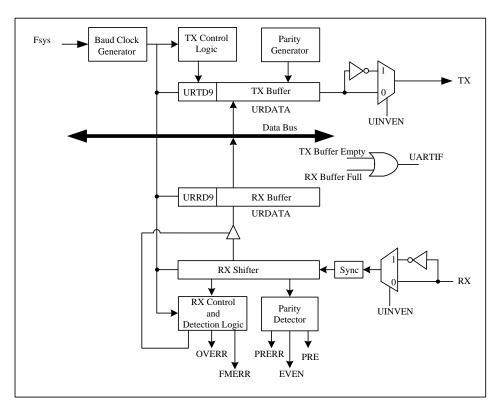
DS-TM56M7842_E 61 Rev 0.91, 2025/10

	UMODE[1:0]	PRE	S 1 2 3 4 5 6 7 8 9 10
UART	0 0	0	7-bit data STOP
Mode 0	0 0	1	7-bit data Pty STOP
UART	0 1	0	8-bit data STOP
Mode 1	0 1	1	8-bit data Pty STOP
UART Mode 2	1 1	х	9-bit data STOP

UART mode

UART system module

The figure below shows the system module of the UART built into the chip. The baud clock generator divides Fsys to generate the appropriate frequency for the UART baud rate. The divisor is the UBAUD register. Each data stream is sampled using 16 baud clocks, which are generated by the baud clock generator. The desired baud rate can be obtained by setting the UBAUD register.


The baud rate clock is sent to the TX and RX control logic and the TX/RX shift buffer. Once URDATA is written, the TX control logic begins sending data to the TX pin (PB5). If the UART mode is mode 2, URTD9 is sent. When the transmission is complete, the "TX buffer Empty" signal is raised. If UARTIE is set, a UART interrupt is generated.

When UINVEN is set to 1, UINVEN will invert the output. When UINVEN is set to 1, the RX input will be inverted.

The UART RX signal is input through the RX pin (PB4). If UINVEN is set, the input is inverted via a synchronization circuit and then timed to the RX shift register. Depending on the selected UART mode, the number of bits to be shifted into the RX shift register is determined, and then processed by the RX control logic, including frame error detection (FMERR), parity error detection (PRERR), and overflow error detection (OVERR). A frame error indicates that the stop bit of the incoming frame was not detected. A parity error indicates that the parity bit of the incoming data does not match the parity calculated by the RX control logic for the data bits. An overflow error occurs when the previous transmission stored in URDATA has not been read before the new incoming transmission is completed. When an overflow error occurs, the old URDATA is lost.

DS-TM56M7842_E 62 Rev 0.91, 2025/10

UART block diagram

_					
	Frequency deviation (%)	Actual baud rate (bps)	Register UBAUD	Expected baud rate (bps)	Fsys (Hz)
7	0	2400	240	2400	18432000
7	0	4800	120	4800	18432000
7	0	9600	60	9600	18432000
	0	14400	40	14400	18432000
	0	19200	30	19200	18432000
	0	28800	20	28800	18432000
	0	38400	15	38400	18432000
	0	57600	10	57600	18432000
Don't use	6.25%	72000	8	76800	18432000
Don't use	7.14%	82285.7	7	76800	18432000
	0	115200	5	115200	18432000
7	0	192000	3	192000	18432000

UART Commonly used baud rates

♦Example:

[CPU running at FAST mode, Fsys=FIRC 18.432 MHz]

UART Baud Rate = 115200 bps, RX pin (PB4), TX pin (PB5). Transmit 91H data to TX (PB5)

BCX FASTSTP ;

BSX CPUCKS ; Fsys=18.432 MHz

 $MOVLW \qquad \underline{\textbf{1001}} 0101B \qquad \quad ; RX \text{ (PB4) Pin Mode=1, TX (PB5) Pin Mode=2}$

MOVWX PAMODL;

MOVLW 00000101B

DS-TM56M7842_E 63 Rev 0.91, 2025/10

MOVWX UBAUD ; 115200 bps (@Fsys=18.432MHz)

BSX UARTIE ; Enable UART interrupt

MOVLW 00101010B

MOVWX UARTCTL ; 8bit mode, UTXE=1, URXE=0, UARTE=1, UINVEN=0

MOVLW 10010001B

MOVWX URDATA ; TX Buffer=91h, then H/W sends it to the TX pin via the TX shifter.

BTXSS UTBE

LGOTO \$-1; Check the TX buffer until the buffer is empty (transmission complete).

• • • • • •

.

0Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE1	LVDIE	-	-	-	TKIE	-	UARTIE	PXIE
R/W	R/W	R/W			R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0

0Eh.1 **UARTIE:** UART TX/RX completion interrupt enable

0: Disabled 1: Enabled

1Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF1	LVDIF	-	-	TKM0IF	TKIF	-	UARTIF	PXIF
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

1Ah.1 **UARTIF:** UART Interrupt Wait Flag

When TX/RX transmission is complete, this bit is set to 1 by H/W; writing 0 to this bit clears the flag.

10Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
UBAUD		UBAUD						
R/W		R/W						
Reset	0	0	0	0	0	0	0	0

10Dh **UBAUD:** UART baud rate divider

187h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
UARTCTL	URTD9	UMODE		URINTTF	UTXE	URXE	UARTE	UINVEN
R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

187h.7 **URTD9:** The 9th bit of UART transmission

187h.6~5 **UMODE:** UART Mode Selection

00: 7 digits 01: 8 digits 10: 9 digits 11: Reserved

187h.4 **URINTTF:** UART TX transmission complete flag

When UART TX transmission is complete, this bit is set to 1 by H/W; clearing UARTIF also clears this flag.

187h.3 **UTXE:** UART transmission enabled

0: Disabled 1: Enabled

187h.2 **URXE:** UART receive enable

0: Disabled

1: Enabled

187h.1 **UARTE**: UART function enabled

0: Disabled1: Enabled

187h.0 **UINVEN**: UART TX/RX output/input reversal enable

0: Disabled 1: Enabled

188h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
UARTSTA	UTBE	URRD9	EVEN	PRE	PREERR	OVERR	FMERR	URBF
R/W	R	R	R/W	R/W	R/W	R/W	R/W	R
Reset	0	0	0	0	0	0	0	0

188h.7 **UTBE:** UART transmission status

0: Transmitting TX1: TX buffer is empty

188h.6 **URRD9**: UART received the 9th bit

188h.5 **EVEN:** UART parity

0: Even number1: Odd number

188h.4 **PRE:** UART Parity Check Addition

0: Disabled 1: Enabled

188h.3 **PRERR**: UART parity error

Set to 1 when a parity error occurs, cleared to 0 by F/W

188h.2 **OVERR**: UART overflow error

Set to 1 when an overflow error occurs, cleared to 0 by F/W

188h.1 **FMERR:** UART frame error

Set to 1 when a frame error occurs, cleared to 0 by F/W

188h.0 **URBF:** UART buffer status

Set to 1 when 1 byte (or 9 bits) is received.

F/W reading URDATA will automatically clear to 0, then receive subsequent data without overflow errors.

18Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
URDATA		URDATA						
R/W		R/W						
Reset	0	0	0	0	0	0	0	0

18Dh URDATA: Data transmission/reception buffer

Write: Transmission buffer Read: Reception buffer

19Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SFR19B	CFEN	CFST	TM0CLR	ULEDMASK	TXSEL	RXSEL	PWM0PSEL	PWM5SEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

19Bh.3 **TXSEL:** TX pin selection.

0: PB5 as TX output

1: PD3 as TX output

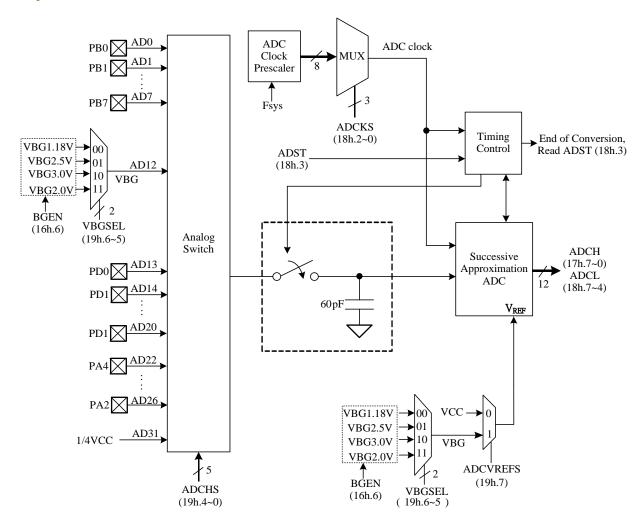
19Bh.2 **RXSEL:** RX pin selection.

0: PB4 as RX output 1: PD2 as RX output

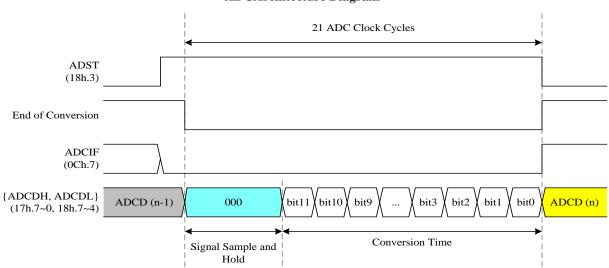
6.7 Analog-to-Digital Converter (ADC)

The 12-bit ADC consists of a 21-channel analog input multiplexer, control registers, successive approximation registers, and output data registers. Users need to set ADCKS (18h.2~0) to select the appropriate ADC clock frequency and enable ADC conversion by setting the ADST (18h.3) control bit. After conversion is complete, the ADST bit is automatically cleared by the hardware. Users can poll this bit to determine the conversion status.

When a pin is used as an ADC input, the corresponding PxMODx register must be set to "Pin Mode 3." This setting disables the pin's logic input path to conserve power.


The ADC module's reference voltage is selected via the ADCVREFS register and VBGSEL register.

Users must configure the ADCHS register to select the ADC input channel. In addition to external pins, AD12 uses the internal bandgap voltage source VBG, and AD31 uses the internal voltage source 1/4VCC.


The internal bandgap voltage source VBG is enabled by the BGEN register. When the ADC uses the internal bandgap voltage source VBG, the BGEN register must be enabled. To save power, please disable the BGEN register when no longer in use.

DS-TM56M7842_E 66 Rev 0.91, 2025/10

ADCArchitecture Diagram

♦Example:

[CPU running at FAST mode, Fsys=FIRC 18.432 MHz]

ADC clock frequency =FIRC/32, ADC channel=AD15 (PD2).

MOVLW 00000<u>111</u>B ; Fsys=18.432 MHz

MOVWX CLKCTL ;

MOVLW 01110101B ; PD2(AD15) Set to pin mode 3

MOVWX PDMODL ;

MOVLW 00000<u>011</u>B ; Fsys=18.432 MHz

MOVWX ADCTL ; 18h.2~0 (ADCKS) = ADC clock = Fsys/32=576KHz

MOVLW 0<u>1</u>110011B ; 16h.6=1, enable VBG;

MOVWX LVCTL ;

MOVLW 1 00 0 0111B ; ADC Reference voltage source=VBG1.18V

MOVWX ADCTL2 ; Set to AD15 (PD2 pin).

BSX ADST ; 18h.3 (ADST), ADC Start conversion signal

WAIT_ADC:

BTXSC ADST ; Waiting for ADC conversion to complete.

LGOTO WAIT_ADC

MOVXW ADCDH ; 17h.7~0, read ADC result [11:4] to W

...

MOVXW ADCTL ; 18h.7~4, read ADC results [3:0] to W

. . .

16h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LVCTL	LVDF	BGEN	LVRSAV	LVDSAV		LV	DS	
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	-	1	1	1	0	0	1	0

16h.6 **BGEN:** Bandgap voltage VBG enable

> When the ADC uses the internal bandgap voltage source VBG, the BGEN regi ster must be enabled. To save power consumption, disable the BGEN register when use is complete.

0: Bandgap voltage disabled

1: Bandgap voltage enabled in FAST/SLOW mode, automatically disabled in STOP/IDLE mode

17h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCDH		ADCDH						
R/W	R	R	R	R	R	R	R	R
Reset	_	_	_	_	_	_	_	_

17h.7~0 **ADCDH:** ADC output value (ADCQ [11:4])

18h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCTL	ADCDL				ADST	ADCKS		
R/W	R	R	R	R	R/W	R/W	R/W	R/W
Reset	-	_	_	_	0	0	0	0

ADCDL: ADC output value (ADCQ [3:0]) 18h.7~4

18h.3 ADST: ADC Start Flag

> When the user sets ADST=1, the ADC starts conversion. After conversion is complete, the H/W automatically clears this flag.

ADCKS: ADC clock frequency selection: 18h.2~0

000: Fsys/256 100: Fsys/16 001: Fsys/128 101: Fsys/8 010: Fsys/64 110: Fsys/4 011: Fsys/32 111: Fsys/2

19h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ADCTL2	ADCVREFS	VBGSEL		ADCHS					
R/W	R/W	R	R/W			R/W			
Reset	0		0		0	0	0	0	

19h.7 **ADCVREFS:** ADC reference voltage selection

> 0: VCC 1: VBG

19h.6~5 VBGSEL: VBG voltage selection

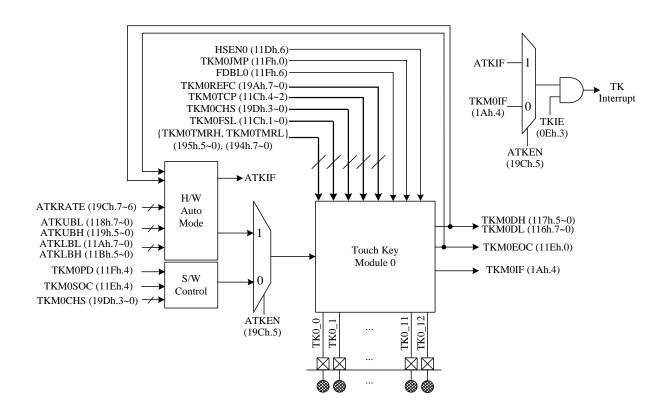
00: 1.18V 01: 2.5V 10: 3.0V 11: 2.0V

19h.4~0 ADCHS: ADC channel selection

00000: AD0 (PB0) 01000: Retain 10000: AD16 (PD3) 11000: AD24 (PA1) 00001: AD1 (PB1) 01001: Retain 10001: AD17 (PD4) 11001: AD25 (PA0) 00010: AD2 (PB2) 01010: Retain 10010: AD18 (PD5) 11010: AD26 (PA2) 00011: AD3 (PB3) 01011: Retain 10011: AD19 (PD6) 11011: Retain 00100: AD4 (PB4) 01100: AD12 (VBG 10100: AD20 (PD7) 11100: Retain O)

11101: Retain 00101: AD5 (PB5) 01101: AD13 (PD0) 10101: Retain 10110: AD22 (PA4) 00110: AD6 (PB6) 01110: AD14 (PD1) 11110: Retain

00111: AD7 (PB7)


01111: AD15 (PD2)

10111: AD23 (PA3)

11111: 1/4 VCC

6.8 Touch buttons

The touch key provides a simple, straightforward, and reliable method for detecting finger touches. In most applications, it does not require any external components. The device supports 13-channel touch key detection in S/W manual mode and 1 channel in H/W automatic mode (ATK), located at CH0 (PB0) in touch key mode 0.

Touch module 0 with ATK structure

To use the touch keys, users must press the table to set the pin mode correctly. Setting idle touch keys to pin mode 2 and output 0 can reduce mutual interference between adjacent keys.

Touch Key Pin Mode Settings	TK0_0~TK0_12
Pin is a touch key, idle	Mode 0, 1, 2, 3
Pin is a touch key, S/W scan	Mode 2, Output 0
Pin is a touch key, H/W auto scan (ATK)	TK0_0 Mode 2, Output 0

6.8.1 Touch button software manual detection mode

Touch key module 0 channel 0 (TK0_0, PB0) can also be used as H/W automatic mode (ATK). There are two oscillators in the touch key module: reference clock (RCKx) and touch clock (TCKx). They

are connected to the reference counter and data counter, respectively. The frequency of RCKx can be adjusted by setting TKMxREFC. The reference counter is used to control the conversion time. TKMxTCP is the touch key clock frequency selection (available only when TKMxJMP = 0). When TKMxJMP = 1, the touch key clock frequency changes automatically.

From the start of the touch key conversion to the end, setting TKMxTMR requires 0 to 4096 RCK oscillation cycles. After the conversion is complete, the user can retrieve the TK data (TKMxDH, TKMxDL) from the data counter. The TK data is influenced by finger touch. When the finger touch slows down the TCK, the value of the TK Data is less than when there is no finger touch. Depending on the TKMxDATA, the user can check whether it has been touched. Appropriate TKMxTMR and TKMxREFC settings can adjust the TK data to suit the system board environment. To obtain the best TKMxREFC settings, users can try different TKMxREFC values and find one that makes the TK data and TKMxTMR as close as possible. On the other hand, users can adjust the overall operating frequency of the TK system (including TCKx and RCKx) by setting TKMxFSL (frequency selection).

Setting the control signal TKM0HSEN (11D.6) can improve the performance of touch key module 0.

When scanning begins, users assign TKMxPD=0, then set the TKMxSOC bit to initiate touch key conversion. Upon conversion completion, the TKMxSOC bit is automatically cleared. However, if SYSCLK is too slow, the H/W may fail to clear TKMxSOC due to clock sampling rate issues. TKMxEOC=0 indicates that conversion is in progress. TKMxEOC=1 indicates that the conversion is complete, and the touch key count result is stored in the 14-bit TK data counters TKMxDH and TKMxDL.

TKMxIF is activated when TKMxPD changes from 1 to 0, so after the user clears TKMxPD, TKMxIF must also be cleared.

TKM0IF	TKIF	Status
0	0	Idle
1	1	TK module 0 conversion complete
0	1	ATK conversion complete

Touch Key Interrupt Flag Description

 \triangle Example: Touch key channel = TK0_2 (PB2)

.ORG 000h **LGOTO START** .ORG 004h INT: **TKIF** ; Verify TKIF BTXSC LCALL INT TK RETI INT_TK: BTXSC TKM0IF ; Verify TKM0IF LCALL INT_TKM0

DS-TM56M7842_E 71 Rev 0.91, 2025/10

LCALL INT_ATK ; TKIF=1 and TKM0IF=0, indicating ATKIF

RET

INT_TKM0: **MOVLW** 11101111B ; Clear TKM0IF

> **MOVWX TKMFLG MOVXW** TKM0DH ; read TK0 DATA[13:8] to W register

MOVXW TKM0DL ; read TK0 DATA[7:0] to W register

RET INT_ATK:

MOVLW 11110111B ; Clear TKIF

> **MOVWX TKMFLG**

RET

START:

SET_MODE:

; PBMODL[5:4] = 10bMOVLW xx10xxxxB

> **MOVWX PBMODL** ; Set PB2 as Mode 2 for touch key input.

PBD,2 ; Clear PB2 for CMOS low output BCX

TK_INIT:

MOVLW 000 <u>001</u> <u>10</u>B

MOVWX TKMCON0 ; Set TKM0TCP=1, TKM0FSL=2

MOVLW $0\underline{1} \underline{xxxxxx}B$

MOVWX TKMCON1 ; Set TKM0HSEN=1, TKM0 high sensitivity

MOVLW 00h

MOVWX TKM0TMRH

MOVLW 64H

; TKM0TMR=64H **MOVWX** TKM0TMRL

MOVLW 4DH

MOVWX TKM0REFC ; TKM0REFC=64H

MOVLW 0000 **0010**B ; Set TKM0CHS=2 (TK0_2, PB2)

MOVWX TKMCHS ;

MOVLW $0\underline{0}0\underline{0}0000\underline{0}B$

TKMCTL1 ; TKM0PD=0, enable TKM0 **MOVWX**

11110111B **MOVLW**

MOVWX INTIF1 ; Clear TKIF

BSX TKIE ; Enable TKIE, enable TK interrupt

TK START:

BSX TKM0SOC ; Start TKM0 conversion

6.8.2 Hardware automatic touch button detection mode

The touch keys have an H/W automatic mode. This feature can operate in fast/slow/idle modes, thereby reducing S/W workload and lowering chip power consumption. To use this feature, users need to set ATKEN=1 and TKM0PD=0 to enable H/W control of the TKM0 module. If ATKEN is set to "1," the ATK interval timer will generate an overflow flag after timing out, triggering the touch key H/W automatic mode to start. This allows the H/W to fully control the touch key module. Then, the H/W automatically detects the TK data count of TK0_0 at a rate of 20/25/40/80 ms according to ATKRATE (F19C.7–6).

As shown below. If the TK data count of the key is less than the specified lower comparison limit {ATKLBH, ATKLBL}, the H/W will generate an interrupt flag TKIF (1Ah.3). If TKIE (0Eh.3) is set to 1, it will generate an automatic touch key interrupt and wake up the CPU. After the TK interrupt, the user can switch the TK module to S/W manual mode and identify/confirm the key touch event.

♦Example: Using ATK hardware automatic touch key detection module, touch key channel = TK0_0 (PB0)

.ORG 000h	LGOTO	START	
.ORG 004h INT:	LGOTO	START	
	BTXSC LCALL RETI	TKIF INT_TK	; Verify TKIF
INT_TK:	BTXSC LCALL	TKM0IF INT_TKM0	; Verify TKM0IF
	LCALL RET	INT_ATK	; TKIF=1, TKM0IF=0 indicates ATKIF
INT_TKM0:			
	MOVLW MOVWX	11101111B TKMFLG	; Clear TKM0IF
	 RET		
INT_ATK:			
	MOVLW MOVWX	11110111B TKMFLG	; ClearTKIF
	RET		
START:			
CET MODE.	••••		
SET_MODE:	MOVLW MOVWX BCX	xxxxxx10B PBMODL PBD,2	; PBMODL[1:0] = 10b ; Set PB0 as Mode 2 for Touch Key input ; Clear PB2 to make CMOS output low level
TK_INIT:			
_	MOVLW MOVWX MOVLW	<u>xxx</u> <u>001</u> <u>10</u> B TKMCON0 <u>x1xxxxxx</u> B	; ; TKM0TCP=1, TKM0FSL=2 ;

MOVWX TKMCON1 ; Set sensitivity

MOVLW 04h

MOVWX TKM0TMRH

MOVLW 64H

MOVWX TKM0TMRL ; TKM0TMR=464H

MOVLW 00h

MOVLW 4DH

MOVWX TKM0REFC ; TKM0REFC=64H

MOVLW 00100000B ; TKM0PD=0,EnableTKM0 activity

MOVWX TKMCTL1 ; TKM0JMP=0, TKM0

; Clock mode fixed (TKM0TCP)

MOVLW 11110111B

MOVWX INTIF1 ; ClearTKIF

BSX TKIE ; EnableTKIE, EnableTKInterrupt

MOVLW 20H ;

MOVWX ATKLBL ; Set ATKLBL= 20H

MOVLW 04H ;

MOVWX ATKLBH ; Set ATKLBH=04H; ATKLB = 0420H MOVLW 01100000B ; ATKRATE=01B ATK scan Rate=25ms

ATK_START:

MOVWX ATKCON ; ATKEN=1, Enable ATK hardware automatic touch

function

SLEEP ; Sleep command, wait for ATK Interrupt wake-up

NOP

0Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE1	LVDIE	EEPIE			TKIE	I2CIE	UARTIE	PXIE
R/W	R/W	R/W			R/W	R/W	R/W	R/W
Reset	0	0			0	0	0	0

0Eh.3 **TKIE:** Touch Key Interrupt Enable

0: Close 1: Enable

1Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF1	LVDIF	-	-	TKM0IF	TKIF	-	UARTIF	PXIF
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

1Ah.4 **TKM0IF:** Touch Key Module 0 Interrupt Suspend Flag

This is set by H/W after the TK0 conversion is complete. S/W Writing 0 to this bit, writing 0 to TKIF, or writing 1 to TKM0SOC will clear this flag.

1Ah.3 **TKIF:** Touch KeyInterrupt Suspend Flag

This is set by H/W after ATK or TK0 conversion is complete. Writing 0 to this bit or writing 1 to TKM0SOC will clear all Touch Key Interrupt flags.

116h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKM0DL		=	=	TKM	10DL	-	-	
R/W	R	R	R	R	R	R	R	R
Reset	-	-	-	-	-	-	-	-

116h.7~0 **TKM0DL:**Touch Key Module 0 data [7:0]

11'	'h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

TKM0DH	-	-		TKM0DH				
R/W	-	-	R	R	R	R	R	R
Reset	-	-	-	-	-	-	-	-

117h.5~0 **TKM0DH:**Touch Key Module 0 data [13:8]

118h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATKUBL		=	=	ATK	UBL	-	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	-	-	-	-	-	-	-

118h.7~0 **ATKUBL:** ATKTouch Keylimit [7:0]

119h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATKUBH	-	-		=	ATK	UBH	-	-
R/W	-	-	R/W	R/W	R/W	R/W	R/W	R/W
Reset	-	-	-	-	-	=	-	=

119h.5~0 **ATKUBH:** ATKTouch Keylimit [13:8]

11Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATKLBL		=	=	ATK	LBL	-	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	-	-	-	-	-	-	-

11Ah.7~0 **ATKLBL:** ATKTouch Keylower limit [7:0]

11Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATKLBH	-	-		-	ATK	LBH	-	-
R/W	-	-	R/W	R/W	R/W	R/W	R/W	R/W
Reset	-	-	-	-	-	-	-	-

11Bh.5~0 **ATKLBH:** ATKTouch Keylower limit [13:8]

11Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKMCON0					TKM0TCP	-	TKM	0FSL
R/W				R/W	R/W	R/W	R/W	R/W
Reset				0	0	1	0	0

11Ch.4~2 **TKM0TCP:** Touch Key Module 0 Clock Frequency Selection (only effective when TKM0JMP=0)

11Ch.1~0 **TKM0FSL:** Touch key module 0 RCK0/TCK0 Frequency selection;

00:slowest

11:fastest

11Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKMCON1		TKM0HSEN	-	-	-	-	-	-
R/W		R/W	-	-	-	-	-	-
Reset		0	-	-	-	-	-	-

TKM0HSEN: Touch Key Module 0 Sensitivity 11Dh.6

0: Normal

1: Higher sensitivity

DS-TM56M7842_E 75 Rev 0.91, 2025/10

11Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKMCTL0	-	-	-	TKM0SOC	-	-	-	TKM0EOC
R/W	-	-	-	R/W	-	-	-	R/W
Reset	-	-	-	0	-	-	-	-

11Eh.4 **TKM0SOC:** Start Touch Key Module 0 conversion.

Set 1 to start Touch Key Module 0 conversion. If SYSCLK is fast enough, this bit will be H/WClear at the end of the conversion. S/W can also write 0 to clear this flag.

11Eh.0 **TKM0EOC:** Touch conversion flag Module 0 end key

TKM0EOC may have a 3uS delay after TKM0SOC=1, so F/W must wait long enough before polling the flag.

0: indicates conversion in progress

1: conversion complete

11Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKMCTL1		FDBL0	-	TKM0PD				TKM0JMP
R/W		R/W		R/W				R/W
Reset		0		1				0

11Fh.6 **FDBL0:** Touch Key Module 0 Counting speed doubled.

0: No doubling

1: Doubling

11Fh.4 **TKM0PD:** Touch key module 0 power off

0: Touch key module 0 running

1: Touch key module 0 off

11Fh.0 **TKM0JMP:** Touch Key Module 0 Clock Mode

0: Fixed Frequency (refer to TKM0TCP)

1: Auto Switching

194h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKM0TMRL		TKM0TMRL						
R/W				R	/W			
Reset	0	0	0	0	0	0	0	0

194h.7~0 **TKM0TMRL** Touch Key Module 0 Reference Counter [7~0]

195h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKM0TMRH	-	-			TKM0	TMRH		
R/W	-	-			R/	W		
Reset	_	-	0	0	0	0	0	0

195h.3~0 **TKM0TMRH**: Touch Key Module 0 Reference Counter [13~8]

19Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKM0REFC			TKM0REFC					
R/W				R	/W			
Reset	0	0	0	0	0	0	0	0

19Ah.7~0 **TKM0REFC** Touch Key Module 0 Reference clock capacitor selection

19Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATKCON	ATK	RATE	ATKEN		-			
R/W	R/W	R/W				-		
Reset	0	0			_	-	_	

19Ch.7~6 **ATKRATE**: Touch Key automatic scanning interval time 00: 20ms

DS-TM56M7842_E 76 Rev 0.91, 2025/10

01: 25ms 10: 40ms 11: 80ms

19Ch.5 ATKEN: Touch Key Automatic Scan Mode Enable

19Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKMCHS		-		-		TKM	0CHS	
R/W						R/	W	
Reset					0	0	0	0

19Dh.3~0 **TKM0CHS**: Touch Key Module 0 Channel selection

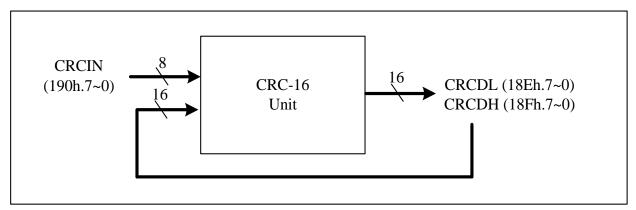
 0000: TK0_0 (PB0)
 0001: TK0_1 (PB1)

 0010: TK0_2 (PB2)
 0011: TK0_3 (PB3)

 0100: TK0_4 (PB4)
 0101: TK0_5 (PB5)

 0110: TK0_6 (PB6)
 0111: TK0_7 (PB7)

 1000: TK0_8 (PA4)
 1001: TK0_9 (PA3)


 1010: TK0_10 (PA1)
 1011: TK0_11 (PA0)

1100: TK0_12 (PA2)

6.9 Cyclic Redundancy Check (CRC)

The chip supports an integrated 16-bit cyclic redundancy check (CRC) function. The CRC calculation unit is an error detection technology test algorithm used to verify the correctness of data transmission or storage. CRC calculation takes an 8-bit data stream or data block as input and generates a 16-bit output remainder. The data stream is calculated using the same generating polynomial.

CRC16 Block Diagram

The CRC generator provides 16-bit CRC result calculations based on the CRC-16-IBM polynomial. In this CRC generator, only one polynomial is available for numerical calculations. It does not support 16-bit CRC calculations based on any other polynomials. Each write operation to the CRCINRegister creates a combination of the previous CRC values stored in the CRCDH and CRCDLRegister. The calculation will require one MCU instruction cycle.

CRC-16-IBM (Modbus) polynomial representation: $X^{16} + X^{15} + X^2 + 1$

18Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CRCDL		CRCDL						
R/W		R/W						
Reset	1	1	1	1	1	1	1	1

18Eh.7~0 CRCDL: 16 bit CRCVerify data bit 7~0

18Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CRCDH		CRCDH						
R/W		R/W						
Reset	1	1	1	1	1	1	1	1

18Fh.7~0 **CRCDH:** 16 bit CRC Verify data bit 15~8

190h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CRCIN		CRCIN						
R/W		W						
Reset	-	-	-	-	-	-	-	-

190h.7~0 **CRCIN:** CRC data input, write to this register to start CRC calculation

DS-TM56M7842_E 78 Rev 0.91, 2025/10

MEMORY MAP

Name	Address	R/W	Rst	Description
INDF (00h/8	0h/100h/180h)		Function related to: RAM
INDF	00.7~0	R/W	-	Used for indirect addressing between bank0 and bank3. Not a physical register; any instruction using INDF actually accesses the memory pointed to by FSR.
TM0 (01h/10	1h)			Function related to: Timer0
TM0	01.7~0	R/W	0	Timer0 Count data
PCL (02h/82)	h/102h/182h)			Function related to: program counter
PCL	02.7~0	R/W	0	PC[7:0], the low byte of the program counter.
STATUS (03	h/83h/103h/1	83h)		Function related to: STATUS
IRP	03.7	R/W	0	Register Bank Selection (for indirect addressing)
RP1	03.6	R/W	0	Register Bank Selection 1 for direct addressing
RP0	03.5	R/W	0	Register Bank Selection 0 for direct addressing
то	03.4	R	0	Watchdog timeout flag. Watchdog timeout setting. Cleared by power-on reset, 'SLEEP' or 'CLRWDT' instruction.
PD	03.3	R	0	Power loss flag. Set by the 'SLEEP' command. Cleared by power-on reset or the 'CLRWDT' command.
Z	03.2	R/W	0	Zero flag
DC	03.1	R/W	0	Decimal carry flag
С	03.0	R/W	0	Carry flag
FSR (04h/84)	h/104h/184h)			Function related to: RAM
FSR	04.7~0	R/W	-	Used for indirect addressing between Bank0 and Bank3. FSR stands for pointer, which stores addresses. Any instruction that uses INDF actually accesses the memory pointed to by FSR.
PAD (05h)				Function related to: Port A
	0.5.5.0	R	-	Port A pin or "data register" status
PAD	05.7~0	W	FF	Port A output data register
PBD (06h)				Function related to: Port B
, ,		R	_	Port B pin or "data register" status
PBD	06.7~0	W	FF	Port B output data register
PDD (08h)				Function related to: Port D
		R	_	Port D pin or "data register" status
PDD	08.7~0	W	FF	Port D output data register
INDF1 (09h/	89h/109h/189		11	Function related to:RAM
INDII (0)II/	0)11/10)11/10)	11)		Used for Bank4 indirect addressing.
INDF1	09.7~0	R/W	0	Not a physical register; any instruction using INDF1 actually accesses the memory pointed to by FSR1.
PCLATH (02	Ah/8Ah/10Ah	/18Ah)		Function related to: program counter
PCLATH	0A.3~0	R/W	0	PC[11:8] (i.e., the upper 4 bits of the program counter) is written to the buffer register. When the CPU executes any instruction that modifies the PCLRegister, PC[11:8] is provided by the PCLATHRegister by default. This function can be closed by the PCHRegister.
INTIE (0Bh/8	3Bh/10Bh/18F	Bh)		Function related to: Interrupt Enable
ADCIE	0B.7	R/W	0	ADC Interrupt Enable

Name	Address	R/W	Rst	Description
				0: Close 1: Enable
T2IE	0B.6	R/W	0	T2 Interrupt Enable 0: Close 1: Enable
TM1IE	0B.5	R/W	0	Timer1 Interrupt Enable 0: Close 1: Enable
TM0IE	0B.4	R/W	0	Timer0 Interrupt Enable 0: Close 1: Enable
WKTIE	0B.3	R/W	0	Wake-up timer interrupt enable, which is also wake-up timer enable. 0: Close 1: Enable
	0B.2	R/W	0	Retain
	0B.1	R/W	0	Retain
	0B.0	R/W	0	Retain
INTIF (0Ch)				Function related to: Interrupt flags
ADCIF	0C.7	R	-	ADC Interrupt Flag, set by H/W after ADC conversion is complete
		W	0	Write 0: Clear the flag; Write 1: No action
T2IF	0C.6	R	-	T2Interrupt Event Suspend Flag, set by H/W when T2 overflows
		W	0	Write 0: Clear the flag; write 1: No action
TM1IF	0C.5	R	-	Timer1 Interrupt Event Pending Flag, set by H/W when Timer1 overflows
		W	0	Write 0: Clear the flag; write 1: No action
TM0IF	0C.4	R	-	Timer0 Interrupt Event Pending Flag, set by H/W when Timer0 overflows
		W	0	Write 0: Clear the flag; write 1: No action
WKTIF	0C.3	R	-	WKT Interrupt event suspend flag, set by H/W when WKT times out
		W	0	Write 0: Clear the flag; write 1: No action
	0C.2	R/W	0	Retain
	0C.1	R/W	0	Retain
	0C.0	R/W	0	Retain
FSR1 (0Dh)	1			Function related to: RAM
FSR1	0D.7~0	R/W	-	Used for Bank4 indirect addressing. FSR1 represents a pointer that stores an address. Any instruction that uses INDF1 actually accesses the memory pointed to by FSR1.
INTIE1 (0Eh)				Function related to:Interrupt Enable 组 1
LVDIE	0E.7	R/W	0	LVDInterrupt Enable 0:Disabled 1:Enable
	0E.6	R/W	0	Retain
TKIE	0E.3	R/W	0	TKInterrupt Enable 0:Disabled 1:Enable
	0E.2	R/W	0	Retain
UARTIE	0E.1	R/W	0	UART TX/RX Interrupt Enable 0:Disabled 1:Enable
PXIE (AE	0E.0	R/W	0	Pin level change Interrupt Enable 0:Disabled 1:Enable
CLKCTL (0F	h)			Function related to: Fsys

Name	Address	R/W	Rst	Description
				Slow clock type selection
SCKTYPE	0F.7	R/W	0	0: SIRC
				1: SXT
	0F.6	R/W	0	Retain
				Close Slow Clock
SLOWSTP	0F.4	R/W	0	0: Slow clock continues running after SLEEP instruction.
				1: If no other peripheral function blocks use the slow clock, the
				slow clock stops running after the SLEEP instruction. Close Fast Clock
FASTSTP	0F.3	R/W	1	0: System clock is slow, fast clock remains running
	01.5	10 11	1	1: System clock is slow, fast clock closes
CDLICKE	OE 2	D/W	0	System clock source selection
CPUCKS	0F.2	R/W	0	0: Slow clock 1: Fast clock
				System clock source pre-divider, system clock source
CPUPSC	0F.1~0	R/W	11	00: Divide by 8 01: Divide by 4 10: Divide by 2 11: Divide by
TM0RLD (10)	h)			Related functions: TM0
TMORLD (10)	10.7~0	D/W	0	T
		R/W	0	Timer0 reloads data
TM0CTL (11)	h)		1	Related functions: TM0
T0ISRC	11.7	R/W	0	Timer0 counting mode clock source selection 0: TM0CKI (PA2)
TOISIC	11./	IX/ VV	U	1: SXT/16
				PauseTimer0
TM0STP	11.6	R/W	0	0: Timer0 running
				1: Timer0 Pause
				TM0CKI (PA2) Edge Selection
TM0EDG	11.5	R/W	0	0: Rising Edge 1: Falling Edge
				Timer0 clock source selection
TM0CKS	11.4	R/W	0	0: Fsys/2
				1: TM0CKI (PA2) or SXT/16
				Timer0 frequency selection o
				When TM0CKS=1, it is recommended to keep TM0PSC at the
				default value of 0000.
				The Timer 0 clock is the clock source. (Fsys/2 or TM0CKI or
TM0PSC	11.3~0	R/W	0	SXT/16) divided by 0000: /1 0101: /32 1010: /1024 1111: /32768
				0001: /2 0110: /64 1011: /2048
				0010: /4 0111: /128 1100: /4096
				0011: /8 1000: /256 1101: /8192
				0100: /16
TM1 (12h)	10.7.0	D /III		Function related to: Timer1
TM1	12.7~0	R/W	0	Timer1 Count data
TM1RLD (13)	13.7~0	R/W	0	Function related to: Timer1 Timer1 reloads data
		r\/W	U	
TM1CTL (14)				Function related to: Timer1 Pause Timer1
TM1STP	14.4	R/W	0	0: Timer1 running
				1: Timer1 Pause
				Timer1pre-divider o Timer1The clock is the clock
TM1PSC	14.3~0	R/W	0	source.(Fsys/2)divide by
111111111111111111111111111111111111111	17.5~0	17/ 11		0000: Fsys/1
			<u> </u>	0001: Fsys/2

Name	Address	R/W	Rst	Description
				0010: Fsys/4
				0011: Fsys/8
				0100: Fsys/16
				0101: Fsys/32 0110: Fsys/64
				0111: Fsys/128
				1xxx: Fsys/256
T2CTL (15h)				Function related to: T2
T2CLR	15.3	R/W	1	Reset the T2 counter. Reset Timer0 to zero.
				T2 Clock Source Selection
T2CKS	15.2	R/W	0	0: Slow Clock
				1: Fsys/128
Tanga	15.1.0	D /W		T2 Clock Source Selection
T2PSC	15.1~0	R/W	0	0: Slow Clock 1: Fsys/128
LVCTL (16h)				Related function: LVR/LVD
	167	D	1	
LVDF	16.7	R	-	Low voltage detection mark, when Vcc ≤ LVD, set by H/W
				Bandgap voltage VBGEnable When the ADC uses the internal bandgap voltage source VBG, the
				BGENRegister must be enabled. To save power consumption, close
BGEN	16.6	R/W	1	the BGENRegister when finished using it.
				0: Bandgap voltage disabled
				1: Bandgap voltage enabled in FAST/SLOW mode and
				automatically disabled in IDLE/STOP mode
				POR/LVR Power Saving Settings
LVRSAV	16.5	R/W	1	0: Enable POR/LVR in STOP/IDLE mode
				1: Disable POR/LVR in STOP/IDLE mode
LVDCAV	16.4	D /W	1	LVD power saving settings
LVDSAV	16.4	R/W	1	0: Enable LVD in STOP/IDLE mode 1: Disable LVD in STOP/IDLE mode
				LVD voltage selection
				0000: Disable LVD function
				0001: 4.30V
LVDS	16.3~0	R/W	0010	0010: 1.87V
				0011: 2.00V
				 1110: 3.37V
				1111: 3.49V
ADCDH (17h)				Function related to: ADC
ADCDH	17.7~0	R	-	ADCoutput data bit 11~4
ADCTL (18h)				Function related to: ADC
ADCDL	18.7~4	R	-	ADCoutput data bit 3~0
				ADC starts flag.
ADST	18.3	R/W	0	When the user sets ADST=1, the ADC starts conversion. After
				conversion is complete, the H/W automatically clears this flag.
				ADC clock frequency selection: 000: Fsys/256 100: Fsys/16
ADCKS	18.2~0	R/W	0	000: Fsys/128 100: Fsys/16 001: Fsys/128 101: Fsys/8
	10.2	10/11		010: Fsys/64 110: Fsys/4
				011: Fsys/32 111: Fsys/2
ADCTL2 (19h	1)			Function related to: ADC
ADCVREFS	19.7	R/W	0	ADC VREF setting,

Name	Address	R/W	Rst	Description
				0: VCC, 1: VBG
VBGSEL	19.6~5	R/W	0	VBG selection setting, 00: 1.18V, 01: 2.5V, 10: 3.0V, 11: 2.0V
ADCHS	19.4~0	R/W	1D	ADC Channel selection 00000: ADC0 (PB0) 00001: ADC1 (PB1) 00010: ADC2 (PB2) 00011: ADC3 (PB3) 00100: ADC4 (PB4) 00101: ADC5 (PB5) 00110: ADC6 (PB6) 00111: ADC7 (PB7) 01000: Retain 01001: Retain 01001: Retain 01010: ADC12(VBG) 01101: ADC13(PD0) 01110: ADC14(PD1) 01111: ADC15(PD2) 10000: ADC16(PD3) 10001: ADC17(PD4) 10010: ADC18(PD5) 10011: ADC20(PD7) 10101: Retain 10110: ADC20(PA4) 10111: ADC23(PA3) 11000: ADC24(PA1) 11001: ADC25(PA0) 11010: ADC25(PA0) 11011: Retain 11111: ADC31(1/4 VCC) others: Retain
INTIF1 (1Ah))			Function related to:Interrupt flag
LVDIF	1A.7	R/W	0	Low voltage detection interrupt suspend flag. When low voltage occurs, H/W sets this interrupt flag. S/W writing 0 clears this flag; S/W writing 1 has no effect.
	1A.6	R/W	0	Retain
	1A.5	R/W	0	Retain
TKM0IF	1A.4	R/W	0	Touch Key Module 0 Interrupt Suspend Flag This is set by H/W after TK0 conversion is complete. S/W writing 0 to this bit, writing 0 to TKIF, or writing 1 to TKM0SOC will clear this flag. S/W writing 1 will have no effect.
TKIF	1A.3	R/W	0	Touch KeyInterrupt Suspend Flag This is set by H/W after ATK or TK0 conversion is complete. Writing 0 to this bit or writing 1 to TKMxSOC will clear all Touch KeyInterrupt flags. Writing 1 to S/W will have no effect.
	1A.2	R/W	0	Retain
UARTIF	1A.1	R/W	0	When TX/RX transmission is complete, the UARTInterrupt flag set by H/W; F/W writes 0 to clear this flag.
PXIF	1A.0	R/W	0	PortA/B/D pin level change Interrupt flag. F/W writes 0 to clear this flag.

Name	Address	R/W	Rst	Description
PAWKE (1C	h)			Function related to: Port A
PAWKE	1C.7~0	R/W	0	PA pin wake-up enable 0:Close 1:Enable
PBWKE (1D)	h)			Function related to: Port B
PBWKE	1D.7~0	R/W	0	PB pin wake-up enable 0:Close 1:Enable
PDWKE (1FI	h)		1	Function related to: Port D
PDWKE	1F.7~0	R/W	0	PD pin wake-up enable(Not included PD5,PD4) 0:Close 1:Enable
User Data Me	emory			
RAM	20~6F	R/W	-	RAM Bank0 area (80 bytes)
RAM	70~7F	R/W	-	RAM public area (16 bytes)
OPTION (81)	h/181h)			
HWAUTO	81.7	R/W	0	Enable the automatic save function when entering/exiting subroutines. When entering/exiting interrupt subroutines, the hardware automatically saves/restores WREG, FSR, TABR, PCLATH, DPL, DPH, and STATUS (excluding TO and PD). 0: Disable 1: Enable
-	81.6	R/W	0	Retain
-	81.5	R/W	0	Retain
FREQL	81.4	R/W	1	SIRC Frequency Selection 0: 60KHz 1: 50KHz
WDTPSC	81.3~2	R/W	11	WDT cycle selection: FREQL=1: 00: 188ms@3V, 169ms@5V 01: 371ms@3V, 333ms@5V 10: 749ms@3V, 668ms@5V 11: 1492ms@3V, 1355ms@5V FREQL=0: 00: 147ms@3V, 135ms@5V 01: 293ms@3V, 272ms@5V 10: 580ms@3V, 529ms@5V 11: 1180ms@3V, 1058ms@5V
WKTPSC PAMODH (8	81.1~0	R/W	11	WKT cycle selection: FREQL=1: 00: 22ms@3V, 20ms@5V 01: 44ms@3V, 40ms@5V 10: 89ms@3V, 80ms@5V 11: 177ms@3V, 160ms@5V FREQL=0: 00: 18ms@3V, 16ms@5V 01: 35ms@3V, 32ms@5V 10: 70ms@3V, 63ms@5V 11: 139ms@3V, 125ms@5V Function related to: PortA

Name	Address	R/W	Rst	Description
DAZMOD	05.7.6	D/W	0.1	PA7、PA4 I/O mode control
PA7MOD	85.7~6	R/W	01	00: Mode0
D. (1) (0) D	07.4.0	D 411	0.1	01: Mode1 10: Mode2
PA4MOD	85.1~0	R/W	01	10. Mode2 11: Mode3
PAMODL (80	6h)			Function related to: PortA
PA3MOD	86.7~6	R/W	01	PA3~PA0 I/O mode control
PA2MOD	86.5~4	R/W	01	00: Mode0
PA1MOD	86.3~2	R/W	01	01: Mode1 10: Mode2
PA0MOD	86.1~0	R/W	01	11: Mode3
PBMODH (87	h)			Function related to: PortB
PB7MOD	87.7~6	R/W	01	PB7~PB4 I/O mode control
PB6MOD	87.5~4	R/W	01	00: Mode0
PB5MOD	87.3~2	R/W	01	01:Mode1 10: Mode2
PB4MOD	87.1~0	R/W	01	11: Mode2
PBMODL (88				Function related to: PortB
PB3MOD	88.7~6	R/W	01	PB3~PB0 I/O mode control
PB2MOD	88.5~4	R/W	01	00: Mode0
PB1MOD	88.3~2	R/W	01	01: Mode1 10: Mode2
PB0MOD	88.1~0	R/W	01	11: Mode3
PDMODH (8I				Function related to:Port D
PD7MOD	8D.7~6	R/W	01	PD7~PD4 I/O mode control
PD6MOD	8D.5~4	R/W	01	00: Mode0
PD5MOD	8D.3~2	R/W	01	01: Mode1 10: Mode2
PD4MOD	8D.1~0	R/W	01	11: Mode3
PDMODL (8E	Ch)			Function related to:Port D
PD3MOD	8E.7~6	R/W	01	PD3~PD0 I/O mode control
PD2MOD	8E.5~4	R/W	01	00: Mode0 01: Mode1
PD1MOD	8E.3~2	R/W	01	10: Mode2
PD0MOD	8E.1~0	R/W	01	11: Mode3
OPTION2 (8)	Fh)			
TCOE	OE 7	D/W	0	TCOUT Output Switch 0: Disabled.
TCOE	8F.7	R/W	0	1: Enabled, output to PB1.
				Timer1 overflow switches output switch
TM10E	8F.6	R/W	0	0: Disabled.
				1: Enabled, output to PB0
PWMCKS	8F.5~4	R/W	0	PWM clock source selection 00: Fsys 01:FIRC/256 10:FIRC 11:FIRC*2
_	8F.2	R/W	0	Retain
-	8F.1	R/W	0	Retain
_	8F.0	R/W	0	Retain
PWMOE (90)		10 11		Related function: PWM0/PWM1
T THE (90)				PWM0P output Enable to PA7 or PB0
PWM0POE	90.7	R/W	0	0:Disabled
				1:Enable
PWM0NOE	90.6	R/W	1	PWM0N output Enable to PA0 0:Disabled
				U.Disauted

Name	Address	R/W	Rst	Description
				1:Enable
PWM5OE	90.5	R/W	1	PWM5 output Enable to PA7 or PB1 0: Disabled 1: Enable (for PA7, PWM0P's output priority is higher than PWM5)
PWM4OE	90.4	R/W	1	PWM4 output Enable to PA4 0:Disabled 1:Enable
PWM3OE	90.3	R/W	1	PWM3 output Enable to PA3 0:Disabled 1:Enable
PWM2OE	90.2	R/W	0	PWM2 output Enable to PA2 0:Disabled 1:Enable
PWM1OE	90.1	R/W	0	PWM1 output Enable to PA1 0:Disabled 1:Enable
PWMCTL (91	h)			Related function: PWM
PWMEN	91.7	R/W	0	PWM Clock Enable 0: Disabled 1: Enable
PWM0OM	91.5~4	R/W	0	PWM0 Output Mode 00 ~ 11: Mode 0 ~ Mode 3
PWM0DZ	91.3~0	R/W	0	PWM0 dead zone width selection 0000~1111: 0~ 14,16 *Tpwmclk
PWMPRDH (92h)			Related function: PWM
PWMPRDH	92.7~0	R/W	0	PWM duty cycle high byte
PWMPRDL (9	93h)			Related function: PWM
PWMPRDL	93.7~0	R/W	0	PWM duty cycle low byte
PWM0DH (94	h)			Related function: PWM
PWM0DH	94.7~0	R/W	0	PWM0 duty cycle high byte
PWM0DL (95)	,			Related function: PWM
PWM0DL	95.7~0	R/W	0	PWM0 duty cycle low byte
PWM1DH (96			ı	Related function: PWM
PWM1DH	96.7~0	R/W	0	PWM1duty cycle high byte
PWM1DL (97)			ı	Related function: PWM
PWM1DL	97.7~0	R/W	0	PWM1 duty cycle low byte
PWM2DH (98			I	Related function: PWM
PWM2DH	98.7~0	R/W	0	PWM2duty cycle high byte
PWM2DL (99)	,	D. WY		Related function: PWM
PWM2DL (0.4	99.7~0	R/W	0	PWM2 duty cycle low byte
PWM3DH (9A		D/W		Related function: PWM
PWM3DH (OR	9A.7~0	R/W	0	PWM3duty cycle high byte
PWM3DL (9B	1	D/W/	0	Related function: PWM PWM3 duty evels low byte
PWM3DL	9B.7~0	R/W	U	Poloted function DWM
PWM4DH (9C) PWM4DH	9C.7~0	R/W	0	Related function: PWM PWM4duty cycle high byte
PWM4DH (9D		IV/ VV		Related function: PWM
I WM4DL (9D) II)			ACIAICU TUHCHOH: F YYIYI

Name	Address	R/W	Rst	Description
PWM4DL	9D.7~0	R/W	0	PWM4 duty cycle low byte
PWM5DH (9F	Eh)			Related function: PWM
PWM5DH	9E.7~0	R/W	0	PWM5duty cycle high byte
PWM5DL (9F	h)			Related function: PWM
PWM5DL	9F.7~0	R/W	0	PWM5 duty cycle low byte
User Data Mer	nory			
RAM	A0~EF	R/W	-	RAM bank1 area (80 bytes)
TESTREG (10)5h)		•	
TESTREG	105.7~0	R/W	00	Test bit, keep 00
RDCTL (106h)		•	Related function: ROM Read
RDCTL	106.1~0	W	1	Program ROM read signal delay control 00: Program ROM read signal delay 4ns 01: Program ROM read signal delay 8ns 10: Program ROM read signal delay 12ns 11: Program ROM read signal delay 16ns For safety reasons, please change the register when the clock is slow. Users must switch this register to "4ns" to improve the performance of the minimum operating voltage. This feature is not simulated.
LVRPD (107h)			Related function: LVR
LVRPD	107	W	0	LVR power Close control Write 0x37 to force Close LVR+POR Write 0x38 to force Close LVR, POR remains Enable Write 0x39 to force Close POR, LVR remains Enable Writing other values to this register will Enable LVR+POR
PORPDF	107.1	R	0	0: When Register107h is written with other values 1: When Register.107h is written with 0x37 or 0x39;
LVRPDF	107.0	R	0	0: When Register107h is written with other values 1: When Register107h is written with 0x37 or 0x38;
PCH (10Ch)				Related function: program counter
		R	0	Read PC[11:8], i.e., the upper 4 bits of the program counter.
РСН	10C.3~0	W	0	(Only available to users of assembly language; not applicable to users of C language.) After writing 1Ch to this register, when the CPU executes any instruction that modifies PCL, PC[11:8] remains unchanged. After writing other values to this register, when the CPU executes any instruction that modifies the PCL, PC[11:8] is provided by the PCLATH register.
UBAUD (10Dh	1)			Related function: UART
UBAUD	10D	R/W	0	UART baud rate divider
BGTRIM (101	Eh)			Related function: bandgap voltage VBG
BGTRIM	10E.4~0	R/W		VBG voltage adjustment 00h: Minimum voltage 1Fh: Maximum voltage
TKM0DL (116	h)			Related function: Touch Key
TKM0DL	116.7~0	R	-	Touch Key Module 0 data LSB [7~0]
TKM0DH (117	7 h)			Related function: Touch Key

Name	Address	R/W	Rst	Description
TKM0DH	117.5~0	R	-	Touch Key Module 0 data MSB [13~8]
ATKUBL (118	h)			Related function: Touch Key
ATKUBL	118.7~0	R	-	ATKTouch Key Module limit[7~0]
ATKUBH (119	h)			Related function: Touch Key
ATKUBH	119.5~0	R	-	ATKTouch Key Module limit[13~8]
ATKLBL (11A	h)			Related function: Touch Key
ATKLBL	11A.7~0	R	-	ATKTouch Key Module lower limit[7~0]
ATKLBH (11F	Bh)			Related function: Touch Key
ATKLBH	11B.5~0	R	-	ATKTouch Key Module lower limit[13~8]
TKMCON0 (1	1 Ch)			Related function: Touch Key
-	11C.7~5	R/W	001	Retain
ТКМ0ТСР	11C.4~2	R/W	001	Touch Key Module 0 Clock Frequency Selection (only effective when TKM0JMP=0) 000: Slow, 111: Fastest
TKM0FSL	11C.1~0	R/W	0	Touch Key Module RCK0/TCK0 Frequency Selection 00: Slow,, 11: Fastest
TKMCON1 (1	1 Dh)			Related function: Touch Key
-	11D.7	R/W	0	Retain
TKM0HSEN	11D.6	R/W	0	Touch Key Module 0 Sensitivity 0: Low sensitivity 1: High sensitivity
TKMCTL0 (1	1Eh)			Related function: Touch Key
-	11E.5	R/W	0	Retain
TKM0SOC	11E.4	R/W	0	Touch Key module 0 starts conversion, HW clears it when conversion is complete
-	11E.1	R	-	Retain
TKM0EOC	11E.0	R	-	Touch Key module 0 conversion complete
TKMCTL1 (11	(Fh)			Related function: Touch Key
	11F.7	R/W	0	Retain
FDBL0	11F.6	R/W	1	Touch Key Module 0 Count Doubling 0: No doubling 1: Doubling
_	11F.5	R/W	0	Retain
TKM0PD	11F.4	R/W	1	Touch Key Module 0 Close 0: Touch KeyEnable 1: Touch KeyClose
-	11F.3~2	R/W	0	Retain
-	11F.1	R/W	0	Retain
TKM0JMP	11F.0	R/W	0	Touch Key Module 0 Clock Mode 0: Fixed Frequency 1: Automatic Frequency Switching
User Data Mer	nory			
RAM	120~16F	R/W	-	RAM Bank2 area (80 bytes)
DPL (185h)				Function related to:Table read

Name	Address	R/W	Rst	Description
DPL	185.7~0	R/W	0	Read low address, low byte of data ROM pointer (DPTR)
DPH (186h)	•			Function related to: Table read
DPH	186.4~0	R/W	0	Read high address, high byte of data ROM pointer (DPTR)
UARTCTL (18	87h)			Function related to:UART
URTD9	187.7	R/W	0	The 9th bit of UART transmission
UMODE	187.6~5	R/W	0	UART Mode Selection 0: 7 bits 1: 8 bits 2: 9 bits 3: Retain
URINTTF	187.4	R	0	When UART TX transmission is complete, these bits are set to 1 by H/W; clearing UARTIF also clears this flag.
UTXE	187.3	R/W	0	UART transmission enabled 0:Disabled 1:Enable
URXE	187.2	R/W	0	UART Receive Enable 0:Disabled 1:Enable
UARTE	187.1	R/W	0	UART Function Enable 0:Disabled 1:Enable
UINVEN	187.0	R/W	0	UART TX/RXoutput/Input reversal Enable 0:Disabled 1:Enable
UARTSTA (18	88h)			Function related to:UART
UTBE	188.7	R	0	0: Send TX 1: TX buffer is empty;
URRD9	188.6	R	0	Received 9 bits
EVEN	188.5	R/W	0	UART parity 0: Odd 1: Even
PRE	188.4	R/W	0	UART parity check 0: Close 1: Enable,
PRERR	188.3	R/W	0	Set to 1 when a parity error occurs, and clear it by writing 0 to F/W.
OVERR	188.2	R/W	0	Set to 1 when an overflow error occurs, and clear it by writing 0 to F/W.
FMERR	188.1	R/W	0	Set to 1 when a frame error occurs, and clear it by writing 0 to F/W.
URBF	188.0	R	0	Buffer full flag. Set to 1 when 8 bits or 9 bits are received. F/W reads UARTDAT Register and clears it to 0.
TABR (18Ch)				Function related to: Table Read
TABR	18C.7~0	R/W	0	TABRRegister is designed for reading and writing ROM. Writing 1 to TABR is equivalent to the instruction TABRL. Writing 2 to TABR is equivalent to the instruction TABRH. Reading TABR returns the ROM read value. Assembly users can use TABRRegister or the instructions TABRL/TABRH. C language users can only use TABRRegister.
URDATA (18I	Oh)			Function related to: UART

Name	Address	R/W	Rst	Description
		R/W	0	UART TX/RX data buffer
URDATA	18D.7~0	R	0	Move bits from receive buffer
		W	0	to transmitter
CRCDL (18Eh	1)		T	Function related to: CRC16
CRCDL	18E.7~0	R/W	0	CRC16 data 7~0
CRCDH(18Fh)			Function related to: CRC16
CRCDH	18F.7~0	R/W	0	CRC16 data 15~8
CRCIN(190h)				Function related to: CRC16
CRCIN	190.7~0	W	0	CRC Input data
TKM0TMRL	(194h)			Function related to: Touch Key
TKM0TMRL	194.7~0	R/W	FF	Touch Key Module 0 Reference Counter LSB [7~0]
TKM0TMRH	(195h)			Function related to: Touch Key
TKM0TMRH	195.5~0	R/W	0	Touch Key Module 0 Reference Counter MSB [13~8]
TKM0REFC (19Ah)			Function related to: Touch Key
TKM0REFC	19A.7~0	R/W	-	Touch Key Module 0 Reference Clock Capacitor Selection
SFR19B (19Bh	1)			
CFEN	19B.7	R/W	0	Capture frequency function enabled. When CFEN=1, the hardware switches the Timer0 clock source to the fast clock.
CFST	19B.6	R/W	0	Capture frequency function start flag. When CFST=1, sampling begins, and the hardware automatically clears this bit when sampling is complete.
TM0CLR	19B.5	R/W	0	Timer0 reset。
ULEDMASK	19B.4	R/W	0	UART TX masking for cascaded LED applications. When ULEDMASK = 1: (1) During the UART stop bit and idle period, the TX pin is fixed at output 0. (2) The 16-pre-divider is not used as the UART clock source.
TXSEL	19B.3	R/W	0	UART TX Pin selection. 0: PB5 as UART TX 1: PD3 as UART TX
RXSEL	19B.2	R/W	0	UART RX Pin selection. 0: PB4 as UART TX 1: PD2 as UART TX
PWM0PSEL	19B.1	R/W	0	PWM0P Pin selection. 0: PA7 as PWM0P output 1: PB0 as PWM0P output
PWM5SEL	19B.0	R/W	0	PWM5 Pin selection. 0: PA7 as PWM5 output 1: PB1 as PWM5 output
ATKCON (190	Ch)			Function related to: Touch Key
ATKRATE	19C.7~6	R/W	0	ATK scan rate (provided by SIRC) 00: 20ms 01: 25ms 10: 40ms 11: 80ms
ATKEN	19C.5	R/W	0	ATK Enable (TKM0 CH0 : PB0)
TKMCHS0 (19			ı	Function related to: Touch Key
TKM0CHS	19D.7~4 19D.3~0	R/W R/W	0	Retain Touch Key Module 0 Channel Selection 00: TK0_0 01:TK0_1 02:TK0_2 03:TK0_3 04:TK0_4 05: TK0_5 06:TK0_6 05:TK0_7 08:TK0_8 09:TK0_9

Name	Address	R/W	Rst	Description		
				10:TK0_11 11:TK0_11 12:TK0_12		
User Data Mer	User Data Memory					
RAM	1A0~1EF	R/W	-	RAM Bank 3 area (80 bytes)		
Indirect Addre	Indirect Addressing User Data Memory					
RAM	00~ 7F	R/W	-	Indirectly address RAM Bank4 area (128 bytes); use INDF1/FSR1		

DS-TM56M7842_E 91 Rev 0.91, 2025/10

INSTRUCTION SET

Each instruction is a 16-bit word, consisting of an opcode (used to specify the instruction type) and one or more operands (used to further specify the operation of the instruction). The following table lists the instructions categorized into byte-oriented, bit-oriented, and immediate-oriented operations.

For byte-oriented instructions, "f" represents the address specifier, and "d" represents the destination specifier. The address specifier is used to specify which address in program memory the instruction will use. The destination specifier specifies where the operation result will be placed. If "d" is "0," the result is stored in the WRegister. If 'd' is "1," the result is placed at the address specified by the instruction.

For bit-oriented instructions, "b" represents the bit field indicator, which selects the number of bits affected by the operation, while 'f' represents the address indicator. For immediate value operations, "k" represents the immediate value or constant value.

Abbreviations	Description
f	File Register Address
b	Bits Address
k	Immediate Number. Constant Number or Label
d	Target Selection Field, 0: Work Register, 1: File Register
W	Work Register
Z	Zero Flag
С	Bits Flag or Borrow Bits Flag
DC	Decimal Bits Flag or Decimal Borrow Bits Flag
PC	Program Counter
TOS	Top Level Stack
GIE	General Interrupt Enable Flag (i-Flag)
[]	Selection Field
()	Contents
	Bits Field
В	Before
A	After
←	Allocation Direction

DS-TM56M7842_E 92 Rev 0.91, 2025/10

Mnemon	ic	Op Code	Cycle	Flag Affect	Description
				ister Instructio	
ADDWX	f, d	ff00 0111 dfff ffff	1	C, DC, Z	W and "f" added together
ADDWXC	f, d	ff01 0111 dfff ffff	1	C, DC, Z	W and "f" added together with C
ANDWX	f, d	ff00 0101 dfff ffff	1	Z	W and "f" ANDed
CLRX	f	ff00 0001 1fff ffff	1	Z	Clear "f"
CLRW		0000 0001 0100 0000	1	Z	Clear W
COMX	f, d	ff00 1001 dfff ffff	1	Z	Invert "f"
DECX	f, d	ff00 0011 dfff ffff	1	Z	Decrement "f" by 1
DECXSZ	f, d	ff00 1011 dfff ffff	1 or 2	-	Decrement "f" by 1; skip if zero
INCX	f, d	ff00 1010 dfff ffff	1	Z	Increment "f"
INCXSZ	f, d	ff00 1111 dfff ffff	1 or 2	-	Increment "f", skip if zero
IORWX	f, d	ff00 0100 dfff ffff	1	Z	OR W with "f"
MOVX	f,d	ff00 1000 dfff ffff	1	Z	Move "f"
MOVXW	f	ff00 1000 0fff ffff	1	Z	Move "f" to W
MOVWX		ff00 0000 1fff ffff	1	- C	Move W to "f"
RLX RRX	f, d f, d	ff00 1101 dfff ffff ff00 1100 dfff ffff	1	C	Rotate left "f" through carry Rotate right "f" through carry
SUBWX	f, d	ff00 0010 dfff ffff	1	C, DC, Z	Subtract W from "f"
SUBWXB	f, d	ff01 0100 dfff ffff	1	C, DC, Z	"f" subtract W and C
SUBXW	f, d	ff01 0010 dfff ffff	1	C, DC, Z	W subtract "f"
SUBXWB	f, d	ff01 0011 dfff ffff	1	C, DC, Z	W subtract "f" and C
SWAPX	f, d	ff00 1110 dfff ffff	1	-	Swap the high and low half- bytes of "f"
TSTX	f	ff00 1000 1fff ffff	1	Z	Check whether "f" is 0
XORWX	f, d	ff00 0110 dfff ffff	1	Z	W and "f" are different or
			File Regi	ster Instruction	
BCX	f, b	ff11 00bb bfff ffff	1	-	Clear the "b" bits of 'f'
BSX	f, b	ff11 01bb bfff ffff	1	-	Set the "b" bits of "f"
BTXSC	f, b	ff11 10bb bfff ffff	1 or 2	-	Skip if the "b" bits of "f" are 0
BTXSS	f, b	ff11 11bb bfff ffff	1 or 2	-	Skip if the "b" bits of "f" are 1
	1		nd Contro	l Instruction	
ADDLW	k	0001 1100 kkkk kkkk	1	C, DC, Z	Add Literal "k" and W
ANDLW	k	0001 1011 kkkk kkkk	1	Z	AND Literal "k" with W
LCALL	k	kk10 0kkk kkkk kkkk	2	-	Call subroutine "k"
CLRWDT		0001 1110 0000 0100	1	TO, PD	Clear watchdog timer
LGOTO	k	kk10 1kkk kkkk kkkk	2	-	Jump to branch "k"
IORLW	k	0001 1010 kkkk kkkk	1	Z	OR Literal "k" with W
MOVLW	k	0001 1001 kkkk kkkK	1	-	Move Literal "k" to W
NOP		0000 0000 0000 0000	1	-	No operation
RET		0000 0000 0100 0000	2	-	Return from subroutine
RETI	1	0000 0000 0110 0000	2	-	Return from interrupt
RETLW	k	0001 1000 kkkk kkkk	2	-	Return with Literal in W
SLEEP		0001 1110 0000 0011	1	TO, PD	Go into Power-down mode, Clock oscillation stops
SUBLW	k	0001 1111 kkkk kkkk	1	C, DC, Z	Subtract W from literal
TABRH		0000 0000 0101 1000	2	-	Lookup ROM high data to W
TABRL	1	0000 0000 0101 0000	2	-	Lookup ROM low data to W
XORLW	k	0001 1101 kkkk kkkk	1	Z	XOR Literal "k" with W

ADDLW	Add Literal	"k" and W

 $\begin{tabular}{lll} Syntax & ADDLW & & \\ Operands & k:00h \sim FFh \\ Operation & (W) \leftarrow (W) + k \\ Status & Affected & C, DC, Z \\ \end{tabular}$

OP-Code 0001 1100 kkkk kkkk

Description 将 W Register的内容和 8 bits立即数 'k' 相加,将结果放入WRegister中。

Cycle 1

Example ADDLW 0x15 B: W=0x10

A: W = 0x25

ADDWX Add W and "f"

 $\begin{array}{ll} \text{Syntax} & \text{ADDWX f [,d]} \\ \text{Operands} & \text{f : 000h} \sim 1 \text{FFh, d : 0, 1} \\ \text{Operation} & (\text{destination}) \leftarrow (\text{W}) + (\text{f}) \\ \end{array}$

Status Affected C, DC, Z

OP-Code ff00 0111 dfff ffff

Description Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in

the W register. If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example ADDWX FSR, 0 B: W = 0x17, FSR = 0xC2

A: W = 0xD9, FSR = 0xC2

ADDWXC Add W and "f"

Syntax ADDWXC f [,d] Operands $f: 000h \sim 1FFh, d: 0, 1$ Operation $(destination) \leftarrow (W) + (f) + C$

Status Affected C, DC, Z

OP-Code ff01 0111 dfff ffff

Description Add the contents of the W register with register 'f' and C. If 'd' is 0, the result is

stored in the W register. If 'd' is 1, the result is stored back in register 'f'

Cycle 1

Example ADDWXC FSR, 0 B: W = 0x17, FSR = 0xC2, C = 0

A: W = 0xD9, FSR = 0xC2, C=0

Example ADDWXC FSR, 0 B: W = 0x17, FSR = 0xC2, C=1

A: W = 0xDA, FSR = 0xC2, C=0

ANDLW Logical AND Literal "k" with W

 $\begin{tabular}{lll} Syntax & ANDLW & & \\ Operands & k:00h \sim FFh & \\ Operation & (W) \leftarrow (W) \ AND \ k & \\ \end{tabular}$

Status Affected Z

OP-Code 0001 1011 kkkk kkkk

Description The contents of W register are AND'ed with the eight-bit literal 'k'. The result is

placed in the W register.

Cycle 1

Example ANDLW 0x5F B: W=0xA3

A : W = 0x03

ANDWX AND W with "f"

Status Affected Z

OP-Code ff00 0101 dfff ffff

Description AND the W register with register 'f'. If 'd' is 0, the result is stored in the W

register. If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example ANDWX FSR, 1 B: W = 0x17, FSR = 0xC2

A: W = 0x17, FSR = 0x02

BCX Clear "b" bit of "f"

Syntax BCX f [,b]

Operands $f: 000h \sim 1FFh, b: 0 \sim 7$

Operation $(f.b) \leftarrow 0$ Status Affected -

OP-Code ff11 00bb bfff ffff

Description Bit 'b' in register 'f' is cleared.

Cycle 1

Example BCX FLAG_REG, 7 B: FLAG_REG =0xC7

 $A: FLAG_REG = 0x47$

BSX Set "b" bit of "f"

Syntax BSX f [,b]

Operands $f: 000h \sim 1FFh, b: 0 \sim 7$

Operation $(f.b) \leftarrow 1$

Status Affected

OP-Code ff11 01bb bfff ffff
Description Bit 'b' in register 'f' is set.

Cycle 1

Example BSX FLAG_REG, 7 B: FLAG_REG = 0x0A

A: FLAG_REG =0x8A

BTXSC Test "b" bit of "f", skip if clear(0)

Syntax BTXSC f [,b] Operands $f: 00h \sim 1FFh, b: 0 \sim 7$

Operation Skip next instruction if (f.b) = 0

Status Affected -

OP-Code ff11 10bb bfff ffff

Description If bit 'b' in register 'f' is 1, then the next instruction is executed. If bit 'b' in

register 'f' is 0, then the next instruction is discarded, and a NOP is

executed instead, making this a 2nd cycle instruction.

Cycle 1 or 2

Example LABEL1 BTXSC FLAG, 1 B: PC =LABEL1

TRUE LGOTO SUB1 A: if FLAG.1 =0, PC =FALSE FALSE ... if FLAG.1 =1, PC =TRUE

DS-TM56M7842_E 95 Rev 0.91, 2025/10

BTXSS Test "b" bit of "f", skip if set(1)

Syntax BTXSS f [,b]

Operands $f: 000h \sim 1FFh, b: 0 \sim 7$ Operation Skip next instruction if (f.b) = 1

Status Affected -

OP-Code ff11 11bb bfff ffff

Description If bit 'b' in register 'f' is 0, then the next instruction is executed. If bit 'b' in

register 'f' is 1, then the next instruction is discarded, and a NOP is

executed instead, making this a 2nd cycle instruction.

Cycle 1 or 2

Example LABEL1 BTXSS FLAG, 1 B: PC = LABEL1

TRUE LGOTO SUB1 A: if FLAG.1 =0, PC =TRUE FALSE ... A: if FLAG.1 =1, PC =FALSE

CLRX Clear "f"

Syntax CLRX f

Operands $f: 000h \sim 1FFh$ Operation $(f) \leftarrow 00h, Z \leftarrow 1$

Status Affected Z

OP-Code ff00 0001 1fff ffff

Description The contents of register 'f' are cleared and the Z bit is set.

Cycle 1

Example $CLRX FLAG_REG = 0x5A$

A: $FLAG_REG = 0x00$, Z = 1

CLRW ClearW

Syntax CLRW

Operands -

Operation (W) \leftarrow 00h, Z \leftarrow 1

Status Affected Z

OP-Code 0000 0001 0100 0000

Description W register is cleared and Z bit is set.

Cycle 1

Example CLRW B: W = 0x5A

A: W = 0x00, Z = 1

CLRWDT Clear Watchdog Timer

Syntax CLRWDT

Operands -

Operation WDT Timer \leftarrow 00h

Status Affected TO, PD

OP-Code 0001 1110 0000 0100

Description CLRWDT instruction clears the Watchdog Timer

Cycle 1

Example CLRWDT B: WDT counter =?

A: WDT counter =0x00

COMX	Complement "f"	
Syntax	COMX f [,d]	
Operands	f:000h ~ 1FFh, d:0, 1	
Operation	$(destination) \leftarrow (\bar{f})$	
Status Affected	Z	
OP-Code	ff00 1001 dfff ffff	
Description	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W.	
•	If 'd' is 1, the result is stored back in register 'f'.	
Cycle	1	
Example	COMX REG1, 0	B : REG1 = 0x13
•		$A \cdot DEC1 = 0.12 W = 0.0EC$

A : REG1 = 0x13, W = 0xEC

if CNT $\neq 0$, PC =LABEL1 + 1

Decrement "f", Skip if 0 DECXSZ

DECX	Decrement "f"	
Syntax	DECX f [,d]	
Operands	f: 000h ~ 1FFh, d: 0, 1	
Operation	$(destination) \leftarrow (f) - 1$	
Status Affected	Z	
OP-Code	ff00 0011 dfff ffff	
Description	Decrement register 'f'. If 'd' is 0, to result is stored back in register 'f'	the result is stored in the W register. If 'd' is 1, the .
Cycle	1	
Example	DECX CNT, 1	B : CNT = 0x01, Z = 0
		A: $CNT = 0x00, Z = 1$
Syntax	DECXSZ f [,d]	
Operands	f: 000h ~ 1FFh, d: 0, 1	
Operation	$(destination) \leftarrow (f) - 1$, skip next	instruction if result is 0
Status Affected	-	
OP-Code	ff00 1011 dfff ffff	
Description	register. If 'd' is 1, the result is pl	cremented. If 'd' is 0, the result is placed in the W aced back in register 'f'. If the result is 1, the next oult is 0, then a NOP is executed instead, making
Cycle	1 or 2	
Example	LABEL1 DECXSZ CNT, 1	B : PC = LABEL1
-	LGOTO LOOP	A: CNT = CNT - 1
	CONTINUE	if CNT =0, PC =CONTINUE

INCX Increment "f"

Syntax	INCX f [,d]	
Operands	f:000h~1FFh	
Operation	$(destination) \leftarrow (f) + 1$	
Status Affected	Z	
OP-Code	ff00 1010 dfff ffff	
Description	The contents of register 'f' a	re incremented. If 'd' is 0, the result is placed in the W
	register. If 'd' is 1, the result	is placed back in register 'f'.
Cycle	1	
Example	INCX CNT, 1	B: CNT = 0xFF, Z = 0
-		A : CNT = 0x00, Z = 1

97 DS-TM56M7842_E Rev 0.91, 2025/10

if CNT \neq 0, PC =LABEL1 + 1

INCXSZ	Increment "f", Skip if 0
Syntax	INCXSZ f [,d]
Operands	$f: 00h \sim 1FFh, d: 0, 1$
Operation	(destination) \leftarrow (f) + 1, skip next instruction if result is 0
Status Affected	<u>-</u>
OP-Code	ff00 1111 dfff ffff
Description	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead, making it a 2 cycle instruction.
Cycle	1 or 2
Example	LABEL1 INCXSZ CNT, 1 LGOTO LOOP CONTINUE B: PC =LABEL1 A: CNT =CNT + 1 if CNT =0, PC =CONTINUE

IORLW Inclusive OR Literal with W

Syntax	IORLW k
Operands	k : 00h ~ FFh
Operation	$(W) \leftarrow (W) OR k$
Status Affected	\mathbf{Z}

OP-Code 0001 1010 kkkk kkkk

The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is Description

placed in the W register.

Cycle

IORLW 0x35 Example B:W=0x9AA: W = 0xBF, Z = 0

IORWX Inclusive OR W with "f"

Syntax	IORWF f [,d]	
Operands	f: 00h ~ 1FFh, d: 0, 1	
Operation	$(destination) \leftarrow (W) OR k$	
Status Affected	Z	
OP-Code	ff00 0100 dfff ffff	
Description	Inclusive OR the W register with register 'f'. If 'd' is 0, the result is pla	iced
	in the W register. If 'd' is 1, the result is placed back in register 'f'.	
Cycle	1	
Example	IORWX_RESULT. 0 B: RESULT = $0x13$. W = $0x91$	

A: RESULT =0x13, W =0x93, Z =0

LCALL Call subroutine "k"

Syntax	LCALL k	
Operands	k: 000h ~ 1FFFh	
Operation	Operation: TOS \leftarrow (PC) + 1, PC.	10~0 ← k
Status Affected	-	
OP-Code	kk10 0kkk kkkk kkkk	
Description	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The 13-bit	
	immediate address is loaded into PC bits <12:0>. The upper bits of PC are loaded	
	from PCLATH. CALL is a two-cycle instruction.	
Cycle	2	
Example	LABEL1 LCALL SUB1	B: PC =LABEL1
		A : PC = SUB1, TOS = LABEL1 + 1

DS-TM56M7842_E 98 Rev 0.91, 2025/10

LGOTO	Unconditional Branch	
LUUIU	Chedhaladhai bi anch	

LGOTO k **Syntax** k: 0000h ~ 1FFFh Operands Operation PC.12~0 ← k

Status Affected

OP-Code kk10 1kkk kkkk kkkk

Description LGOTO is an unconditional branch. The 13-bit immediate value is loaded into PC

bits <12:0>. The upper bits of PC are loaded from PCLATH. LGOTO is a two-

cycle instruction.

Cycle

Example LABEL1 LGOTO SUB1 B: PC =LABEL1

A: PC =SUB1

MOVX Move f

MOVX f [,d] **Syntax Operands** f: 000h ~ 1FFh Operation $(destination) \leftarrow (f)$ Status Affected OP-Code ff00 1000 dfff ffff

Description The contents of register 'f' are moved to a destination dependent upon the status of

d. If d=0, destination is W register. If d =1, the destination is file register f itself.

d=1 is useful to test a file register, since status flag Z is affected.

Cycle

B : FSR = 0xC2, W = ?Example MOVX FSR,0

A : FSR = 0xC2, W = 0xC2

$MOV\underline{XW}$ Move "f" to W

MOVXW f Syntax Operands f: 000h ~ 1FFh Operation $(W) \leftarrow (f)$ Status Affected

OP-Code ff00 1000 0fff ffff

Description The contents of register 'f' are moved to W register.

Cycle

Example MOVXW FSR B : FSR = 0xC2, W = ?

A: FSR = 0xC2, W = 0xC2

MOVLW Move Literal to W

Syntax MOVLW k Operands $k:00h \sim FFh$ Operation $(W) \leftarrow k$ Status Affected

OP-Code 0001 1001 kkkk kkkk

The eight-bit literal 'k' is loaded into W register. The don't cares will assemble as Description

0's.

Cycle

MOVLW 0x5A B:W=?Example

A: W = 0x5A

MOVWX	Move W to "f"

SyntaxMOVWX fOperands $f:000h \sim 1FFh$ Operation $(f) \leftarrow (W)$

Status Affected -

OP-Code ff00 0000 1fff ffff

Description Move data from W register to register 'f'.

Cycle 1

Example MOVWX REG1 B: REG1 =0xFF, W =0x4F

A : REG1 = 0x4F, W = 0x4F

NOP No Operation

Syntax NOP Operands -

Operation No Operation

Status Affected

OP-Code 0000 0000 0000 0000

Description No Operation

Cycle 1 Example NOP

RET Return from Subroutine

Syntax RET Operands -

Operation $PC \leftarrow TOS$

Status Affected -

OP-Code 0000 0000 0100 0000

Description Return from subroutine. The stack is POPed and the top of the stack

(TOS) is loaded into the program counter. This is a two-cycle instruction.

Cycle 2

Example RET A: PC = TOS

RETI Return from Interrupt

Syntax RETI Operands -

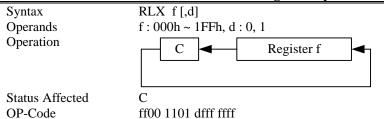
Operation $PC \leftarrow TOS, GIE \leftarrow 1$

Status Affected -

OP-Code 0000 0000 0110 0000

Description Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded

in to the PC. Interrupts are enabled. This is a two-cycle instruction.


Cycle 2

Example RETI A: PC =TOS, GIE =1

RETLW	Return with Literal in W	
Syntax	RETLW k	
Operands	k : 00h ~ FFh	
Operation	$PC \leftarrow TOS, (W) \leftarrow k$	
Status Affected	-	
OP-Code	0001 1000 kkkk kkkk	
Description	The W register is loaded with the	ne eight-bit literal 'k'. The program counter is
	loaded from the top of the sta	ck (the return address). This is a two-cycle
	instruction.	
Cycle	2	
Example	LCALL TABLE	B: W = 0x07
	:	A: W = value of k8
	TABLE ADDWX PCL, 1	
	RETLW k1	
	RETLW k2	
	:	
	RETLW kn	

RLX Rotate Left "f" through Carry

The contents of register 'f' are rotated one bit to the left through the Carry Flag. If Description 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in

register 'f'.

Cycle

B: REG1 =1110 0110, C=0 Example RLX REG1, 0

A: REG1 =1110 0110

=1100 1100, C =1

Rotate Right "f" through Carry RRX

Syntax	RRX f [,d]
Operands	f: 000h ~ 1FFh, d: 0, 1
Operation	C Register f
Status Affected	C
OP-Code	ff00 1100 dfff ffff
Description	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.
Cycle	1
Example	RRX REG1, 0 B: REG1 =1110 0110, C =0
	A: REG1 =1110 0110
	W =0111 0011, C =0

101 DS-TM56M7842_E Rev 0.91, 2025/10

SLEEP Go into Power-down mode, Clock oscillation stops

Syntax SLEEP
Operands Operation Status Affected TO, PD

OP-Code 001 1110 0000 0011

Description Go into Power-down mode with the oscillator stops.

Cycle 1

Example SLEEP -

SUBLW Subtract W from Literal

 $\begin{tabular}{lll} Syntax & SUBLW & & \\ Operands & k:00h \sim FFh \\ Operation & (W) \leftarrow k-(W) \\ Status & Affected & C, DC, Z \\ \end{tabular}$

OP-Code 0001 1111 kkkk kkkk

Description The W register is subtracted (2's complement method) from the eight-bit literal

"k". The result is placed in the W register.

Cycle 1

Example SUBLW 0x25 B: W=0x15

A: W = 0x10

SUBWX Subtract W from "f"

SyntaxSUBWX f [,d]Operands $f: 00h \sim 1FFh, d: 0, 1$ Operation $(destination) \leftarrow (f) - (W)$

Status Affected C, DC, Z

OP-Code ff00 0010 dfff ffff

Description Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result

is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example SUBWX REG1, 1 B: REG1 =0x03, W =0x02, C =?, Z =?

A: REG1 =0x01, W =0x02, C =1, Z =0

SUBWX REG1, 1 B: REG1 =0x02, W =0x02, C =?, Z =?

A: REG1 =0x00, W =0x02, C =1, Z =1

SUBWX REG1, 1 B: REG1 =0x01, W =0x02, C =?, Z =?

A : REG1 = 0xFF, W = 0x02, C = 0, Z = 0

SUBWXB	Subtract W and C from "f	"			
Syntax Operands Operation	SUBWXB f [,d] f: 000h ~ 1FFh, d: 0, 1 (destination) \leftarrow (f) $-$ (W) $ \overline{C}$				
Status Affected OP-Code	C, DC, Z ff01 0100 dfff ffff				
Description	•	d) W register and \overline{C} from register 'f'. If 'd' is 0, ster. If 'd' is 1, the result is stored back in register			
Cycle Example	1 SUBWXB REG1, 1	B: REG1 =0x19, W =0x0D, C =1, Z =? A: REG1 =0x0C,W =0x0D, C =1, Z =0			
	SUBWXB REG1, 1	B: REG1 =0x1B, W =0x1A, C =0 Z =? A: REG1 =0x00, W =0x1A, C =1, Z =1			
	SUBWXB REG1, 1	B: REG1 =0x03, W =0x0E, C =1, Z =? A: REG1 =0xF5, W =0x0E, C =0, Z =0			
SUBXW	Subtract "f" from W				
Syntax Operands Operation Status Affected OP-Code Description	stored in the W register. If 'd' is 1	od) register 'f' from W. If 'd' is 0, the result is , the result is stored back in register 'f'			
Cycle Example	1 SUBXW REG1, 1	B: REG1 =0x02, W =0x03, C =?, Z =? A: REG1 =0x01, W =0x03, C =1, Z =0			
	SUBXW REG1, 1	B: REG1 =0x02, W =0x02, C =?, Z =? A: REG1 =0x00, W =0x02, C =1, Z =1			
	SUBXW REG1, 1	B: REG1 =0x02, W =0x01, C =?, Z =? A: REG1 =0xFF, W =0x02, C =0, Z =0			
SUBXWB	Subtract "f" and C from V	V			
Syntax Operands	SUBXWB f [,d] f: 000h ~ 1FFh, d: 0, 1				
Operation	$(destination) \leftarrow (W) - (f) - C$				
Status Affected OP-Code	C, DC, Z ff01 0011 dfff ffff				
Description	Subtract (2's complement method) register 'f' and C from W. If 'd' is 0, the				
Conto		If 'd' is 1, the result is stored back in register 'f'			
Cycle Example	1 SUBXWB REG1, 1	B: REG1 =0x03, W =0x02, C =1, Z =? A: REG1 =0xFF, W =0x02, C =0, Z =0			
	SUBXWB REG1, 1	B: REG1 =0x02, W =0x05, C =1, Z =? A: REG1 =0x03, W =0x05, C =1, Z =0			
	SUBXWB REG1, 1	B: REG1 =0x01, W =0x02, C =0, Z =? A: REG1 =0x00, W =0x02, C =1, Z =1			

SWAPX Swap Nibbles in "f"

SWAPX f [,d] **Syntax Operands** $f: 00h \sim 1FFh, d: 0, 1$

Operation (destination, $7\sim4$) \leftarrow (f. $3\sim0$), (destination. $3\sim0$) \leftarrow (f. $7\sim4$)

Status Affected

OP-Code ff00 1110 dfff ffff

Description The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is

placed in W register. If 'd' is 1, the result is placed in register 'f'.

Cycle

Example SWAPX REG, 0 B : REG1 = 0xA5

A : REG1 = 0xA5, W = 0x5A

TABRH Return DPTR high byte to W

Syntax **TABRH**

Operands

Operation (W) \leftarrow ROM[DPTR] high byte content, Where DPTR = {DPH[max:8], FSR[7:0]}

Status Affected

OP-Code 0000 0000 0101 1000

The W and TABR register is loaded with high byte of ROM[DPTR]. This is a Description

two-cycle instruction.

Cycle

Example **MOVLW** (TAB1&0xFF)

MOVWX DPL ;Where DPL is register

MOVLW (TBA1>>8)&0xFF

MOVWX **DPH** ;Where DPH is register

TABRL W = 0x89, TABR = 0x89**TABRH** W = 0x37, TABR = 0x37

ORG 0234H

TAB1:

DT 0x3789, 0x2277 ;ROM data 16 bits

TABRL Return DPTR low byte to W

Syntax TABRL

Operands

Operation (W) \leftarrow ROM[DPTR] low byte content, Where DPTR = {DPH[max:8], FSR[7:0]}

Status Affected

OP-Code 0000 0000 0101 0000 Description

The W and TABR register is loaded with low byte of ROM[DPTR]. This is a

two-cycle instruction.

Cycle

Example **MOVLW** (TAB1&0xFF)

MOVWX DPL ;Where DPL register

MOVLW (TBA1>>8)&0xFF

MOVWX ;Where DPH register **DPH**

TABRL W = 0x89, TABR = 0x89**TABRH** W = 0x37, TABR = 0x37

ORG 0234H

TAB1:

DT 0x3789, 0x2277 ;ROM data 16 bits

TSTX Test if "f" is zero

Status Affected Z

OP-Code ff00 1000 1fff ffff

Description If the content of register 'f' is 0, Zero flag is set to 1.

Cycle 1

Example TSTX REG1 B : REG1 = 0, Z = ?

A : REG1 = 0, Z = 1

XORLW Exclusive OR Literal with W

SyntaxXORLW kOperands $k:00h \sim FFh$ Operation $(W) \leftarrow (W) XOR k$

Status Affected Z

OP-Code 0001 1101 kkkk kkkk

Description The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result

is placed in the W register.

Cycle 1

Example XORLW 0xAF B: W=0xB5

A:W=0x1A

XORWX Exclusive OR W with "f"

SyntaxXORWX f [,d]Operands $f: 00h \sim 1FFh, d: 0, 1$ Operation(destination) \leftarrow (W) XOR (f)

Status Affected Z

OP-Code ff00 0110 dfff ffff

Description Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is

stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example XORWX REG, 1 B: REG = 0xAF, W = 0xB5

A : REG = 0x1A, W = 0xB5

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings $(T_A = 25$ °C)

Parameter	Rating	Unit
Supply voltage	V_{SS} -0.3 to V_{SS} +5.5	
Input voltage	V_{SS} -0.3 to V_{CC} +0.3	V
Output voltage	V_{SS} -0.3 to V_{CC} +0.3	
Output current high per 1 PIN	-25	
Output current high per all PIN	-80	A
Output current low per 1 PIN	+30	mA
Output current low per all PIN	+150	
Maximum operating voltage	5.5	V
Operating temperature	-40 to +105	°C
Storage temperature	-65 to +150	

2. DC Characteristics ($T_A = 25$ °C, $V_{DD} = 5.0$ V, unless otherwise specified)

Parameter	Sym	Con	nditions	Min	Тур	Max	Unit	
W 1: 1	3.7	Fsys=18.432N	/Ihz (RDCTL=4ns)	2.2		5.5		
Working voltage	V_{cc}	Fsys= 9.216M	Ihz (RDCTL=4ns)	1.7		5.5		
High input voltage	V_{IH}	All inputs	$V_{CC} = 3\sim 5V$	0.6Vcc	_	Vcc	V	
Low input voltage	$V_{\rm IL}$	All inputs	$V_{CC} = 3\sim 5V$	Vss	_	0.2Vcc	V	
			$V_{CC} = 5V, V_{OH} = 4.5V$	10.4	13.0	-		
		PB1~PB7	$V_{\rm CC} = 5V, V_{\rm OH} = 3.5V$	25.6	32.0	-	A	
		PD4~PD7	$V_{\rm CC} = 3V, V_{\rm OH} = 2.7V$	4.3	5.4	-	mA	
I/O port	T		$V_{CC} = 3V, V_{OH} = 2.1V$	10.6	13.3	-		
Pull current	I_{OH}	DAO DA4 DA7	$V_{CC} = 5V, V_{OH} = 4.5V$	9.6	12.1	-		
		PA0~PA4,PA7 PB0	$V_{CC} = 5V, V_{OH} = 3.5V$	24.5	30.6	-	A	
		PD0~PD3	$V_{CC} = 3V, V_{OH} = 2.7V$	4.0	5.1	-	mA	
		100~103	$V_{CC} = 3V, V_{OH} = 2.1V$	10.2	12.8	-		
				$V_{CC} = 5V, V_{OL} = 0.5V$	36	46	-	
		PB1~PB7 PD4~PD7	$V_{CC} = 5V, V_{OL} = 1.5V$	79	99	-	mA	
			$V_{CC} = 3V, V_{OL} = 0.3V$	16	20	-		
			$V_{CC} = 3V, V_{OL} = 0.9V$	37	46	-		
			$V_{CC} = 5V, V_{OL} = 0.5V$	31	39	-		
I/O port		PA0~PA4	$V_{CC} = 5V, V_{OL} = 1.5V$	71	89	-		
Injection current	I_{OL}	PB0 PD0~PD3	$V_{CC} = 3V, V_{OL} = 0.3V$	14	18	-	mA	
			$V_{CC} = 3V, V_{OL} = 0.9V$	33	42	-		
			$V_{CC} = 5V, V_{OL} = 0.5V$	29	36	-		
			$V_{CC} = 5V, V_{OL} = 1.5V$	66	82	-		
		PA7	$V_{CC} = 3V, V_{OL} = 0.3V$	13	16	_	mA	
			$V_{CC} = 3V, V_{OL} = 0.9V$	30	38	-		
Input leakage current (pin high)	$I_{\rm ILH}$	All inputs	$V_{IN} = V_{CC}$	-	_	1	uA	
Input leakage current (pin low)	I_{ILL}	All inputs	$V_{IN} = 0V$	_	_	-1	uA	
		Fast Mode	$V_{CC} = 5V$	-	5.0	-		
Working current	-	FIRC 18.4 MHz	$V_{CC} = 3V$	-	2.9	-	mA	
(no load)				Fast Mode	$V_{CC} = 5V$	-	3.5	-
		FIRC 9.2 MHz	$V_{CC} = 3V$	-	2.1	-		

DS-TM56M7842_E 106 Rev 0.91, 2025/10

		Fast Mode	$V_{CC} = 5V$	-	2.4	-	
		FIRC 4.6 MHz	$V_{CC} = 3V$	-	1.6	-	
		Fast mode	$V_{CC} = 5V$	-	1.8	-	
		FIRC 2.3 MHz	$V_{CC} = 3V$	-	1.2	-	
		Slow mode SXT 32KHz	$V_{CC} = 5V$	-	230	-	
		FIRC stopped POR/LVR enabled	$V_{CC} = 3V$	-	200	-	
		Slow mode SXT 32KHzz	$V_{CC} = 5V$	-	36	-	
		FIRC Stop POR/LVR Off	$V_{CC} = 3V$	-	13	-	uA
		Slow mode SIRC 50KHz	$V_{CC} = 5V$	-	220	-	ил
		FIRC Stop POR/LVR On	$V_{CC} = 3V$	-	200	-	
		Slow mode SIRC 50KHz	$V_{CC} = 5V$	-	20	-	
		FIRC Stop POR/LVR Off	$V_{CC} = 3V$	-	12	-	
		Idle Mode SIRC 50 KHz	$V_{CC} = 5V$	-	7	-	uA
		POR/LVR Off	$V_{CC} = 3V$	-	2	-	
		Stop Mode	$V_{CC} = 5V$	-	-	1	uA
		POR/LVR Off	$V_{CC} = 3V$	-	-	1	uA
		V _{IN} = 0 V PA0~PA4 PB0~PB7	$V_{CC} = 5V$	-	32	-	ΚΩ
pull-up resistor	stor $R_{UP} = \frac{PD0\sim 1}{PD6\sim 1}$ $V_{IN} = \frac{PD0\sim 1}{V_{IN}}$	PB0~PB7 PD0~PD3 PD6~PD7	$V_{CC} = 3V$	-	53	-	K22
		$V_{IN} = 0 V$	$V_{CC} = 5V$	-	6.4	-	VO.
		PD4~PD5		$V_{CC} = 3V$	-	9.9	-
		$V_{IN} = 0 V$	$V_{CC} = 5V$	-	35	-	VO.
		PA7	$V_{CC} = 3V$	-	37	-	ΚΩ

3. Clock Timing $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Condition	Min	Тур	Max	Unit
FIRC Frequency	25 °C, $V_{CC} = 5.0 \text{ V}$	-1%	18.432	+1%	
	-40 °C ~ 105 °C, $V_{CC} = 5.0 \text{ V}$	-1.5%	18.432	+1.5%	MHz
	-40 °C ~ 105 °C, $V_{CC} = 3.0 \sim 5.0$ V	-2.5%	18.432	+2.5%	

Parameter	Condition	Min	Тур	Max	Unit
SIRC Frequency	25 °C, $V_{CC} = 3.0$ V, FREQL=1	-	45	-	
	25°C, V _{CC} =5.0 V, FREQL=1	-	50	-	KHz
	25°C, V _{CC} =3.0 V, FREQL=0	-	57	-	
	25 °C, $V_{CC} = 5.0$ V, FREQL= 0	-	62	-	

DS-TM56M7842_E 107 Rev 0.91, 2025/10

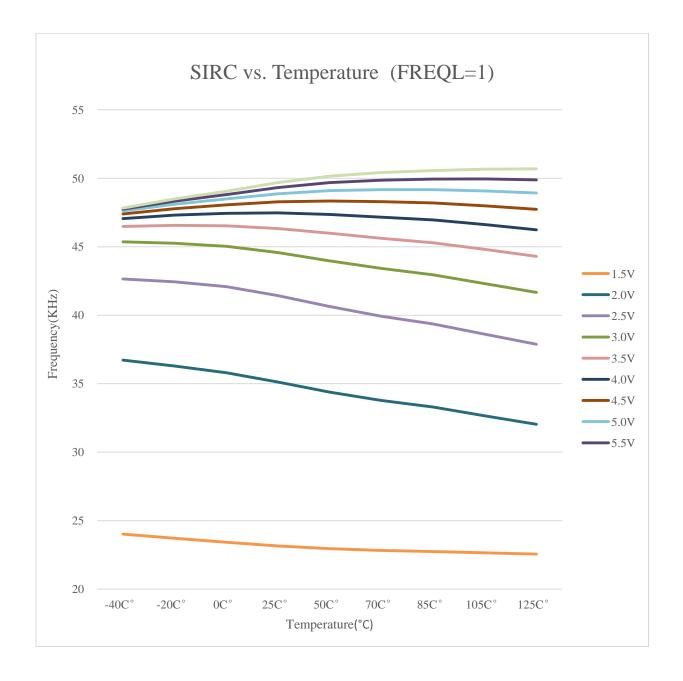
4. Reset Timing Characteristics $(T_A = 25^{\circ}C)$

Parameter	Conditions	Min	Тур	Max	Unit
RESET Input Low width	Input $V_{CC} = 5 \text{ V} \pm 10 \%$	-	30		μs
	$V_{CC} = 3 \text{ V, WDTPSC} = 11, \text{FREQL}=1$	-	1492	-	
WDT time	$V_{CC} = 5 \text{ V}, \text{WDTPSC} = 11, \text{FREQL}=1$	-	1355	-	
WDT time	$V_{CC} = 3 \text{ V, WDTPSC} = 11, \text{FREQL} = 0$	-	1180	-	ms
	$V_{CC} = 5 \text{ V}, \text{WDTPSC} = 11, \text{FREQL} = 0$	-	1058	-	
	$V_{CC} = 3 \text{ V}, \text{WKTPSC} = 11, \text{FREQL}=1$	-	177	-	
WKT time	$V_{CC} = 5 \text{ V}, \text{WKTPSC} = 11, \text{FREQL}=1$	-	160	-	ma
WK1 time	$V_{CC} = 3 \text{ V}, \text{WKTPSC} = 11, \text{FREQL} = 0$		139		ms
	$V_{CC} = 5 \text{ V}, \text{WKTPSC} = 11, \text{FREQL} = 0$		125		
CDIL	$V_{CC} = 5 \text{ V}$	-	39	-	ma
CPU start up time	$V_{CC} = 3 \text{ V}$		43		ms

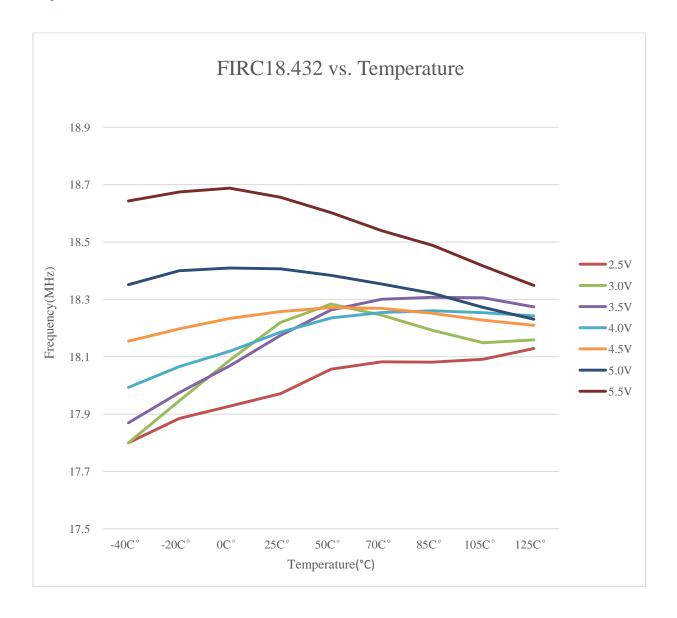
5. LVR Circuit Characteristics $(T_A = 25$ °C)

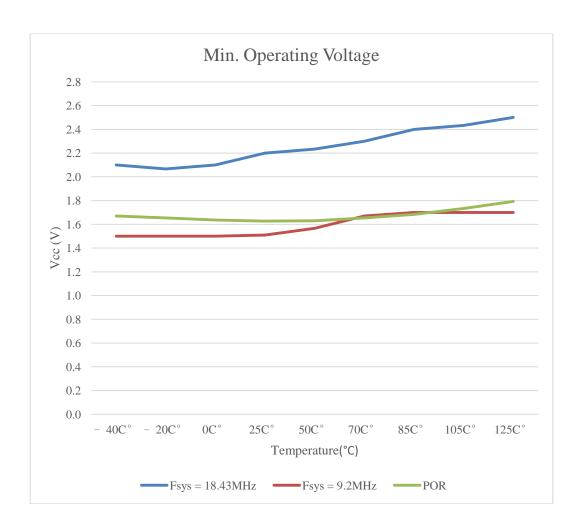
Parameter	Sym	Conditions	Min	Typ	Max	Unit
			_	3.49	_	
			_	3.37	_	
			_	3.25	_	
			_	3.12	_	
			_	2.99	_	
			_	2.86	_	
			_	2.73	_	
LVD Deference Voltage	LVD	T - 25°C	ı	2.61	ı	V
LVR Reference Voltage	LVR _{th}	$T_A = 25$ °C	_	2.49	_	V
			_	2.37	_	
			_	2.25	_	
			ı	2.13	ı	
			ı	2.00	I	
			_	1.87	_	
			ı	1.74	ı	
			ı	1.61	ı	
			_	3.49	_	
			_	3.37	_	
			_	3.25	_	
			_	3.12	_	
			_	2.99	_	
			ı	2.86	ı	
			_	2.73	_	
LVD Reference Voltage	LVD _{th}	$T_A = 25$ °C	_	2.61	_	
LVD Reference voltage	L V D _{th}	$I_A = 23$ C	ı	2.49	ı	V
			ı	2.37	ı	
			_	2.25	_	
			ı	2.13	ı	
			ı	2.00	-	
			_	1.87	_	
				4.30	_	
				-	_	
LVR Hysteresis Voltage	V _{HYS_LVR}	$T_A = 25$ °C		±0.1	_	V
Low Voltage	T_{LVR}	$T_A = 25$ °C	100	_	_	μs

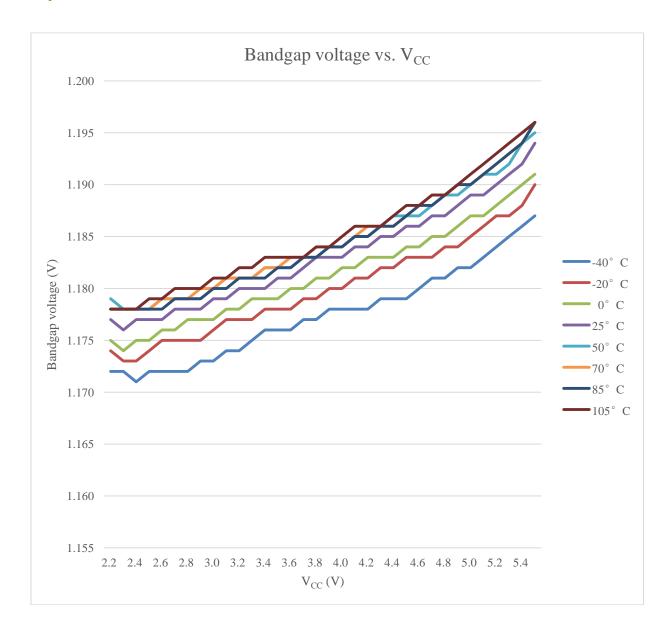
DS-TM56M7842_E 108 Rev 0.91, 2025/10



6. ADC Electrical Characteristics $(T_A = 25$ °C, VCC = 3.0V to 5.5V, VSS = 0V)

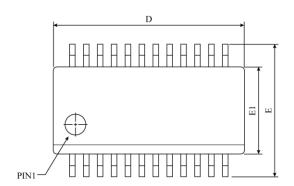

Parameter	Conditions	Min	Тур	Max	Units
Total accuracy		_	±3	±13	
Integral nonlinear error	$V_{CC} = 5V, V_{SS} = 0V, F_{ADC} = 1 \text{ MHz}$	_	±3.2	±15	LSB
Differential nonlinear error		-	±1	±4	
Maximum input clock	Source impedance (Rs<10K ohm)	-	-	2	
frequency (F _{ADC})	Source impedance (Rs<20K ohm)	_	_	1	MHz
	Source impedance (Rs<50K ohm)	_	_	0.5	WITIZ
	Source is VBG (ADCHS=01110b)	_	_	2	
Conversion time	$F_{ADC} = 1 \text{ MHz}$	_	21	_	μs
Bandgap voltage reference (VBG)	-20 °C ~ 105 °C, $V_{CC} = 3.0 \sim 5.0$ V	-2%	1.18	+1.5%	
ADC reference voltage (V _{REF}) (ADVREFS=01b)	-20 °C \sim 105°C, V _{CC} = 3.0 \sim 5.0V	-2.5%	2.5	+2%	V
V _{CC} /4 reference voltage	$25^{\circ}\text{C}, V_{\text{CC}} = 3.0 \sim 5.0\text{V}$	-1%	0.25*Vcc	1%	
Input voltage	+	V_{SS}	_	Vcc	

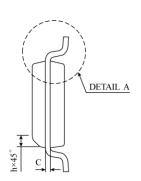

7. Characteristic Graphs

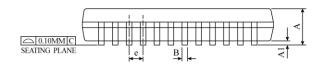


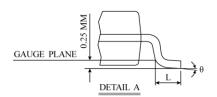
DS-TM56M7842_E 112 Rev 0.91, 2025/10

PACKAGING INFORMATION


Please note that the packaging information provided here is for reference only. As this information is updated frequently, users can contact sales staff for the latest packaging information and inventory.


Ordering number	Package
TM56M78424E1	SSOP 24 pin (150mil)
TM56M78423S	SOP 20-pin (300 mil)
TM56M78422S	SOP 16-pin (150 mil)
TM56M78422S1	SOP 16-pin (150 mil)

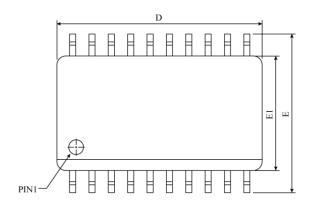

DS-TM56M7842_E 114 Rev 0.91, 2025/10

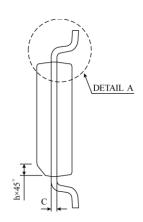


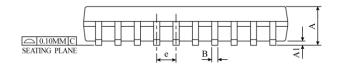
SSOP-24 (150mil) Package Dimension

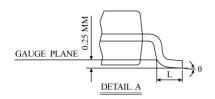
SYMBOL	DI	MENSION IN M	ſМ	DIN	MENSION IN IN	ICH
STWBOL	MIN	NOM	MAX	MIN	NOM	MAX
A	1.35	1.55	1.75	0.053	0.061	0.069
A1	0.10	0.18	0.25	0.004	0.007	0.010
A2	-	-	1.50	-	-	0.059
В	0.20	0.25	0.30	0.008	0.010	0.012
C	0.18	0.22	0.25	0.007	0.009	0.010
D	8.56	8.65	8.74	0.337	0.341	0.344
Е	5.79	6.00	6.20	0.228	0.236	0.244
E1	3.81	3.90	3.99	0.150	0.154	0.157
e	0.635 BSC			0.025 BSC		
L	0.41	0.84	1.27	0.016	0.033	0.050
θ	0°	4°	8°	0°	4°	8°
JEDEC			M0-13	7 (AE)		

 $\underline{\mathring{\mathbb{A}}}$ *Notes : dimension " d " does not include mold protrusions or gat burns.

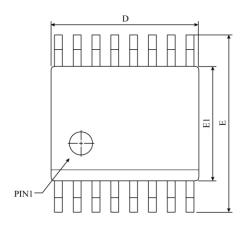

MOLD PROTRUSIONS AND GATE BURRS SHALL NOT

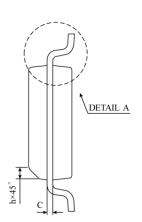

EXCEED 0.006 INCH PER SIDE.

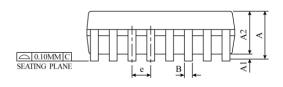

DS-TM56M7842_E 115 Rev 0.91, 2025/10

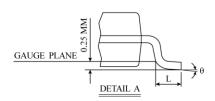


SOP-20 (300 mil) Package Dimension


SYMBOL	DIMENSION IN MM			DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	2.35	2.50	2.65	0.0926	0.0985	0.1043	
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.23	0.28	0.32	0.0091	0.0108	0.0125	
D	12.60	12.80	13.00	0.4961	0.5040	0.5118	
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910	
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992	
e	1.27 BSC			0.050 BSC			
h	0.25	0.50	0.75	0.0100	0.0195	0.0290	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	MS-013 (AC)						


 \triangle * NOTES : DIMENSION " D " DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.


DS-TM56M7842_E 116 Rev 0.91, 2025/10



SSOP-16 (150mil) Package Dimension

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	1.35	1.55	1.75	0.053	0.061	0.069	
A1	0.10	0.18	0.25	0.004	0.007	0.010	
A2	-	-	1.50	-	-	0.059	
В	0.20	0.25	0.30	0.008	0.010	0.012	
С	0.18	0.22	0.25	0.007	0.009	0.010	
D	4.80	4.90	5.00	0.189	0.193	0.197	
Е	5.79	6.00	6.20	0.228	0.236	0.244	
E1	3.81	3.90	3.99	0.150	0.154	0.157	
e	0.635 BSC			0.025 BSC			
L	0.41	0.84	1.27	0.016	0.033	0.050	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	M0-137 (AB)						

* NOTES : DIMENSION " D" DOES NOT INCLUDE MOLD PROTRUSIONS OR GATE BURRS, MOLD PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

DS-TM56M7842_E 117 Rev 0.91, 2025/10