

DATA SHEET Rev 0.91

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. tenx does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. tenx products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses tenx products for any such unintended or unauthorized application, Buyer shall indemnify and hold tenx and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that tenx was negligent regarding the design or manufacture of the part.

AMENDMENT HISTORY

Version	Date	Description	
0.90	2024/08	New Release	
0.91	2025/01	*GPIO table optimization (p.37) *Add FIRC18.432 working current	

DS-TM5670C2_E 2 Rev 0.91, 2025/01/17

CONTENTS

AM	ENDN	MENT HISTORY	2
COI	NTEN	TS	3
FEA	TUR	ES	5
		BLOCK DIAGRAM	
		GNMENT DIAGRAM	
PIN	DESC	CRIPTIONS	11
FUN	ICTIC	ON DESCRIPTION	12
1	CPU	Core	12
	1.1	ROM	
		1.1.1 Reset Vector (000h)	12
		1.1.2 Interrupt Vector (004h)	
		1.1.3 Production Information Area and System Configuration (SYSCFG)	
		1.1.4 Emulated EEPROM Area	
		1.1.5 ROM Low Power Mode	
	1.2	RAM and Special Function Registers	
		1.2.1 Bank	
		1.2.2 Directly Addressing and Indirect Addressing	
	1.3	Programming Counter (PC) and Stack	
		1.3.1 Programming Counter	
		1.3.2 Programming Counter Read and Write	
		1.3.3 Stack	
	1.4	ALU and Working (W) Register	
	1.5	STATUS Register (003h/083h/103h/183h)	
	1.6	Table Read	
	1.7	IAP and Emulated EEPROM	
2	Rese	rt	
	2.1	Power on Reset (POR)	27
	2.2	Low Voltage Reset (LVR)	27
	2.3	External Pin Reset (XRST)	27
	2.4	Watchdog Timer Reset (WDTR)	28
3	Cloc	k Circuitry and Operation Mode	29
4	Inter	rupt	33
5	I/O I	Port	37
	5.1	GPIO (PA0-PA7, PB0-PB6)	37
	5.2	OPON / OPO / OP1N / VREXT	41
6	Perip	oheral Functional Block	42
	6.1	Watchdog Timer (WDT)	42
	6.2	Wakeup Timer (WKT)	
	6.3	Timer0	
	6.4	Timer1	
	6.5	T2:15-bit Timer	

	6.6 PWM	56
	6.7 Analog-to-Digital Converter (ADC)	62
	6.8 UART	
	6.9 Battery Charge Module (BCM) - DAC/Comparator/Amplifier	68
	6.10 Cyclic Redundancy Check (CRC)	73
	6.11 In Circuit Emulation (ICE)	74
MEN	MORY MAP	75
INS	TRUCTION SET	87
ELE	ECTRICAL CHARACTERISTICS	101
1.	Absolute Maximum Ratings	101
2.	DC Characteristics	
3.	Clock Characteristics	103
4.	Reset Timing Characteristics	103
5.	Wakeup Timer (WKT) Timing Characteristics	103
6.	LVR Circuit Characteristics	104
7.	LVD Circuit Characteristics	104
8.	ADC Characteristics	105
9.	VBG Characteristics	105
10.	OPA Characteristics	105
11.	Comparator Characteristics	106
	Emulated EEPROM Characteristics	
CHA	ARACTERISTICS GRAPHS	107
PAC	CKAGING INFORMATION	110

FEATURES

1. ROM: 4K*16 bits Flash with Emulated EEPROM 32*16 bits

RAM: 256 Bytes
 STACK: 8 Levels

4. System Clock type selections:

- Built-in Fast RC oscillator (FIRC), 18.432 MHz
- Built-in Slow RC oscillator (SIRC), 37 KHz

5. System Clock Prescaler:

• System Clock can be divided by 1/2/4/8 option

6. Power Saving Operation Mode

- FAST Mode: Slow-clock is enabled, Fast-clock keeps CPU running
- SLOW Mode: Fast-clock can be disabled or enabled, Slow-clock keeps CPU running
- IDLE Mode: Fast-clock and System clock stop. Slow-clock, T2, or Wake-up Timer keep running
- STOP Mode: All clocks stop, T2 and Wake-up Timer stop

7. 3 Independent Timers

- Timer0
 - 8-bit timer divided by 1~256 pre-scale option / auto-reload / counter / interrupt / stop function
- Timer1
 - 8-bit timer divided by 1~256 pre-scale option / auto-reload / interrupt / stop function
- T2
 - IDLE mode wake-up timer or used as one simple 15-bit time base timer
 - 4 interrupt interval time options
 - Clock source: Slow-clock, Fsys/128, or FIRC/512

8. Interrupt

- Three External Interrupt pins
 - 1 pin is falling edge wake-up triggered & Interrupts
 - 2 pins are rising or falling edge wake-up triggered & Interrupt
- Timer0 / Timer1 / T2 / Wake-up Timer Interrupt
- ADC Interrupt
- PWM Interrupt
- UART Interrupt
- LVD Interrupt

9. Wake-up Timer (WKT)

- Clocked by built-in RC oscillator with 4 adjustable interrupt times
 - $28 \text{ ms} / 55 \text{ ms} / 111 \text{ ms} / 221 \text{ ms} @V_{CC} = 5V$

10. Watchdog Timer (WDT)

- Clocked by built-in RC oscillator with 4 adjustable reset times
 - $-221 \text{ ms} / 443 \text{ ms} / 1771 \text{ ms} / 3542 \text{ ms} @V_{CC} = 5V$
- Watchdog timer can be disabled / enabled in STOP mode

11. Three 16 bits PWMs

- Independent PWM Duty
- Shared PWM Period
- PWM clock source: System clock (Fsys), FIRC (18.432MHz), FIRC*2 (36.864MHz)
- PWM0 supports complementary output (PWM0P, PWM0N) with non-overlap output option

12. 12-bit ADC with 17 channels External Pin Input and 7 channels Internal Voltage Channel

- Internal voltage channel: VR, OPA2TOADC, V_{TEMP}, LDO1.2V, VSS, V_{CC}/201, V_{CC}/4
- ADC reference voltage: V_{CC}, VR, LDO1.2V

13. BCM

- 14-bit DAC0 and comparator OPA0 are used for constant current control
- 14-bit DAC1 and comparator OPA1 are used for constant voltage control
- OPA2 is 1/10/20/50 times amplifier

14. UART

- Baud rate up to 115200
- Support single-wire mode

15. Reset

- Power On Reset (POR)
- Low Voltage Reset (LVR)
- External Pin Reset (XRST)
- Watchdog Timer Reset (WDTR)

16. Low Voltage Reset (LVR) and Low Voltage Detection (LVD)

- 16-Level Low Voltage Reset: 2.13V ~ 4.26V, can be disabled
- 15-Level Low Voltage Detection: 2.24V~4.20V, can be disabled, with hysteresis option.

17. Operating Voltage: 2.2V~5.5V

*Power-up V_{CC} must exceed POR 2.0V and user selected LVR level, refer to the "Electrical Characteristics Graphs" to avoid entering ROM dead zone.

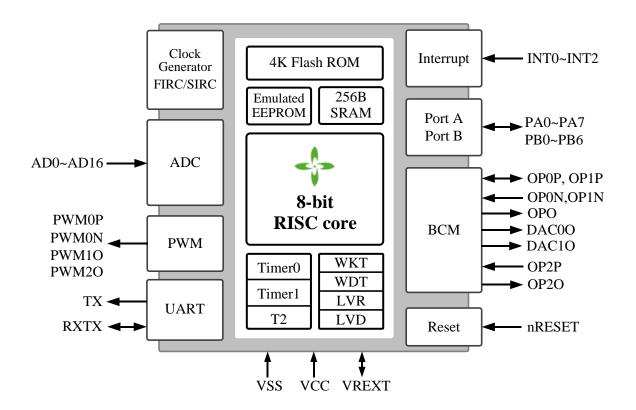
- 18. Operating Temperature: -40°C to + 105°C
- 19. Table Read Instruction: 16-bit ROM data lookup table
- 20. 16-bit Cyclic Redundancy Check (CRC) function
- 21. Instruction set: 39 Instructions

22. I/O ports:

- 15 GPIO
 - Open-Drain Output
 - CMOS Push-Pull Output
 - Schmitt Trigger Input with pull-up / pull-down resistor option
 - All I/O with High-Sink
 - 1/2 VCC (1/2 bias) Output
 - Support wake up function

23. Programming connectivity support 4-wire (ICP) or 6-wire program

24. Package Types:


- 20-pin SOP (300 mil)
- 20-pin TSSOP (173 mil)
- 20-pin QFN20 (3*3*0.75-0.4mm)
- 16-pin SOP (150 mil)

25. On-chip Debug/ICE Interface

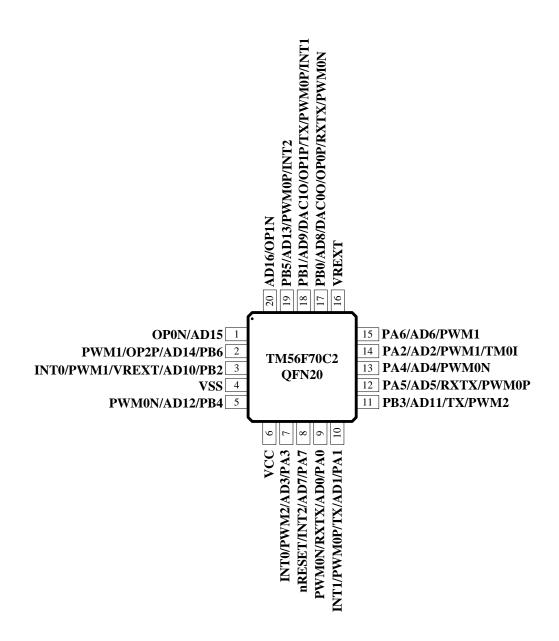
• Use 2-wire dedicated ICE pin, no GPIO occupied

SYSTEM BLOCK DIAGRAM

TM56F70C2 Block Diagram

DS-TM5670C2_E 8 Rev 0.91, 2025/01/17

PIN ASSIGNMENT DIAGRAM


If it is a low-power application, all digital I/O (including unpinned or unused pins) should avoid being set to a high-impedance state.

VSS 1)	20 PB2/AD10/VREXT
VCC 2		19 PA6/AD6/PWM1
INTO/PWM0N/RXTX/OP0P/DAC0O/AD8/PB0 3		18 PA2/AD2/PWM1/TM0I
INT1/PWM0P/TX/OP1P/DAC1O/AD9/PB1 4	TM56F70C2	17 PA4/AD4/PWM0N
INT2/PWM0P/AD13/PB5 5		16 PA5/AD5/RXTX/PWM0P
AD16/OP1N 6	SOP-20	15 PB3/AD11/TX/PWM2
OPO 7	TSSOP-20	14 PA3/AD3/PWM2/OP2O/INT0
AD15/OP0N 8	15501 20	13 PA7/AD7/INT2/nRESET
PWM1/OP2P/AD14/PB6 9		12 PA0/AD0/RXTX/PWM0N
PWM0N/AD12/PB4 10		11 PA1/AD1/TX/PWM0P/INT1

OPO 1 AD15/OP0N 2 VSS 3 VCC 4 VREXT/AD10/PB2 5 INT1/PWM0P/TX/AD1/PA1 6 PWM0N/RXTX/AD0/PA0 7 nRESET/INT2/AD7/PA7 8 OP1N/AD16 15 PB1/AD9/DAC1O/OP1P/TX/PWM0P/INT1 14 PB0/AD8/DAC0O/OP0P/RXTX/PWM0N/INT 13 PA6/AD6/PWM1 12 PA2/AD2/PWM1/TM0I 11 PA4/AD4/PWM0N 10 PA5/AD5/RXTX/PWM0P 9 PA3/AD3/PWM2/OP2O/INT0
--

DS-TM5670C2_E 9 Rev 0.91, 2025/01/17

DS-TM5670C2_E 10 Rev 0.91, 2025/01/17

PIN DESCRIPTIONS

Name	In/Out	Pin Description	
PA0~PA7 PB0~PB6	I/O	GPIO, function include Schmitt trigger input, CMOS push-pull output, opendrain output, $1/2V_{\rm CC}$ output, pull-up/pull-down resistor, pin wake-up, etc.	
nRESET	I	External active low reset	
VCC, VSS	P	Power Voltage input pin and ground	
INT0~INT2	I	External interrupt input	
TM0I	I	Timer0's input in counter mode	
PWM0P	О	PWM0 positive output	
PWM0N	О	PWM0 negative output	
PWM1	О	PWM1 output	
PWM2	О	PWM2 output	
AD0~16	I	ADC channel input	
TX	О	UART serial data output	
RXTX	I/O	UART serial data input, can also be used as output under single-wire mode	
OPO	О	OPA0~OPA1 open drain output	
OP2O	О	OPA2 output	
OP1N	I	OPA1 inverting input	
OP0N	I	OPA0 inverting input	
OP1P/DAC1O	I/O	OPA1 non-inverting input or DAC1 output	
OP0P/DAC0O	I/O	OPA0 non-inverting input or DAC0 output	
OP2P	I	OPA2 non-inverting input	
VREXT	I/O	Internal reference voltage LDO3V output or External reference voltage input	

Programming pins:

6-wire: VCC / VSS / PA0 / PA1 / PA2 / PA4

4-wire: VCC / VSS / PA0 / PA1

^{*}All components of PA0 and PA1 need to be removed from the PCB during In-Circuit Programming.

FUNCTION DESCRIPTION

1 CPU Core

1.1 **ROM**

The size of the Program ROM is 4K*16, with an additional 64*16 Information ROM.

Under the writer, when the PROTECT bit is set to 0, the PROM and information ROM can be read and written normally. When the PROTECT bit is set to 1, the PROM cannot be read, and only the information ROM is allowed to be read.

The PROTECT bit is only allowed to be cleared after the program ROM has been erased to 0.

	Program ROM 4K*16		Information ROM 64*16
000h	Reset Vector	00h	Production Information
004h	Interrupt Vector	0Fh	16*16
005h	-	20h 3Fh	Emulated EEPROM 32*16
	User Code		
FFFh			

1.1.1 Reset Vector (000h)

After reset, system will restart the program counter (PC) at the address 000h, all registers will revert to the default value.

1.1.2 Interrupt Vector (004h)

When an interrupt occurs, the program counter (PC) will be pushed onto the stack and jumps to address 004h.

DS-TM5670C2_E 12 Rev 0.91, 2025/01/17

1.1.3 Production Information Area and System Configuration (SYSCFG)

The production information area is placed at the beginning of the information ROM and stores production code, checksum values, trim values and other information. The 16-bit system configuration (SYSCFG) is also placed here, as shown in the table below.

Default	Value	0000_0000_0000_0000					
Bi	t	Description					
		PROTECT: Code protection selection					
	15	0	Disable				
		1	Enable				
		WDTE: Wa	atchDog Timer Reset Enable				
	12.12	0X	Disable				
	13-12	10	Enable in FAST/SLOW mode, Disable in IDLE/STOP mode				
		11	Always Enable				
		LVRS: Lov	v Voltage Reset Selection				
		0000	2.13V				
		0001	2.26V				
		0010	2.40V				
		0011	2.54V				
		0100	2.69V				
		0101	2.83V				
		0110	2.97V				
	11-8	0111	3.11V				
		1000	3.26V				
CMCCEC		1001	3.40V				
SYSCFG		1010	3.54V				
		1011	3.68V				
		1100	3.84V				
		1101	3.98V				
		1110	4.12V				
		1111	4.26V				
		XRSTE: Ex	cternal Pin (PA7) Reset Enable				
	7	0	Disable (PA7 as I/O pin)				
		1	Enable				
			PAN Input Switch Selection				
	6	0	No change				
		FRCPSC: I	Swapping the input of OPAN (OPA0N <-> OPA1N) FIRC prescaler (PWMCLK = FIRC and FIRC*2 are not affected by this bit)				
	5	0	FIRC is 18.432MHz				
		1	FIRC is 9.216MHz				
			Power on Reset (POR) Selection				
	4	0	Power on Reset enable 100% duty cycle				
		1 Power on Reset enable 1/16 duty cycle					
	3-0 Reserved						

1.1.4 Emulated EEPROM Area

The Emulated EEPROM area is placed in the second half of the information ROM. Different simulated EEPROM area ranges are defined through the register IAPEN. Users can write data here through IAP and read data through Table Read. For details on the usage of IAP, see the "IAP and Emulated EEPROM" chapter.

1.1.5 ROM Low Power Mode

The default is high speed mode, ROM can reduce power consumption by switching modes. Before changing the ROM mode through the ROMODS register, the user must first write any value to the RDSTP register to suspend ROM reading for a total of 4 system cycles to ensure that the ROM mode switch is successfully completed. The example is as follows.

Example: Switch to ROM low power mode, system clock < 1MHz.

(These three lines of code must be executed continuously, and no other code can be inserted in between)

; Write any value to RDSTP register

MOVWX RDSTP

:Set ROMODS = 00

MOVLW 111111<u>00</u>h ANDWX PWRCTL2

Example: Switch to ROM medium power mode, system clock < 4MHz.

(These three lines of code must be executed continuously, and no other code can be inserted in between)

; Write any value to RDSTP register

MOVWX RDSTP

;Set ROMODS = 01

MOVLW 111111<u>01</u>h ANDWX PWRCTL2

105h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWRCTL2	GP	R2	_	_	_	HSINK	ROM	ODS
R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W
Reset	0	0	_	0	1	1	1	1

105h.2 **ROMODS**: ROM mode selection

11: High speed mode

01: Medium power mode, Fsys < 4MHz 00: Low power mode, Fsys < 1MHz

106h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RDSTP	RDSTP							
R/W	R/W							
Reset	0	0	0	0	0	0	0	0

002h.7~0 **RDSTP:** Read stop

Before changing the ROM mode, the user must first write any value to this register to suspend ROM reading for a total of 4 system cycles to ensure that the ROM mode switch is successfully completed.

DS-TM5670C2_E 15 Rev 0.91, 2025/01/17

1.2 RAM and Special Function Registers

The table of Special Function Registers (SFR) and RAM is as follows. It is divided into 4 BANKs. Some commonly used registers will be placed in multiple BANKs to reduce the frequency of switching BANKs. The RAM includes 20h~7Fh, A0h~FFh, 120h~17Fh , the size is 256 bytes, of which 0F0h~0FFh, 170h~1FFh, 1F0h~1FFh all point to positions 070~7Fh.

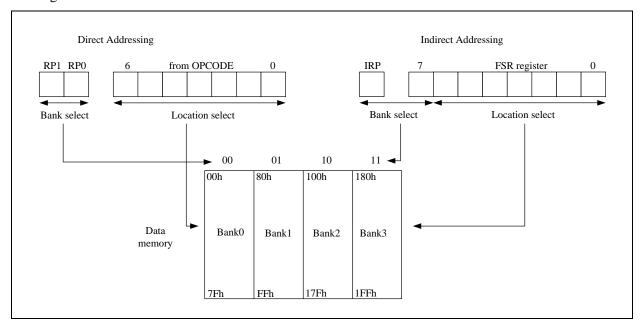
	[BANK0] 000~07Fh		【BANK1】 080h~0FFh		【BANK2】 100h~17Fh		【BANK3】 180h~1FFh
000h	INDF	080h	INDF	100h	INDF	180h	INDF
001h	TM0	081h	OPTION	101h	TM0	181h	OPTION
002h	PCL	082h	PCL	101h	PCL	182h	PCL
003h	STATUS	083h	STATUS	103h	STATUS	183h	STATUS
004h	FSR	084h	FSR	104h	FSR	184h	FSR
005h	PAD	085h	PAMOD10	105h	PWRCTL2	185h	DPL
006h	PBD	086h	PAMOD32	106h	RDSTP	186h	DPH
007h		087h	PAMOD54	107h		187h	CRCDL
008h		088h	PAMOD76	108h		188h	CRCDH
009h		089h	PWMCTL	109h	LVRPD	189h	CRCIN
00Ah	SFR0A	08Ah	SFR0A	10Ah	SFR0A	18Ah	SFR0A
00Bh	INTIE	08Bh	INTIE	10Bh	INTIE	18Bh	INTIE
00Ch	INTIF	08Ch	PBMOD10	10Ch	SFR10C	18Ch	TABR
00Dh	INTIE1	08Dh	PBMOD32	10Dh	CFG07	18Dh	
00Eh	INTIF1	08Eh	PBMOD54	10Eh	BGTRIM	18Eh	
00Fh	CLKCTL	08Fh	PBMOD76	10Fh	IRCF	18Fh	
010h	TM0RLD	090h		110h	OP0TRIM	190h	IAPCTL
011h	TM0CTL	091h	OPTION2	111h	OP1TRIM	191h	IAPEN
012h	TM1	092h	PWMPRDH	112h	OP2TRIM	192h	IAPDT
013h	TM1RLD	093h	PWMPRDL	113h	RDCTL	193h	IAPDTH
014h	TM1CTL	094h	PWM0DH	114h	BCMCTL3	194h	
015h	T2CTL	095h	PWM0DL	115h	PWRCTL	195h	SCON
016h	LVCTL	096h	PWM1DH	116h		196h	SBUF
017h	ADCDH	097h	PWM1DL	117h		197h	UARTCTL
018h	ADCTL	098h	PWM2DH	118h		198h	UARTCTL2
019h	ADCTL2	099h	PWM2DL	119h		199h	
01Ah	BCMCTL	09Ah		11Ah		19Ah	
01Bh	BCMCTL2	09Bh		11Bh		19Bh	
01Ch	DAC0DH	09Ch		11Ch		19Ch	
01Dh	DAC0DL	09Dh		11Dh		19Dh	
01Eh	DAC1DH	09Eh		11Eh		19Eh	
01Fh	DAC1DL	09Fh		11Fh		19Fh	
020h		0A0h		120h		1A0h	
	RAM Bank0 area		RAM Bank1 area		RAM Bank2 area		Reserved
	(80 Bytes)		(80 Bytes)		(80 Bytes)		
06Fh		0EFh		16Fh		1EFh	
070h	common area	0F0h	accesses	170h	accesses	1F0h	accesses
	(16 Bytes)		070h~07Fh		070h~07Fh		070h~07Fh
07Fh		0FFh		17Fh		1FFh	

RAM and Special Function Register Table

1.2.1 Bank

The purpose of registers RP1 and RP0 is to switch BANK.

[RP1, RP0] (03h.6~5)	BANK
00	0
01	1
10	2
11	3


Keeping RP0=RP1=0 in the beginning of the F/W code and using the new instruction set.

The advantage of using new instruction is user can ignore the bank location of registers and the code size can be saved. The new instruction is almost the same as the old instruction. By replacing the "F" to "X" in the instruction set can easily use the new instruction without switching the bank. The instruction replacement table is as follows.

BC F	TM0IE	→	BCX	TM0IE
DEC F	CNT, 1	→	DECX	CNT, 1
INCFSZ	RAM25, 0	→	INCXSZ	RAM25, 0
MOVWF	PAMODL	→	MOVWX	PAMODL
RL F	RAMA0, 0	→	RLX	RAMA0, 0
SWAPF	ADCTL, 0	→	SWAP X	ADCTL, 0

1.2.2 Directly Addressing and Indirect Addressing

The plane can be addressed directly or indirectly. The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing. Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by File Select Register, FSR. Reading the INDF register itself, indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no operation (although status bit may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS[7]). Refer to the figure below.

Direct / Indirect Addressing

DS-TM5670C2_E 17 Rev 0.91, 2025/01/17

♦ Example: read / write register by using direct addressing (**force RP0=RP1=0**)

```
; SFR in Bank0
CLKCTL
                      00Fh
            equ
                      012h
                                 ; SFR in Bank0
TM1
            equ
OPTION2
            equ
                      091h
                                 ; SFR in Bank1
LVRPD
            equ
                      109h
                                 ; SFR in Bank2
IRCF
                      10Fh
                                 ; SFR in Bank2
            equ
                                 ; SFR in Bank3
DPL.
            equ
                      185h
RAM020
            equ
                      020h
                                 ; RAM in Bank0
RAM0A0
                      0A0h
                                 : RAM in Bank1
            equ
MOVXW
                                 ; read TM1 (Bank0) to W
            TM1
MOVXW
            OPTION2
                                 ; read OPTION2 (Bank1) to W
                                 ; read IRCF (Bank2) to W
MOVXW
            IRCF
                                 ; read DPL (Bank3) to W
MOVXW
            DPL
MOVLW
            16h
                                 W = 16h
MOVWX
            RAM020
                                 ; RAM[0x020] = W = 16h
MOVWX
            RAM0A0
                                 ; RAM[0x0A0] = W = 16h
MOVLW
            37h
                                 : W = 37h
MOVWX
            LVRPD
                                 ; LVRPD = W = 37h, force LVR/POR disable
MOVXW
            CLKCTL
                                 ; read SFR CLKCTL (00Fh) to W
MOVXW
            IRCF
                                 ; read SFR IRCF (10Fh) to W
MOVLW
            0Bh
                                 ; W = 0Bh
MOVWX
            CLKCTL
                                 ; CLKCTL(00Fh) = W = 0Bh
MOVWX
            IRCF
                                 ; IRCF (10Fh) = W = 0Bh
```

♦ Example: read / write register by using indirect addressing (force RP0=RP1=0)

```
BSX
            IRP
                                  ; IRP = 1 => Bank2/3
MOVLW
            0Fh
                                 ; W = 0Fh
MOVWX
            FSR
                                 ; FSR = W = 0Fh
MOVXW
            INDF
                                  ; read SFR IRCF (10Fh) to W
BSX
            IRP
                                 ; IRP = 1 => Bank2/3
MOVLW
            0Fh
                                 ; W = 0Fh
MOVWX
                                 ; FSR = W = 0Fh
            FSR
MOVLW
            0Bh
                                 : W = 0Bh
MOVWX
            INDF
                                 ; IRCF (10Fh) = W = 0Bh
BCX
            IRP
                                 ; IRP = 0 \Rightarrow Bank0/1
                                 ; W = 0Fh
MOVLW
            0Fh
MOVWX
            FSR
                                 ; FSR = W = 0Fh
MOVXW
            INDF
                                 ; read SFR CLKCTL (00Fh) to W
BCX
            IRP
                                 ; IRP = 0 => Bank0/1
MOVLW
            0Fh
                                 ; W = 0Fh
            FSR
                                  ; FSR = W = 0Fh
MOVWX
MOVLW
            0Bh
                                 ; W = 0Bh
MOVWX
            INDF
                                 ; CLKCTL(00Fh) = W = 0Bh
```

DS-TM5670C2_E 18 Rev 0.91, 2025/01/17

1.3 Programming Counter (PC) and Stack

1.3.1 Programming Counter

The program counter has a total of 12 bits and is used to address the 4Kx16 program ROM.

When a program instruction is executed, the program counter will contain the address of the next program instruction to be executed. The program counter usually continues to increment by one unless a reset, interrupt, call, jump, or return instruction is encountered.

The initial setup reset vector (000h) and interrupt vector (004h) are used for program counter initialization and interrupt events. For CALL instructions and GOTO instructions, the program counter loads the lower 11-bit address from the instruction word and the upper 1-bit address from register SFR0A.3. For return (RET/RETL/RETLW) instructions, the program counter retrieves its contents from the top of the stack.

Before executing the CALL/GOTO instruction, if the target address is greater than 2K, SFR0A.3 must be set, otherwise SFR0A.3 remains at 0.

This chip also provides additional new instructions LCALL and LGOTO to replace the CALL and GOTO instructions. When using LCALL and LGOTO, the user does not need to worry about the destination address, just keep SFR0A.3 to 0. The instruction replacement table is as follows.

CALL	TABLE	→	L CALL	TABLE
GOTO	TABLE	→	LGOTO	TABLE

1.3.2 Programming Counter Read and Write

The upper byte of the program counter (PC[11:8]) can be read from the PCH register (10Ch.3~0).

The low byte of the program counter (PC[7:0]) data can be read and written through the PCL register (002h/082h/102h/182h).

Use the PCH_LAT function:

The default setting of the chip is that when the CPU executes an "instruction that will modify PCL", PC[11:8] is provided by the register PCH_LAT.

Disable the PCH_LAT function:

When the user writes 1C to the register SFR10C, the chip will disable the PCH_LAT function. When the CPU executes an "instruction that modifies PCL", it will leave PC[11:8] unchanged for easy table lookup. Please note that the PCH_LAT function can only be disabled when the user uses assembly code. Users of C language cannot disable this function.

Restore PCH LAT function:

When the user writes any other value to SFR10C, the system resumes the PCH_LAT function.

1.3.3 Stack

The stack is 12 bits wide and 8 levels deep, used to store the address of program instructions. When calling (CALL/LCALL) instructions and interrupt events, they will be pushed into the stack in order. According to the first-in-last-out principle, when the return (RET/RETI/ RETLW) instructions are executed, they will be popped back into the stack in order.

002h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PCL		PCL								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

002h.7~0 **PCL:** Programming Counter(PC) data bit 7~0

00Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
SFR0A		G]	PR		PCH_LAT				
R/W		R/	W			R/	W		
Reset	0	0	0	0	0	0	0	0	

00Ah.3~0 **PCH_LAT:** Program counter(PC) high byte write buffer

When the CPU executes any instruction that will modify PCL, the PC[11:8] value is provided by the temporary register PCH_LAT. This function can be turned off by register SFR10C.

10Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
SFR10C		SFR10C									
R/W		V	V			R/	W				
Reset	0	0	0	0	0	0	0	0			

10Ch.7~0 **SFR10C**:

Use the PCH_LAT function:

The default setting of the chip is that when the CPU executes an "instruction that will modify PCL", PC[11:8] is provided by the register PCH_LAT.

Disable the PCH LAT function:

When the user writes 1C to the register SFR10C, the chip will disable the PCH_LAT function. When the CPU executes an "instruction that modifies PCL", it will leave PC[11:8] unchanged for easy table lookup. Please note that the PCH_LAT function can only be disabled when the user uses assembly code. Users of C language cannot disable this function.

Restore PCH_LAT function:

When the user writes any other value to SFR10C, the system resumes the PCH_LAT function.

10Ch.3~0 **PCH:** Program counter(PC) data bits 11~8, which are the high 4-bit value of the program counter.

DS-TM5670C2_E 20 Rev 0.91, 2025/01/17

1.4 ALU and Working (W) Register

The ALU is 8-bit wide and capable of addition, subtraction, shift and logical operations. In two-operand instructions, typically one operand is the W register, which is an 8-bit non-addressable register used for ALU operations. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either W register or a file register. Depending on the instruction executed, the ALU may affect the values of Carry (C), Digit Carry (DC), and Zero (Z) Flags in the STATUS register. The C and DC flags operate as a /Borrow and /Digit Borrow, respectively, in subtraction.

Note: /Borrow represents inverted of Borrow register.

/Digit Borrow represents inverted of Digit Borrow register.

1.5 STATUS Register (003h/083h/103h/183h)

This register contains the arithmetic status of ALU and the Reset status. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. It is recommended, therefore, that only BCX, BSX and MOVWX instructions are used to alter the STATUS Register because these instructions do not affect those bits.

STATUS	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
Reset Value	0	0	0	0	0	0	0	0				
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W				
Bit	Description			•			•	•				
7	0 = Bank 0,	IRP: Register Bank Select bit (used for indirect addressing) 0 = Bank 0,1 (000h - 0FFh) 1 = Bank 2,3 (100h - 1FFh)										
6:5	00 = Ban $01 = Ban$ $10 = Ban$	k 0 (000h - 0 k 1 (080h - 0 k 2 (100h - 1 k 3 (180h - 1	7Fh) PFFh) 7Fh)	(used for dir	rect addressir	ng)						
4				T/SLEEP ins	struction							
3				T instruction	ı							
2		g of a logic op of a logic op										
1	ADD instruction of the control of th	ction		/ Borrow Fl	SUB instruc	from the	e low nibble	bits of the				
0	ADD instru	ag or /Borrov ction ccurs from th			SUB instruction of the substruction of the sub	occurs from	n the MSB					

DS-TM5670C2_E 21 Rev 0.91, 2025/01/17

♦ Example: Write immediate data into STATUS register.

MOVLW 00h

MOVWX STATUS ; Clear STATUS register

 \diamondsuit Example: Bit addressing set and clear STATUS register.

BSX STATUS, 0 ; Set C=1 BCX STATUS, 0 ; Clear C=0

 \diamondsuit Example: Determine the C flag by BTXSS instruction.

 $\begin{array}{lll} BTXSS & STATUS, 0 & ; Check the carry flag \\ LGOTO & LABEL_1 & ; If C=0, goto LABEL_1 \\ LGOTO & LABEL_2 & ; If C=1, goto LABEL_2 \end{array}$

DS-TM5670C2_E 22 Rev 0.91, 2025/01/17

1.6 Table Read

ORG
TABLE1:

The device can read the PROM value through the instruction TABRL / TABRH or the register TABR, and the read value will be stored in the register W.

The function needs to be enabled through register IAPEN. When not in use, please disable the function through the register IAPEN.

Example: Find PROM data located at "TABLE1"

MOVLW MOVWX	47H IAPEN	
MOVLW MOVWX MOVLW MOVWX	00h INDEX 1Ch SFR10C	; Set lookup address ; Disable PCG_LAT function
MOVXW LCALL	INDEX TABLE1	; Find data and get W=33h
INCX LCALL	INDEX, 1 TABLE1	; next address ; Find data and get W=44h
MOVLW MOVWX	33H IAPEN	
X00h	IALEN	
ADDWX RETLW	PCL, 1 33h	; Add W to PCL and return the result to PCL.; return W=33h
RETLW RETLW	44h 55h	; return W=44h ; return W=55h

*The chip defines 256 ROM addresses as one page, so the ROM has 16 pages, $000h\sim0FFh$, $100h\sim1FFh$,..., F00h~FFFh. The lookup table must be on the same page to avoid getting wrong data. Therefore, when a lookup table is started at X00h (X = 1, 2, 3, ..., E, F), the lookup table can have up to 255 data. Of course, if there is less data in the lookup table, you don't need to set the starting address to X00h, but just make sure that all the lookup table data is on the same page.

Example: Read PROM data located at "TABLE2"

MOVLW 47H MOVWX IAPEN

MOVLW (TABLE2 >>8) & 0xff

MOVWX DPH

MOVLW (TABLE2) & 0xff

MOVWX DPL ; $DPTR = \{DPH, DPL\} = TABLE2$

; Method 1: Read the table through the instruction TABRL / TABRH

TABRL ; Read PROM low byte data to W (W = 86h) TABRH ; Read PROM high byte data to W (W = 19h)

...

; Method 2: Read the table through the special function register TABR

MOVLW 01h ; TABR = 01h is equivalent to instruction TABRL

MOVWX TABR ; Read PROM low byte data to TABR and W

;TABR = W = 86h

MOVLW 02h ; TABR = 02h is equivalent to instruction TABRH MOVWX TABR ; Read PROM high byte data to TABR and W

TABR = W = 19h

. . .

MOVLW

MOVWX

33H IAPEN

TABLE2:

.DT 0x1986 ; 16-bit ROM data

18Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
TABR		TABR									
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

18Ch.7~0 TABR: Table Read

When the user writes 01h to TABR, the W register will get the lower eight bits of the data in the address pointed to by DPTR.

When the user writes 02h to TABR, the W register will get the upper eight bits of the data in the address pointed to by DPTR.

In Assembly code, user can table read by TABRL/TABRH instruction or writing TABR register.

In C code, user can only table read by writing TABR register.

191h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
IAPEN		IAPEN									
R/W		W									
Reset	0	0	0	0	0	0	0	0			

191h.7~0 IAPEN: Function selection of Table Read and IAP

Write 47h to enable Main ROM Table Read and IAP functions

Write 50h to enable INFO ROM address 6'h20~ 6'h3F Table Read and IAP functions

Writing 33h will disable Table Read and IAP functions

1.7 IAP and Emulated EEPROM

First, IAPEN must be set. For example, writing 50H to IAPEN can enable the IAP function and treat 20H~3FH of the Information ROM as an area that can be written by IAP and read by Table read, called the Emulated EEPROM area. DPTR represents the address pointed to by writing and reading. 16 bits can be written at a time. The value to be written needs to be placed in the registers IAPDTH and IAPDTL. Fill in IAPDTH first and then IAPDTL. When filling in the value of IAPDTL, the hardware will perform writing.

The value of the Emulated EEPROM area can be read through the register TABR or the instructions TABRH/TABRL.

when not in use, please close IAPEN.

Example: Write 16'hAA55 to Emulated EEPROM and read it

; IAP Write Time-Out selection

MOVLW 00000001B MOVWX IAPCTL

;Enable the IAP function and treat 20H~3FH of the Information ROM as an area that can be written by IAP and read by Table read, called the Emulated EEPROM area

MOVLW 50H MOVWX IAPEN

;Set Write/Read Address = Data pointer register (DPTR) = 30h

MOVLW 00H MOVWX DPH MOVLW 30H MOVWX DPL

;Write

MOVLW 0XAA

MOVWX IAPDTH MOVLW 0X55

MOVWX IAPDT ;Set data low byte and write

NOP ;delay 1 clock cycle

;Read

MOVLW 02H MOVWX TABR MOVLW 01H MOVWX TABR ;=TABRH instruction ;=TABRH instruction ;=TABRL instruction ;=TABRL instruction

;Set data high byte

;Disable IAP function

MOVLW 33H MOVWX IAPEN

DS-TM5670C2_E 25 Rev 0.91, 2025/01/17

190h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IAPCTL							IAF	TE
R/W							R/W	R/W
Reset							0	0

190h.1~0 **IAPTE**: IAP Write Time-Out selection 00: Disable, 01: 3.5ms, 10:14ms, 11: 28ms

191h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
IAPEN		IAPEN									
R/W		W									
Reset	0	0	0	0	0	0	0	0			

191h.7~0 IAPEN: Function selection of Table Read and IAP

Write 47h to enable Main ROM Table Read and IAP functions Write 50h to enable INFO ROM address 6'h20~ 6'h3F Table Read and IAP functions Writing 33h will disable Table Read and IAP functions

192h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
IAPDTL		IAPDTL									
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

192h.7~0 IAPDTL: IAP Data low byte

When the user writes to this register, the hardware will automatically write the 16-bit value {IAPDTH, IAPDTL} to the location pointed to by DPTR.

193h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
IAPDTH	IAPDTH								
R/W	R/W								
Reset	0	0	0	0	0	0	0	0	

193h.7~0 **IAPDTH**: IAP Data high byte

DS-TM5670C2_E 26 Rev 0.91, 2025/01/17

2 Reset

This device can be RESET in four ways.

Power-On-Reset (POR)

Low Voltage Reset (LVR)

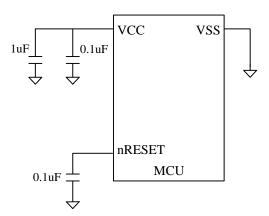
External Pin Reset (XRST)

Watchdog Timer Reset (WDTR)

Resets can be caused by Power on Reset (POR), External Pin Reset (XRST), Watchdog Timer Reset (WDTR), or Low Voltage Reset (LVR). The SYSCFG controls the Reset functionality. After Reset, the SFRs are returned to their default value, the program counter (PC) is cleared, and the system starts running from the reset vector 000h place. The TO and PD flags at status register (STATUS) are indicate system reset status.

2.1 Power on Reset (POR)

After Power-On-Reset, all system and peripheral control registers are then set to their default hardware Reset values.


2.2 Low Voltage Reset (LVR)

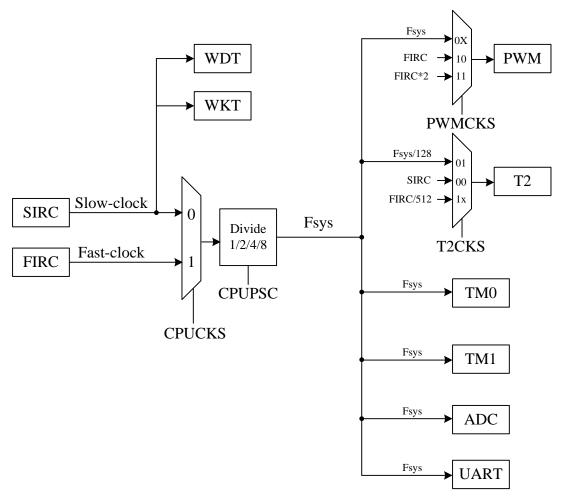
The Low Voltage Reset features static reset when supply voltage is below a threshold level. There are 16 threshold levels can be selected. The LVR's operation mode is defined by the SYSCFG. Different Fsys have different system minimum operating voltage, reference to Operating Voltage of DC characteristics, if current system voltage is low than minimum operating voltage and lower LVR is selected, then the system maybe enters dead-band and error occurs.

2.3 External Pin Reset (XRST)

External pin reset can be disabled or enabled through the SYSCFG. It needs to be maintained for at least 2 SIRC clock cycles before it can be detected by the chip and trigger the reset action. XRST will return all control registers to their default resets, while the TO/PD flags are not affected by reset.

The external reset pin is active low, and a good external reset circuit can protect the system from operating under abnormal power conditions.

2.4 Watchdog Timer Reset (WDTR)


The Watchdog Timer reset can be disabled or enabled by SYSCFG. Set WDTPSC to define the period during which WDT reset occurs. WDT reset counter can be cleared by device Reset or CLRWDT instruction. WDT reset also set all the control registers to their default value. The TO/PD flags are not affected by WDT resets.

DS-TM5670C2_E 28 Rev 0.91, 2025/01/17

3 Clock Circuitry and Operation Mode

The device is designed using a dual clock system. The System clock (Fsys) can be selected from Slow-clock or Fast-clock. The clock sources of each peripheral are shown in the figure below.

Clock Source Diagram

DS-TM5670C2_E 29 Rev 0.91, 2025/01/17

FAST Mode:

In this mode, the chip is executed using Fast-clock as System clock (Fsys).

If you want to enter SLOW mode, first set SLOWSTP to 0, then set CPUCKS to 0, so that the device will switch to SLOW mode.

Example: Switch FAST mode to SLOW mode

BCX SLOWSTP ; Slow-clock enable BCX CPUCKS ; Fsys = Slow-clock

SLOW Mode:

In this mode, the chip is executed using Slow-clock as System clock (Fsys).

After the device power-on or reset, System clock will enter SLOW mode.

The user can choose to turn the Fast-clock on or off through the FASTSTP bit

If you want to enter Fast mode, first set FASTSTP to 0, then set CPUCKS to 1, so that the device will switch to FAST mode.

Example: Switch SLOW mode to FAST mode

BCX FASTSTP ; Fast-clock enable
BSX CPUCKS ; Fsys = Fast-clock

IDLE Mode:

If the device goes to sleep with SLOWSTP=0 or WKTIE=1 or WDTE=3, the Slow-clock will still continue to oscillate during sleep, which is called IDLE mode.

Users can put the deivce to sleep by executing the SLEEP instruction. In the sleep state, Fast-Clock must stop oscillating.

After a fast device wakes up from sleep state, it will return to the mode before waking up.

Example: Switch FAST/SLOW mode to IDLE mode.

BCX SLOWSTP ;Slow-clock will keep running after executing the

SLEEP instruction

SLEEP ; executing SLEEP instruction

STOP Mode:

If the device goes to sleep with SLOWSTP=0 and WKTIE=0 and WDTE=0,1,2, Slow-clock will stop oscillating. In this case, the CPU is the most power-saving, which is called STOP mode.

Users can put the deivce to sleep by executing the SLEEP instruction. In the sleep state, Fast-Clock must stop oscillating.

After a fast device wakes up from sleep state, it will return to the mode before waking up.

Example: Switch FAST/SLOW mode to STOP mode.

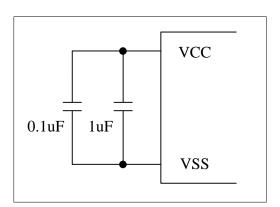
BSX SLOWSTP ;Slow-clock will stop after executing the SLEEP

instruction

MOVLW 00000000b ; close WKT

MOVWX INTIE

SLEEP ; executing SLEEP instruction



Mode	System clock (Fsys)	Built-in Fast RC oscillator (FIRC)	Built-in Slow RC oscillator (SIRC)
FAST mode	Fast-clock	V	V
SLOW mode	Slow-clock	by FASTSTP	V
IDLE mode	X	X	V
STOP mode	X	X	X

Clock Mode Table

Power Supply Bypass Capacitor:

Since power supply noise will degrade the performance of the internal clock oscillator, it is recommended to place the power supply bypass capacitors 1 uF and 0.1 uF close to the VCC/VSS pin, which can improve the stability of the clock and the entire system.

Power supply bypass capacitor

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Bh.3 **WKTIE:** Wakeup Timer interrupt enable and Wakeup Timer enable

0: disable 1: enable

DS-TM5670C2_E 31 Rev 0.91, 2025/01/17

0Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCTL	_	_	_	SLOWSTP	FASTSTP	CPUCKS	CPUPSC	
R/W	_	_	_	R/W	R/W	R/W	R/W	
Reset	_	_	_	0	1	0	1	1

0Fh.4 **SLOWSTP**: Stop Slow-clock after execute SLEEP instruction

0: Slow-clock keeps running after execute SLEEP instruction

1: Slow-clock stops running after execute SLEEP instruction

0Fh.3 **FASTSTP**: Fast-clock stop

0: Fast-clock is running

1: Fast-clock stops running

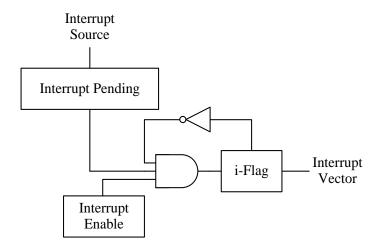
0Fh.2 **CPUCKS**: System clock source selection

0: Slow-clock

1: Fast-clock

0Fh.1~0 CPUPSC: System clock source prescaler. System clock source

00: divided by 8 01: divided by 4 10: divided by 2 11: divided by 1



4 Interrupt

The Chip has 1 level, 1 vector and 11 interrupt sources. Each interrupt source has its own enable control bit. An interrupt event will set its individual pending flag, no matter its enable control bit is 0 or 1.

If the corresponding interrupt enable bit has been set, it would trigger CPU to service the interrupt. CPU accepts interrupt at the end of current executed instruction cycle. In the meanwhile, a "LCALL 004" instruction is inserted to CPU, and i-flag is set to prevent recursive interrupt nesting.

The i-flag is cleared in the instruction after the "RETI" instruction. That is, at least one instruction in main program is executed before service the pending interrupt. The interrupt event is level triggered. F/W must clear the interrupt event register while serving the interrupt routine.

Interrupt event

DS-TM5670C2_E 33 Rev 0.91, 2025/01/17

♦ Example: Setup INT1 (PA1) interrupt request with rising edge trigger

ORG 000h ; Reset Vector

LGOTO START ; Goto user program address

ORG 004h ; All interrupt vector

LGOTO INT ; If INT1 (PA1) input occurred rising edge

ORG 005h

START:

MOVLW 0000xxxxb

PAMOD10 **MOVWX** ; Select INT1 Pin Mode as mode 0000b

; Open drain output low or input with Pull-up

MOVLW xxxxxx1xb

MOVWX PAD ; Release INT1, it becomes Schmitt-trigger

; input with input pull-up resistor

MOVLW xx1xxxxxb

OPTION MOVWX ; Set INT1 interrupt trigger as rising edge

MOVLW 111111<u>0</u>1b

MOVWX INTIF ; Clear INT1 interrupt request flag

MOVLW 000000**1**0b

MOVWX **INTIE** ; Enable INT1 interrupt

MAIN:

LGOTO **MAIN**

INT:

20h MOVWX ; Store W data to SRAM 20h

MOVXW **STATUS** ; Get STATUS data

MOVWX ; Store STATUS data to SRAM 21h 21h

BTXSC INT1IF ; Check INT1IF bit

LCALL INT1_SUB ; INT1IF = 1, jump to INT1 interrupt service routine

EXIT_INT:

MOVXW 21h ; Get SRAM 21h data MOVWX **STATUS** ; Restore STATUS data

MOVXW 20h ; Restore W data

RETI ; Return from interrupt

INT1_SUB: ; INT1 interrupt service routine

MOVLW 111111**0**1b

MOVWX **INTIF** ; Clear INT1 interrupt request flag

RET

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Bh.7 **ADCIE:** ADC interrupt enable

0: disable

1: enable

0Bh.6 **T2IE:** T2 interrupt enable

0: disable 1: enable

0Bh.5 **TM1IE:** Timer1 interrupt enable

0: disable 1: enable

0Bh.4 **TM0IE:** Timer0 interrupt enable

0: disable 1: enable

0Bh.3 **WKTIE:** Wakeup Timer interrupt enable and Wakeup Timer enable

0: disable 1: enable

0Bh.2 **INT2IE:** INT2 interrupt enable

0: disable 1: enable

0Bh.1 **INT1IE:** INT1 interrupt enable

0: disable 1: enable

0Bh.0 **INT0IE:** INT0 interrupt enable

0: disable 1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.7 **ADCIF:** ADC interrupt event pending flag

This bit is set by H/W after ADC end of conversion, write 0 to this bit will clear this flag

0Ch.6 **T2IF:** T2 interrupt event pending flag

This bit is set by H/W while T2 overflows, write 0 to this bit will clear this flag

OCh.5 **TM1IF:** Timer1 interrupt event pending flag

This bit is set by H/W while Timer1 overflows, write 0 to this bit will clear this flag

0Ch.4 **TM0IF:** Timer0 interrupt event pending flag

This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

0Ch.3 **WKTIF:** Wakeup Timer interrupt event pending flag

This bit is set by H/W while Wakeup Timer is timeout, write 0 to this bit will clear this flag

0Ch.2 **INT2IF:** INT2 pin falling interrupt pending flag

This bit is set by H/W at INT2 pin's falling edge, write 0 to this bit will clear this flag

OCh.1 **INT1IF:** INT1 pin falling/rising interrupt pending flag

This bit is set by H/W at INT1 pin's falling/rising edge, write 0 to this bit will clear this flag

0Ch.0 **INT0IF:** INT0 pin falling/rising interrupt pending flag

This bit is set by H/W at INTO pin's falling/rising edge, write 0 to this bit will clear this flag

0Dh.6

0Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE1	EA	UARTIE					PWMIE	LVDIE
R/W	R/W	R/W					R/W	R/W
Reset	1	0	_	_	_	_	0	0

0Dh.7 **EA:** Global interrupt enable

0: disable 1: enable

UARTIE: UART interrupt enable

0: disable

1: enable

0Dh.1 **PWMIE:** PWM interrupt enable

0: disable 1: enable

0Dh.0 **LVDIE:** LVD interrupt enable

0: disable 1: enable

0Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF1	_	UARTIF	_	_	_	_	PWMIF	LVDIF
R/W	_	R	_	_	_	_	R/W	R/W
Reset	_	0	_	_	_	_	0	0

0Eh.6 **UARTIF:** UART interrupt event pending flag

This bit is set by H/W when UART transmission/reception is completed, write 0 to TI/RI flag will clear this flag

0Eh.1 **PWMIF:** PWM interrupt event pending flag

This bit is set by H/W after PWM period counter roll over, write 0 to this bit will clear this flag

0Eh.0 **LVDIF:** LVD interrupt event pending flag

This bit is set by H/W after $V_{\text{CC}} < V_{\text{LVD}}$, write 0 to this bit will clear this flag

5 I/O Port

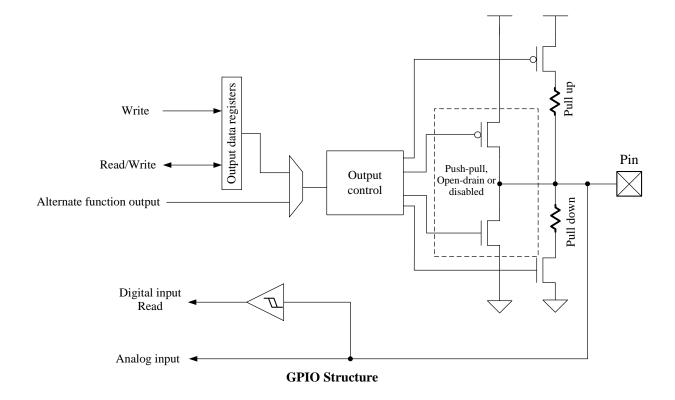
5.1 GPIO (PA0-PA7, PB0-PB6)

The chip has various pin modes and their functions are shown in the table below. In this table, Pin Mode is defined by PAMODx, PBMODx, Pin Data is defined by PAD, PBD.

Pin Mode	Pin Data	Description	Digtal Output	Digital Input	Pin Wakeup
0000b	0	Output low	ON	OFF	OFF
UUUUD	1	Input with Pull-up resistor	OFF	ON	OFF
0001b	0	Output low	ON	OFF	OFF
00010	1	Input high impedance	OFF	ON	OFF
0010b	0	Output Low	ON	OFF	OFF
00100	1	Output High	ON	OFF	OFF
0011b	X	Analog signal ADC / OP0P / OP1P / OP2P / VREXT / VBGO	OFF	OFF	OFF
0100b	0	Output low	ON	OFF	OFF
01000	1	Input with Pull-down resistor	OFF	ON	OFF
0101b	0	Output low	ON	OFF	OFF
01010	1	Input high impedance	OFF	ON	OFF
0110b	0	Output Low	ON	OFF	OFF
01100	1	Output High	ON	OFF	OFF
0111b	X	PWM output	ON	OFF	OFF
1000b	0	Output low	ON	OFF	OFF
10000	1	Input with Pull-up resistor	OFF	ON	ON
1001b	0	Output low	ON	OFF	OFF
10010	1	Input high impedance	OFF	ON	ON
1010L	0	Output Low	ON	OFF	OFF
1010b	1	Output High	ON	OFF	OFF
1011b	X	Reserved	OFF	OFF	OFF-
1100b	0	Output low	ON	OFF	OFF
11000	1	Input with Pull-down resistor	OFF	ON	ON
1101b	0	Output low	ON	OFF	OFF
11010	1	Input high impedance	OFF	ON	ON
1110b	0	Output Low	ON	OFF	OFF
11100	1	Output High	ON	OFF	OFF
1111b	X	Analog output 1/2 V _{CC} (1/2 bias)	OFF	OFF	OFF

GPIO Function Table

Mode 1 turns off the digital output and enables the digital input. Mode 3 turns off the digital output and turns off the digital input. Both Mode 1 and Mode 3 can be used for analog signals. However, because mode 1 enables digital input, it may consume more power when used with analog signals. It is recommended that analog signals such as ADC / OP0P / OP1P / OP2P / VREXT / VBGO use Mode 3.


The default setting of all general IO (GPIO) is mode 1. PB0~PB2 are not high impedance because they have analog signal output inside by default. PB0 defaults to output 60mV of DAC0, PB1 defaults to

output 2.4V of DAC1, and the PB2 default output is VR voltage value (3V). Please pay attention to whether there is any conflict with the external circuit when using it. If PB0~PB2 are to be used for analog signals, it is recommended to switch to mode 3 after power-on to save power consumption.

	P	AxMOD / PBxMOD	
Pin Name	0011b (Analog in/out)	0111b (Digital output)	1111b (Analog output)
PA0	ADC0	PWM0N	1/2 bias
PA1	ADC1	PWM0P	1/2 bias
PA2	ADC2	PWM1	1/2 bias
PA3	ADC3/OP2O	PWM2	1/2 bias
PA4	ADC4	PWM0N	1/2 bias
PA5	ADC5	PWM0P	1/2 bias
PA6	ADC6	PWM1	1/2 bias
PA7	ADC7	PWM2	1/2 bias
PB0	ADC8/OP0P/DAC0O	PWM0N	1/2 bias
PB1	ADC9/OP1P/DAC1O	PWM0P	1/2 bias
PB2	ADC10/VREXT	PWM1	1/2 bias
PB3	ADC11	PWM2	1/2 bias
PB4	ADC12	PWM0N	1/2 bias
PB5	ADC13	PWM0P	1/2 bias
PB6	ADC14/OP2P	PWM1	1/2 bias

GPIO Special Function Table

85h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PAMOD10		PA11	MOD		PA0MOD				
R/W		R/W				R/	W		
Reset	0	0	0	1	0	0	0	1	

86h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PAMOD32		PA31	MOD		PA2MOD				
R/W		R/	W			R/	W		
Reset	0	0	0	1	0	0	0	1	

87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PAMOD54		PA51	MOD		PA4MOD				
R/W		R/W				R/	W		
Reset	0	0	0	1	0	0	0	1	

88h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PAMOD76		PA71	MOD		PA6MOD				
R/W		R/	W		R/W				
Reset	0	0	0	0	0	0	0	1	

88h.7~4 **PA7MOD ~ PA0MOD**: PA7~PA0 Pin Mode Control

88h.3~0 0000: Open drain or digital input with pull-up

87h.7~4 0001: Open drain or digital input

87h.3~0 0010: CMOS Push-pull 86h.7~4 0011: Analog input/output

86h.3~0 0100: Open drain or digital input with pull-down

85h.7~4 0101: Open drain or digital input

85h.3~0 0110: CMOS Push-pull

0111: Alternate function output

1000: Open drain or digital input with pull-up and pin-changed wakeup

1001: Open drain or digital input and pin-changed wakeup

1010: CMOS Push-pull

1011: Reserved

1100: Open drain or digital input with pull-down and pin-changed wakeup

1101: Open drain or digital input and pin-changed wakeup

1110: CMOS Push-pull 1111: 1/2 V_{CC} (1/2 bias)

8Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PBMOD10		PB11	MOD		PB0MOD				
R/W		R	W		R/W				
Reset	0	0	0	1	0	0	0	1	

8Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PBMOD32		PB31	MOD		PB2MOD				
R/W		R/W				R/	W		
Reset	0	0	0	1	0	0	0	1	

8Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PBMOD54		PB51	MOD		PB4MOD				
R/W		R	W			R/	W		
Reset	0	0	0	1	0	0	0	1	

8Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PBMOD76			-		PB6MOD				
R/W		R/W				R/	W		
Reset	0	0	0	1	0	0	0	1	

8Fh.3~0 **PB6MOD ~ PB0MOD**: PB6~PB0 Pin Mode Control

8Eh.7~4 0000: Open drain or digital input with pull-up

8Eh.3~0 0001: Open drain or digital input

8Dh.7~4 0010: CMOS Push-pull 8Dh.3~0 0011: Analog input

8Ch.7~4 0100: Open drain or digital input with pull-down

8Ch.3~0 0101: Open drain or digital input

0110: CMOS Push-pull

0111: Alternate function output

1000: Open drain or digital input with pull-up and pin-changed wakeup

1001: Open drain or digital input and pin-changed wakeup

1010: CMOS Push-pull

1011: Reserved

1100: Open drain or digital input with pull-down and pin-changed wakeup

1101: Open drain or digital input and pin-changed wakeup

1110: CMOS Push-pull 1111: 1/2 V_{CC} (1/2 bias)

05h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PAD		PAD								
R/W		R/W								
Reset	1	1 1 1 1 1 1 1 1								

05h.7~0 **PAD**: PA7~PA0 pin data

06h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBD	-				PBD			
R/W								
Reset	1	1	1	1	1	1	1	1

06h.6~0 **PBD**: PB6~PB0 pin data

105h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWRCTL2	GPR2		-	-		HSINK	ROM	ODS
R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W
Reset	0	0	-	0	1	1	1	1

105h.2 **HSINK**: All GPIO high sink current selection

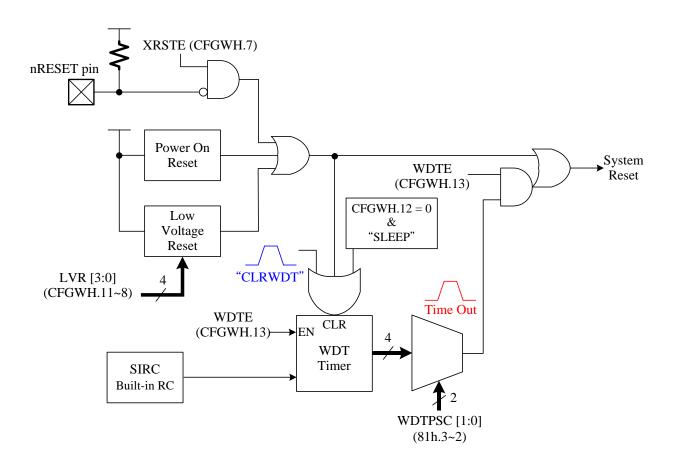
0: low sink current1: high sink current

5.2 OPON / OPO / OP1N / VREXT

The function is fixed as analog signal, so no pin mode setting is required.

Pin Name	Analog Signal
OP0N	OP0N/ADC15
OPO	OPO
OP1N	OP1N/ADC16
VREXT	VR

DS-TM5670C2_E 41 Rev 0.91, 2025/01/17



6 Peripheral Functional Block

6.1 Watchdog Timer (WDT)

The watchdog (WDT) uses the internal SIRC oscillator and has a separate counter. The overflow period of the WDT can be selected by the prescaler WDTPSC.

The WDT timer is cleared by the CLRWDT instruction. If the watchdog is enabled and the watchdog counter overflows, the WDT will generate a chip reset signal.

WDT Block Diagram

The WDT's behavior in different Mode is shown as below table.

Mode	SYSCFO WDTE[1]		WDT
	0	0	Stop
Normal Mode	0	1	Stop
Normai Wode	1	0	Run
	1	1	Run
Da	0	0	Stop
Power-down	0	1	Stop
Mode (SLEEP)	1	0	Stop
(SLEET)	1	1	Run

DS-TM5670C2_E 42 Rev 0.91, 2025/01/17

Watchdog clear is controlled by CLRWDT instruction.

♦ Example: Clear watchdog timer by CLRWDT instruction.

MAIN: ... ; Execute program.

CLRWDT ; Execute CLRWDT instruction.

. . .

LGOTO MAIN

 \diamondsuit Example: Setup WDT time.

MOVLW 0000<u>01</u>11b

MOVWX OPTION ; Select WDT reset period

...

03h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STATUS	IRP	RP1	RP0	TO	PD	Z	DC	C
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

03h.4 **TO:** WDT time out flag, read-only

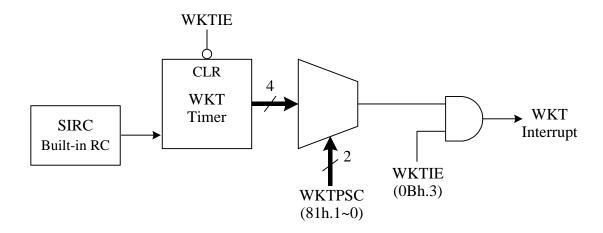
0: after Power On Reset or CLRWDT / SLEEP instructions

1: WDT time out occurs

81h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	HWAUTO	INT0EDG	INT1EDG	_	WDTPSC		WKTPSC	
R/W	R/W	R/W	R/W	_	R/W		R/	W
Reset	0	0	0	-	1	1	1	1

81h.3~2 **WDTPSC:** WDT period (@ V_{CC} =5V)

00: 221 ms 01: 443 ms 10: 1771 ms 11: 3542 ms


DS-TM5670C2_E 43 Rev 0.91, 2025/01/17

6.2 Wakeup Timer (WKT)

The wakeup timer (WKT) uses the internal SIRC oscillator and has a separate counter. The overflow period of WKT can be selected by the prescaler WKTPSC.

The WKT timer is an interval timer, and a WKT interrupt flag (WKTIF) will be generated when the WKT timer times out. The WKT timer is cleared/stopped by WKTIE=0. When WKTIE=1 is set, the WKT timer will keep counting regardless of the CPU operation mode.

WKT Block Diagram

♦ Example: Set WKT period and interrupt function.

MOVLW $000001\underline{10}$ b MOVWX OPTION ; Select WKT period

MOVLW 1111<u>0</u>111b ; Clear WKT interrupt flag by using byte operation MOVWX INTIF ; Don't use bit operation "BCX WKTIF" to clear

BSX WKTIE ; Enable WKT interrupt function

DS-TM5670C2_E 44 Rev 0.91, 2025/01/17

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.3 **WKTIF:** Wakeup Timer interrupt event pending flag

This bit is set by H/W while Wakeup Timer is timeout, write 0 to this bit will clear this flag

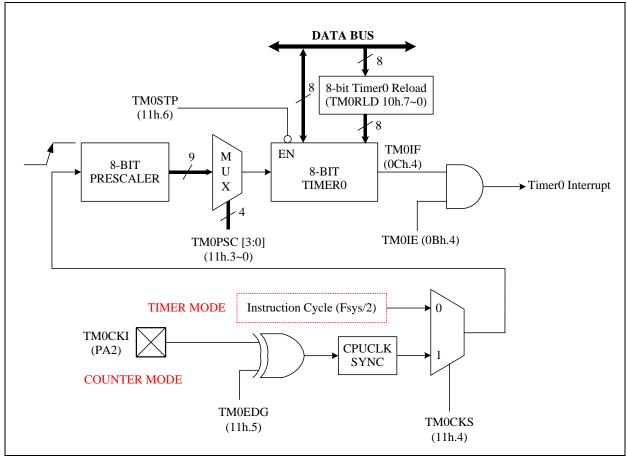
0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Bh.3 **WKTIE:** Wakeup Timer interrupt enable and Wakeup Timer enable

0: disable 1: enable

81h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	HWAUTO	INT0EDG	INT1EDG	_	WDTPSC		WKT	PSC
R/W	R/W	R/W	R/W	_	R/W		R/	W
Reset	0	0	0	_	1	1	1	1

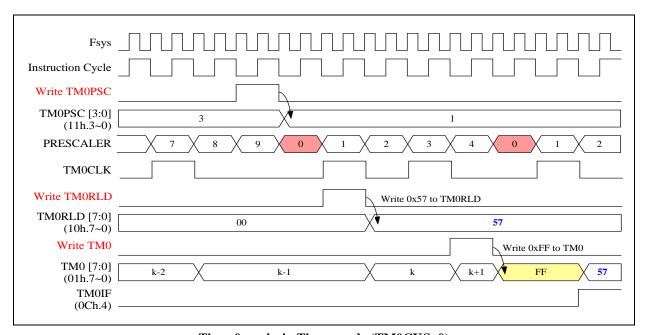
81h.1~0 **WKTPSC:** WKT period (@ V_{CC} =5V)


00: 28 ms 01: 55 ms 10: 111 ms 11: 221 ms

DS-TM5670C2_E 45 Rev 0.91, 2025/01/17

6.3 Timer0

The TM0 (01h.7~0) is an 8-bit wide register. It can be read or written as any other register. Besides, Timer0 increases itself periodically and automatically rolls over a new "offset value" (TM0RLD) while it rolls over based on the pre-scaled clock source, which can be Fsys/2 or TM0I (PA2) rising/falling input. The Timer0 increase rate is determined by "Timer0 Pre-Scale" (TM0PSC) register. The Timer0 always generates TM0IF (0Ch.4) when its count rolls over. It generates Timer0 Interrupt if TM0IE (0Bh.4) is set. Timer0 can be stopped counting if the TM0STP (11h.6) bit is set.


Timer0 Block Diagram

DS-TM5670C2_E 46 Rev 0.91, 2025/01/17

The following timing diagram describes the Timer0 works in pure Timer mode.

When the Timer0 prescaler (TM0PSC) is written, the internal 8-bit prescaler will be cleared to 0 to make the counting period correct at the first Timer0 count. TM0CLK is the internal signal that causes the Timer0 to increase by 1 at the end of TM0CLK. TM0WR is also the internal signal that indicates the Timer0 is directly written by instruction; meanwhile, the internal 8-bit prescaler will be cleared. When Timer0 counts from FFh to TM0RLD, TM0IF (Timer0 Interrupt Flag) will be set to 1 and generate interrupt if TM0IE (Timer0 Interrupt Enable) is set.

 $Timer 0 \ works \ in \ Timer \ mode \ (TM0CKS=0)$

DS-TM5670C2_E 47 Rev 0.91, 2025/01/17

The equation of TM0 interrupt time value is as following:

TM0 interrupt interval cycle time = Fsys / 2 / TM0PSC / (256-TM0RLD)

♦ Example: Setup Timer0 work in Timer mode, if Fsys = 8 MHz

; Setup Timer0 clock source and divider

MOVLW 00x00101b ; TM0CKS = 0, Timer0 clock is instruction cycle

MOVWX TM0CTL ; TM0PSC = 0101b, divided by 32

; Setup Timer0 reload data

MOVLW 80h

MOVWX TM0RLD ; Set Timer0 reload data = 128

; Setup Timer0

BSX TM0STP ; Timer0 stops counting CLRX TM0 ; Clear Timer0 content

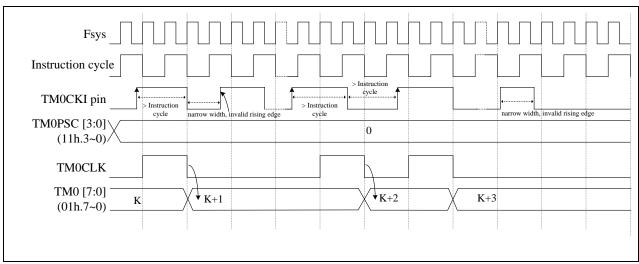
; Enable Timer0 and interrupt function

MOVLW 111**0**1111b

MOVWX INTIF ; Clear Timer0 request interrupt flag
BSX TM0IE ; Enable Timer0 interrupt function

BCX TM0STP ; Enable Timer0 counting

Timer0 interrupt frequency = Fsys / 2 / TM0PSC / (256-TM0RLD),


Fsys = 8 MHz, TM0PSC = div 32, TM0RLD = 128

Timer0 interrupt frequency = 8 MHz / 2 / 32 / (256-128) = 0.976 KHz

The following timing diagram describes the Timer0 works in Counter mode.

If TM0CKS=1 then Timer0 counter source clock is from TM0I pin. TM0I signal is synchronized by instruction cycle (Fsys/2) that means the high/low time durations of TM0I must be longer than one instruction cycle time (Fsys/2) to guarantee each TM0I's change will be detected correctly by the synchronizer.

Timer0 works in Counter mode for TM0I (TM0EDG=0), TM0CKS=1

♦ Example: Setup TM0 work in Counter mode and clock source from TM0I pin (PA2)

; Setup Timer0 clock source and divider

MOVLW $00\underline{110000}$ B ; TM0EDG = 1, counting edge is falling edge

MOVWX TM0CTL ; TM0CKS = 1, Timer0 clock is TM0I

; TM0PSC = 0000b, divided by 1

; Setup Timer0

BSX TM0STP ; Timer0 stops counting CLRX TM0 ; Clear Timer0 content

; Enable Timer0 and read Timer0 counter

BCX TM0STP ; Enable Timer0 counting

• • •

BSX TM0STP ; Timer0 stops counting MOVXW TM0 ; Read Timer0 content

DS-TM5670C2 E 49 Rev 0.91, 2025/01/17

01h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TM0		TM0								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

01h.7~0 **TM0:** Timer0 content

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Bh.4 **TM0IE:** Timer0 interrupt enable

0: disable 1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.4 **TM0IF:** Timer0 interrupt event pending flag

This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

10h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TM0RLD		TM0RLD								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

10h.7~0 **TM0RLD:** Timer0 reload data

11h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0CTL	_	TM0STP	TM0EDG	TM0CKS	TM0PSC			
R/W	_	R/W	R/W	R/W	R/W			
Reset	_	0	0	0	0	0	0	0

11h.6 **TM0STP:** Stop Timer0

0: Timer0 runs

1: Timer0 stops

11h.5 **TM0EDG:** Timer0 prescaler counting edge for TM0I pin

0: rising edge

1: falling edge

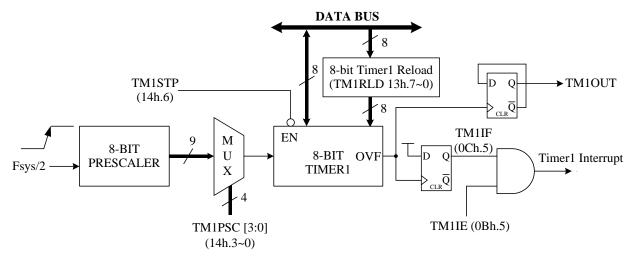
11h.4 **TM0CKS:** Timer0 prescaler clock source

0: Fsys/2

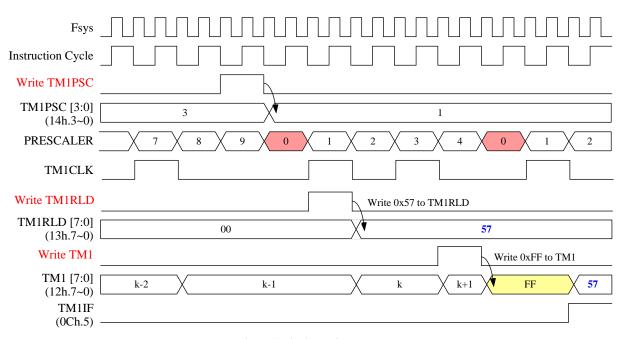
1: TM0I pin (PA2 pin)

11h.3~0 **TM0PSC:** Timer0 prescaler. Timer0 prescaler clock source divided by

 0000: 1
 0001: 2
 0010: 4
 0011: 8

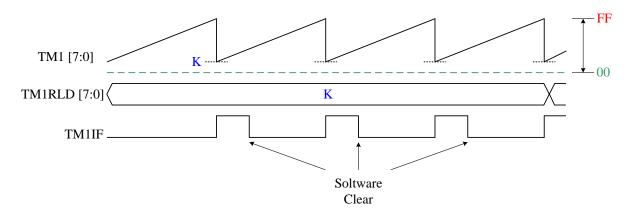

 0100: 16
 0101: 32
 0110: 64
 0111: 128

1xxx: 256



6.4 Timer1

The TM1 (12h.7~0) is an 8-bit wide register. It can be read or written as any other register. Besides, Timer1 increases itself periodically and automatically reloads a new "offset value" (TM1RLD) while it rolls over based on the pre-scaled instruction clock (Fsys/2). The Timer1 increase rate is determined by TM1PSC register. It generates Timer1 interrupt if the TM1IE bit is set. Timer1 can be stopped counting if the TM1STP bit is set. TM1OUT is an output signal that toggles when Timer1 overflow.


Timer1 Block Diagram

Timer1 Timing Diagram

DS-TM5670C2_E 51 Rev 0.91, 2025/01/17

Timer1 Reload Diagram

♦ Example: CPU is running in SLOW mode, Fsys = Slow-clock / CPUPSC = 90 KHz / 2 = 45 KHz

; Setup Timer1 clock source and divider

MOVLW 0000<u>**0011**</u>b

MOVWX TM1CTL ; TM1PSC = 0011b, divided by 8

; Setup Timer1 reload data

MOVLW FFh

MOVWX TM1RLD ; Set Timer1 reload data = 255

; Setup Timer1

BSX TM1STP ; Timer1 stops counting CLRX TM1 ; Clear Timer1 content

; Enable Timer1 and interrupt function

MOVLW 11<u>0</u>11111b

MOVWX INTIF ; Clear Timer1 request interrupt flag
BSX TM1IE ; Enable Timer1 interrupt function

BCX TM1STP ; Enable Timer1 counting

Timer1 interrupt frequency = Fsys / 2 / TM1PSC / (256-TM1RLD),

Fsys = 45 KHz, TM1PSC = div 8, TM1RLD = 255

Timer1 interrupt frequency = 45 KHz / 2 / 8 / (256-255) = 2.81 KHz

DS-TM5670C2_E 52 Rev 0.91, 2025/01/17

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Bh.5 **TM1IE:** Timer1 interrupt enable

0: disable 1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.5 **TM1IF:** Timer1 interrupt event pending flag

This bit is set by H/W while Timer1 overflows, write 0 to this bit will clear this flag

12h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TM1		TM1								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

12h.7~0 **TM1:** Timer1 content

13h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TM1RLD		TM1RLD								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

13h.7~0 TM1RLD: Timer1 reload data

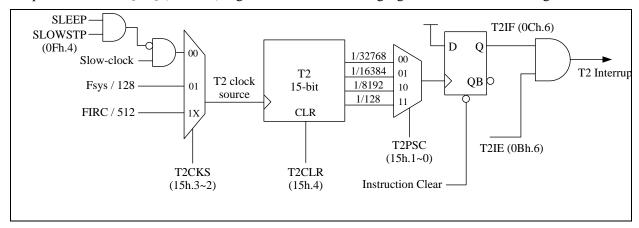
14h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM1CTL	_	TM1STP	_	_	TM1PSC			
R/W	_	R/W	_	_	R/W			
Reset	_	0	_	_	0	0	0	0

14h.6 **TM1STP:** Stop Timer1

0: Timer1 runs1: Timer1 stops

14h.3~0 TM1PSC: Timer1 prescaler. Timer1 prescaler clock source divided by

0000: 1 0001: 2 0010: 4 0011: 8 0100: 16 0101: 32 0110: 64 0111: 128


1xxx: 256

DS-TM5670C2_E 53 Rev 0.91, 2025/01/17

6.5 T2:15-bit Timer

The T2 is a 15-bit counter and the clock sources are from Slow-clock, Fsys/128, or FIRC/512. It is used to generate time base interrupt and T2 counter block clock. The T2 content cannot be read by instructions. It generates interrupt flag T2IF (0Ch.6) with the clock divided by 32768/16384/8192/128 depends on T2PSC[1:0] (15h.1~0) register bits. The following figure shows the block diagram of T2.

T2 Block Diagram

Example: CPU is running at FAST mode, Fsys = 9.216 MHz

; Setup T2 clock source and divider

MOVLW 00000101b ; T2CKS(15h.3~2) = 1, T2 clock source is Fsys/128

MOVWX T2CTL ; T2PSC(15h.1~0) = 1, divided by 16384

BSX T2CLR = 1, clear T2 counter

; Enable T2 interrupt function

MOVLW 1<u>0</u>1111111b

MOVWX INTIF ; Clear T2 request interrupt flag
BSX T2IE ; Enable T2 interrupt function
BCX T2CLR = 0, Enable T2 counting

T2 clock source is Fsys / 128 = 9.216 MHz / 128 = 72000 Hz, T2PSC = 16384

T2 frequency = 72000 Hz / 16384 = 4.395 Hz

DS-TM5670C2_E 54 Rev 0.91, 2025/01/17

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Bh.6 **T2IE:** T2 interrupt enable

0: disable 1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.6 **T2IF:** T2 interrupt event pending flag

This bit is set by H/W while T2 overflows, write 0 to this bit will clear this flag

0Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCTL	SCKTYP	FCKTYPE	-	SLOWSTP	FASTSTP	CPUCKS	CPU	PSC
R/W	R/W	R/W	_	R/W	R/W	R/W	R/W	R/W
Reset	0	0	_	0	1	0	1	1

0Fh.4 **SLOWSTP:** Stop Slow-clock after execute SLEEP instruction

0: Slow-clock keeps running after execute SLEEP instruction

1: Slow-clock stops running after execute SLEEP instruction

15h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T2CTL	_	_	_	T2CLR	T2CKS		T2PSC	
R/W	-	-	-	R/W	R/W		R/	W
Reset	_	_	_	0	0	0	0	0

15h.4 **T2CLR:** Clear and stop T2

0: T2 runs

1: T2 clear and stops

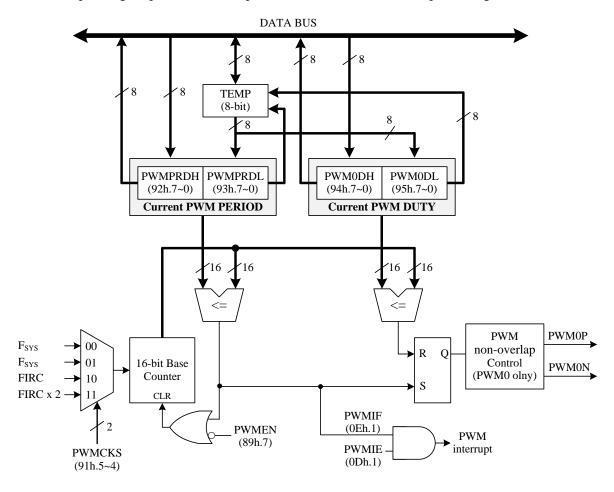
15h.3~2 **T2CKS:** T2 clock source selection

00: Slow-clock 01: Fsys/128 1x: FIRC/512

15h.1~0 **T2PSC:** T2 prescaler. T2 clock source divided by

00: 32768 01: 16384 10: 8192 11: 128

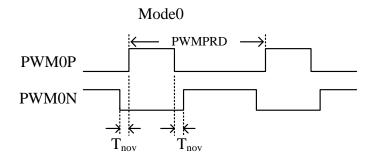
DS-TM5670C2_E 55 Rev 0.91, 2025/01/17

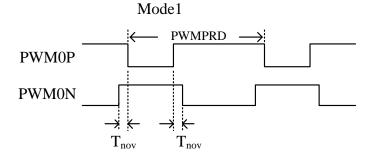

6.6 PWM

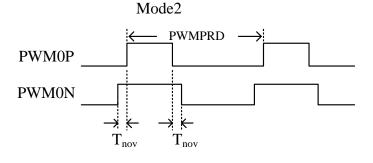
There are 3 PWMs in this chip. PWM0~PWM2 have independent 16-bit duty control register, and share a set of 16-bit period register. The PWM can generate varies frequency waveform with 65536 duty resolution on the basis of the PWM clock. The PWM clock can select Fsys, FIRC (18.432 MHz), or FIRC*2 (36.864MHz) as its clock source, the FIRC and FIRC*2 frequencies used here will not be affected by FRCPSC (SYSCFG.5). The following takes PWM0 as an example for description.

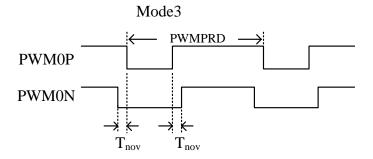
The 16-bit PWMPRD, PWM0D registers both have a low byte and high byte structure. The high bytes can be directly accessed, but the low bytes can only be accessed via an internal 8-bit buffer, reading or writing to these register pairs must be carried out in a specific way. The important point to notes is that data transfer to and from the 8-bit buffer and its related low byte only takes place when write or read operation to its corresponding high bytes is executed. *Briefly speaking*, write low byte first and then high byte; read high byte first and then low byte.

If PWMEN is cleared, the PWM0~2 will be cleared and stopped, otherwise the PWM0~2 remain running. The PWM0 structure is shown as follow. The PWM0 duty cycle can be changed by writing to PWM0DH and PWM0DL. The PWM0 output signal resets to a low level whenever the 16-bit base counter matches the 16-bit PWM0 duty register {PWM0DH, PWM0DL}. The PWM0 period can be set by writing the period value to the PWMPRDH and PWMPRDL registers. After writing the PWM0DH or PWMPRDH register, H/W will update PWM period and duty immediately. PWM0~2 share an interrupt flag, and an interrupt flag is generated at the end of the period.


Only PWM0 has dead-zone control, and is divided into PWM0P and PWM0N outputs, and the remaining PWM1~PWM2 have no non-overlap control. User can use pin mode setting to output PWM to the corresponding IO pin, refer to Chapter 5 for more information on pin settings.






PWM0 Block Diagram

Only PWM0 can be output via PWM0P and PWM0N with four different modes. The edges of the PWM pulse can be separated with 16 different time non-overlap clocks intervals (Tnov). The width of Tnov can be selected by PWM0DZ (89h.3~0) within 0~15 PWM clock. The default output form is Mode0. The waveforms of the four output modes are shown below.

PWM0 Waveform Modes

DS-TM5670C2_E 57 Rev 0.91, 2025/01/17

♦ Example:

; Setup Pin mode

MOVLW <u>01110111</u>b

MOVWX PAMOD54 ; PA4 引脚作为 PWM0N

; PA5 引脚作为 PWM0P

; Setup PWM0 clock source select

MOVLW xx<u>10</u>xxxxb

MOVWX OPTION2 ; FIRC 18.432 MHz as PWM clock source

; Setup PWM0 period and duty setting

MOVLW FFh

MOVWX PWMPRDL ; write sequence: PWMPRDL then PWMPRDH

MOVLW 7Fh

MOVWX PWMPRDH ; Set PWM period = 7FFFh

MOVLW 00h

MOVWX PWM0DL ; write sequence: PWM0DL then PWM0DH

MOVLW 40h

MOVWX PWM0DH ; Set PWM0 duty = 4000h

; Setup PWM0 enable and dead zone control

MOVLW 10000000b ; 89h.7 = 1, PWM0 enable

MOVWX PWMCTL ; $89h.5\sim4=0$, PWM0 Mode0 output

; $89h.3\sim0 = 0$, PWM0 dead zone output disable

Example:

PWM0 clock source = FIRC 18.432 MHz, PWM period = 7FFFh, PWM duty = 4000h

PWM0 output frequency = 18.432 MHz / (period+1) = 18.432 MHz / 32768 = 563 Hz.

PWM0 output duty = duty / (period+1) = 50 %.

0Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE1	EA	UARTIE	-	_	_	_	PWMIE	LVDIE
R/W	R/W	R/W	_	-	-	_	R/W	R/W
Reset	1	0	_	_	_	-	0	0

0Dh.1 **PWMIE:** PWM interrupt enable

0: disable 1: enable

0Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF1	_	UARTIF	_	_	_	_	PWMIF	LVDIF
R/W	_	R	_	-	-	_	R/W	R/W
Reset	_	0	_	_	_	_	0	0

0Eh.1 **PWMIF:** PWM interrupt event pending flag

This bit is set by H/W after PWM period counter roll over, write 0 to this bit will clear this flag

89h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWMCTL	PWMEN	_	PWM00M			PWM0DZ				
R/W	R/W	_	R/W			R/	W			
Reset	0	_	0	0	0	0	0	0		

89h.7 **PWMEN:** PWM0~2 enable

0: disable 1: enable

89h.5~4 **PWM0OM:** PWM0 output mode selection

00: Mode0 01: Mode1 10: Mode2 11: Mode3

89h.3~0 **PWM0DZ:** PWM0 non-overlap control

0000: no non-overlap

0001: non-overlap width are 1 PWM clock cycle 0010: non-overlap width are 2 PWM clock cycles

• • •

1111: non-overlap width are 15 PWM clock cycles

91h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION2	_	_	PWMCKS		_	INT2SEL	INT1SEL	INT0SEL
R/W	_	_	R/W		_	R/W	R/W	R/W
Reset	-	-	0	0	_	0	0	0

91h.5~4 **PWMCKS:** PWM clock source selection

00: Fsys 01: Fsys

10: FIRC (18.432 MHz) 11: FIRC x 2 (36.864 MHz)

92h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWMPRDH		PWMPRDH							
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	

92h.7~0 **PWMPRDH:** PWM0~2 period high byte

write sequence: PWMPRDL then PWMPRDH read sequence: PWMPRDH then PWMPRDL

93h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWMPRDL		PWMPRDL							
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	

93h.7~0 **PWMPRDL:** PWM0~2 period low byte

write sequence: PWMPRDL then PWMPRDH read sequence: PWMPRDH then PWMPRDL

94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM0DH		PWM0DH							
R/W		R/W							
Reset	1	0	0	0	0	0	0	0	

94h.7~0 **PWM0DH:** PWM0 duty high byte

write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM0DL		PWM0DL							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

95h.7~0 **PWM0DL:** PWM0 duty low byte

write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

96h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM1DH		PWM1DH							
R/W		R/W							
Reset	1	0	0	0	0	0	0	0	

96h.7~0 **PWM1DH:** PWM1 duty high byte

write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM1DL		PWM1DL							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

97h.7~0 **PWM1DL:** PWM1 duty low byte

write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

98h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM2DH		PWM2DH							
R/W		R/W							
Reset	1	0	0	0	0	0	0	0	

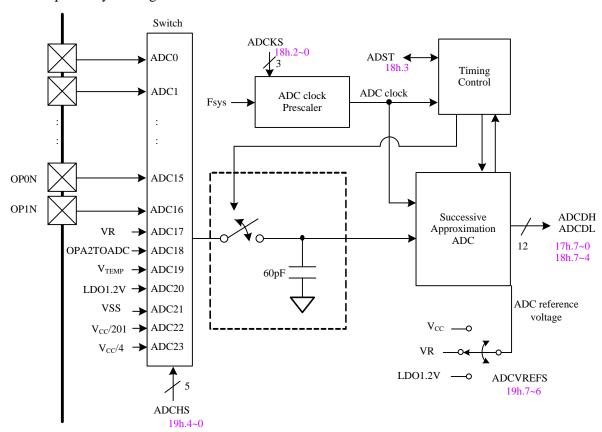
98h.7~0 **PWM2DH:** PWM2 duty high byte

write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

99h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM2DL		PWM2DL							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

99h.7~0 **PWM2DL:** PWM2 duty low byte

write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL


6.7 Analog-to-Digital Converter (ADC)

This 12-bit ADC (analog-to-digital converter) consists of an analog input multiplexer with 17 external channels, control registers, clock generator, 12-bit successive approximation register, and output data register.

The user needs to set ADCHS to select the input channel of the ADC, and set ADCKS to select a suitable ADC clock frequency. When the ADC uses a low-voltage reference voltage source, for example, when ADCVREF is set to LDO1.2V, the ADC clock frequency must be less than 0.5MHz. Please refer to the "Electrical Characteristics" section for further information on ADC clock frequency.

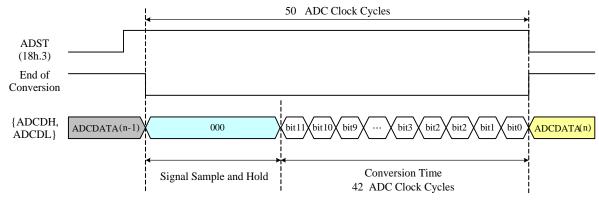
The ADC reference voltage source can be configured as V_{CC} , VR or LDO1.2V through ADVREFS. When the reference voltage source switches to VR or LDO1.2V, an internal preparation stabilization time of 200us is required.

The user starts ADC conversion by setting the ADST control bit. ADST remains 1 during conversion. After the conversion is completed, H/W will automatically clear the ADST bit. When the ADC conversion is completed, ADST will return to 0, so the user can know whether the ADC conversion has been completed by reading ADST.

When using GPIOs such as ADC0~ADC14 as the input pins of the ADC, the corresponding pin mode should be set to 0011b. When using ADC15 and ADC16, they are connected to OP0N and OP1N respectively, and there is no need to set the pin mode.

The input pin of the ADC can also select an internal reference voltage. This device has a variety of internal reference voltages to choose from, including VR, OPA2TOADC, V_{TEMP} , LDO1.2V...etc. The V_{TEMP} voltage is used for temperature sensing, and the control items are the registers SVBIAS and SBFIN. OPA2TOADC is the output of OPA2. The VR voltage source is determined by the LDO3VPD register. When LDO3VPD is 0, the source of VR is the LDO3V voltage. When LDO3VPD is 1, the

DS-TM5670C2_E 62 Rev 0.91, 2025/01/17


source of VR is the VRXT PAD external voltage. For more information about VR, LDO3V, LDO1.2V and OPA2 please refer to the "Battery Charging Module" chapter.

The following are the relevant usage restrictions:

When the ADC uses VR and LDO3VPD is 0, the VREXT PAD must be connected to a capacitor to stabilize the voltage.

When the ADC uses VR and LDO3VPD is 1, the ADC cannot use LDO1.2V at this time.

When the ADC uses LDO1.2V, LDO3VPD must be 0 at this time.

Example:

[Fsys = FIRC/2 = 9.216 MHz]

ADC clock frequency = 1.152 MHz, ADC channel = ADC2 (PA2).

MOVLW xxxx<u>0011</u>b ; ADC2 (PA2) as ADC input

MOVWX PAMOD32

MOVLW 00000<u>100</u>b ; ADCKS = Fsys/16, ADC clock = 1.152 MHz

MOVWX ADCTL

MOVLW <u>01</u>x<u>00010</u>b ; ADC reference voltage select VR MOVWX ADCTL2 ; ADC input channel select ADC2

BSX ADST ; 18h.3 (ADST), ADC start conversion.

WAIT_ADC:

BTXSC ADST ; Wait ADC conversion finish.

LGOTO WAIT_ADC

MOVXW ADCDH ; Read ADC output data bit 11~4 MOVXW ADCTL ; Read ADC output data bit 3~0

. . .

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Bh.7 **ADCIE:** ADC interrupt enable

0: disable 1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

OCh.7 **ADCIF:** ADC interrupt event pending flag

This bit is set by H/W after ADC end of conversion, write 0 to this bit will clear this flag

17h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
ADCDH		ADCDH									
R/W		R									
Reset	_	_	_	_	_	_	_	_			

17h.7~0 **ADCDH:** ADC output data bit 11~4

18h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCTL		ADO	CDL	-	ADST	ADCKS		
R/W		I	₹		R/W		R/W	
Reset					0	0 0 0		

18h.7~4 **ADCDL:** ADC output data bit 3~0

18h.3 **ADST:** ADC start bit.

0: H/W clear after end of conversion

1: ADC start conversion

18h.2~0 **ADCKS:** ADC clock frequency selection:

000: Fsys/256 100: Fsys/16 001: Fsys/128 101: Fsys/8 010: Fsys/64 110: Fsys/4 011: Fsys/32 111: Fsys/2

19h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCTL2	ADVREFS		_			ADCHS		
R/W	R/	W	_			R/W		
Reset	0	1	_	1	1	1	1	1

19h.7~6 **ADVREFS:** ADC reference voltage selection.

00: ADC reference voltage is $\ensuremath{V_{\text{CC}}}$

01: ADC reference voltage is VR

10: ADC reference voltage is LDO1.2V

11: Reserved

19h.3~0 **ADCHS:** ADC channel selection

00000: ADC0 (PA0) 01000: ADC8 (PB0) 10000:ADC16 (OP1N) 00001: ADC1 (PA1) 01001: ADC9 (PB1) 10001:VR 00010: ADC2 (PA2) 01010: ADC10 (PB2) 10010:OPA2TOADC 10011:V_{TEMP} 00011: ADC3 (PA3) 01011: ADC11 (PB3) 10100:LDO1.2V 00100: ADC4 (PA4) 01100: ADC12 (PB4) 00101: ADC5 (PA5) 01101: ADC13 (PB5) 10101:VSS $10110:V_{CC}/201$ 00110: ADC6 (PA6) 01110: ADC14 (PB6) 00111: ADC7 (PA7) 01111: ADC15 (OP0N) $10111:V_{CC}/4$

115h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWRCTL	SVBIAS	SBFIN		SVBGT	VBGTOE	LDO3VPD		
R/W	R/W	R/W	R/W	R/W	R/W	R/W		

-									
	Reset	0	1	1	0	0	0	-	-

SVBIAS: Reference voltage of VT0 selection 115h.7

 $0:V_{CC}$ 1:VR

SBFIN: ADC V_{TEMP} selection $00:V_{TEMP} = VT0$ (diode type) $01:V_{TEMP} = VT1$ (BJT type) 115h.6~5

 $10:V_{TEMP} = VBG1.2V$ $11:V_{TEMP} \text{ is disabled}$

6.8 UART

The device has a full-duplex or half-duplex (single-wire mode) asynchronous serial interface. The user can choose 8 or 9-bit data transmission. The UART baud rate is set by the user and can support up to 115200. When the UART data transmission is completed or the reception is completed, the UART interrupt can be triggered

When the UART1W bit is set to 1, the UART will operate in single-wire mode. In single-wire mode, only a single RXTX pin is used to transmit and receive data. When the RXEN bit is set to 0, the RXTX pin is used as a transmit pin, and when the RXEN bit is set to 1, the RXTX pin is used as a receive pin.

0Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF1	_	UARTIF	_	_	_	_	PWMIF	LVDIF
R/W	_	R	_	_	_	_	R/W	R/W
Reset	_	0	_	_	_	_	0	0

0Eh.6 **UARTIF:** UART interrupt event pending flag

This bit is set by H/W when UART transmission/reception is completed, write 0 to TI/RI flag will clear this flag

195h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCON	UART9	-	RIMASK	RXEN	TX8	RX8	TI	RI
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

195h.7 **UART9:** Number of data transfer bits selection

0: 8-bit data transfer

1: 9-bit data transfer

195h.5 **RIMASK:** Receive flag mask control

If this bit is set, receive flag function is disable when RX8 is 0.

195h.4 **RXEN:** Receive function enable.

0:

When UART1W is set low, the RXTX pin is disabled.

When UART1W is set high, the RXTX pin is used as the TX pin.

1:

When UART1W is set low, the RXTX pin is used as the RX pin.

When UART1W is set high, the RXTX pin is used as the RX pin.

195h.3 **TX8:** (This bit is only valid when UART9=1)

This bit is the 9th value to be transmitted by TX pin.

195h.2 **RX8:** (This bit is only valid when UART9=1)

This bit is the 9th value received by RX pin.

195h.1 **TI:** Transmit flag.

Set by H/W when transmission is completed. SW needs to write 0 to clear it, writing 1 does nothing. When TI=1 or RI=1, UARTIF will be set.

195h.0 **RI:** Receive flag.

Set by H/W when reception is completed. SW needs to write 0 to clear it, writing 1 does nothing. When TI=1 or RI=1, UARTIF will be set.

196h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
SBUF		SBUF									
R/W		R/W									
Reset	_	_	_	_	_	_	_	_			

196h.7~0 **SBUF:** Serial UART transmit/receive data.

197h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
UARTCTL		UARTBRP									
R/W		R/W									
Reset		_	_	_	-	-	_	_			

197h.7~0 **UARTBRP:** UART Baud Rate Prescaler. UART Baud Rate = Fsys/16/UARTBRP

198h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
UARTCTL2	UART1W	_	TXS2	TXS1	TXS0	RXTXS2	RXTXS1	RXTXS0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

198h.7 **UART1W:** Single-wire mode enable

0: full-duplex communication

1: half-duplex communication (single-wire mode)

198h.5 **TXS2:** TX pin selection 2

0:disable 1:PB3 is used as TX pin

198h.4 **TXS1:** TX pin selection 1

0:disable 1:PB1 is used as TX pin

198h.3 **TXS0:** TX pin selection 0

0:disable 1:PA1 is used as TX pin

198h.2 **RXTXS2:** RXTX pin selection 2.

0: disable

1: If UART1W is set low, PB0 is used as RX pin.

If UART1W is set high and RXEN is set low, PB0 is used as TX pin. $\label{eq:pb0}$

If UART1W is set high and RXEN is set high, PB0 is used as RX pin.

198h.1 **RXTXS1:** RXTX pin selection 1.

0: disable

1: If UART1W is set low, PA5 is used as RX pin.

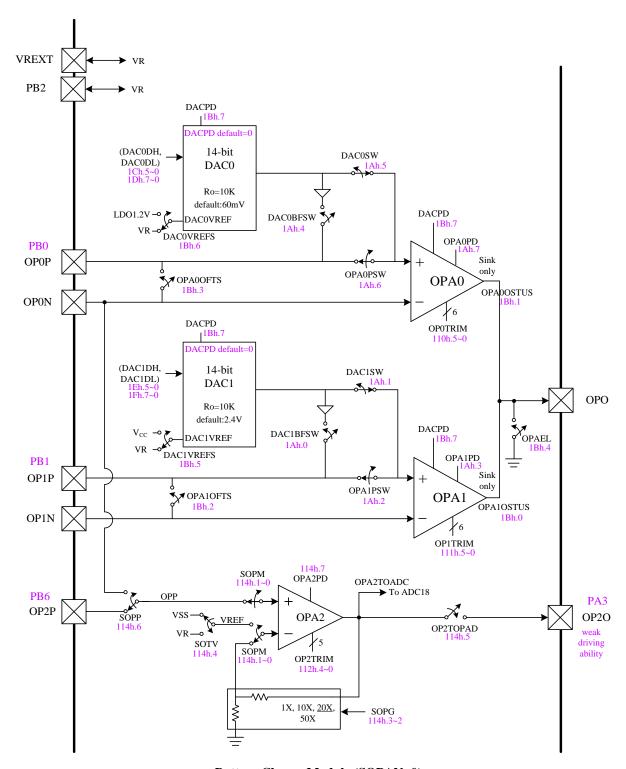
If UART1W is set high and RXEN is set low, PA5 is used as TX pin.

If UART1W is set high and RXEN is set high, PA5 is used as RX pin.

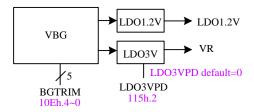
198h.0 **RXTXS0:** RXTX pin selection 0.

0: disable

1: If UART1W is set low, PA0 is used as RX pin.


If UART1W is set high and RXEN is set low, PA0 is used as TX pin.

If UART1W is set high and RXEN is set high, PA0 is used as RX pin.


6.9 Battery Charge Module (BCM) - DAC/Comparator/Amplifier

This chip has a battery charging module, which consists of two DACs, two comparators, and an amplifier. Among them, DAC0~1 provides the comparison reference value to the comparator OPA0~1. OPA0 is used for battery charging constant current, OPA1 is used for battery charging constant voltage, and OPA2 is used to amplify the battery charging current. The details are as shown below.

Battery Charge Module (SOPAN=0)

Internal Reference Voltage Module

Only one of PB2 and VREXT will be selected during packaging to provide an external interface for the chip's VR voltage.

When the LDO3VPD register is 0, the internal reference voltage LDO3V is enabled, and the VR voltage value is provided by the internal LDO3V. When the LDO3VPD register is 1, the internal reference voltage LDO3V is turned off, and the VR voltage value is provided by the outside of the chip (that is, PB2 or VREXT). The LDO3V output, internal VR signal, PB2 and VREXT PAD are connected to each other as shown in the block diagram. The VR signal is also provided to the ADC module for use. When the BCM module and the ADC module need to use VR at the same time, PB2 or VREXT must choose an external capacitor to stabilize the voltage.

After power-on, the default LDO3VPD register is 0, and LDO3V outputs a 3V reference voltage. At this time, the internal VR signal is equal to the LDO3V voltage value. The user will obtain the voltage value from PB2 or VREXT. When LDO3VPD is 1, the LDO3V output is floating, and the VR voltage value is input from PB2 or VREXT.

The two comparators OPA1 and OPA0 have the same structure, and the only difference is that the initial values of the DACs are different. The following description takes OPA0 as an example. The non-inverting input terminal is the fixed input voltage to be measured by OP0N PAD. The inverting input terminal is provided by DAC0 to provide the voltage comparison reference value to OPA0. When DAC0BFSW=1, DAC0 can be obtained from OP0P PAD. The output voltage and driving capacity are about 2mA. Due to load and process drift, the accuracy of the absolute value of the DAC0 output voltage obtained by OP0P PAD cannot be guaranteed. Alternatively, the user can also input the precise voltage value from OP0P PAD to provide the comparison reference value to OPA0.

The DAC output formula taking into account the internal voltage drop is: DACO = 20mV + DACVREF * (DACD / 16384), where DACD={DACDH,DACDL}.

The output characteristics of OPA0 and OPA1 are CMOS open drain output. Both are output to the OPO PAD. When the output of OP00 or OP10 is 0, the OPO will output 0, which means that battery overvoltage or battery overcurrent occurs at this time. event. In addition, the output values of OP00 and OP10 are stored in registers OPA0OSTUS and OPA0OSTUS respectively for users to read.

After power-on, the default output DAC0 voltage of PB0 is about 60mV, and the output DAC1 voltage of PB1 is about 2.4V.

For the compatibility requirements of different package wiring, when the SOPAN (SYSCFG.6) bit is set to 1, the OP0N and OP1N functions are exchanged.

The OPA2 input can be OP2P PAD or OP0N PAD. By default, OPA2 is used as a 20x amplifier. The gain of the amplifier can be adjusted by the register. The OPA2 output can be sent internally to the ADC for calculation, and can also be output to PAD. OP2O PAD has poor driving ability. When SOPM is set to 3, OPA2 is used as a voltage detector. The comparison voltage of this voltage detector can be VR or VSS.

Finally, there is a description of the IC's own power consumption and related register control. When OPA0PD is 1, turn off OPA0. When OPA1PD is 1, turn off OPA1. When DACPD is 1, the driving source including DAC0~1 and OPA0~1 will be turned off. When LDOC3VPD is 1, the LDOC3V

function is turned off. Including ADC, the LDO1P2V function will be automatically turned off when no module uses LDO1P2V. Including ADC, LVD and LVR, the VBG function will be automatically turned off when no module uses VBG.

1Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BCMCTL	OPA0PD	OPA0PSW	DAC0SW	DAC0BFSW	OPA1PD	OPA1PSW	DAC1SW	DAC1BFSW
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	1	1	0	0	1	1	0

1Ah.7 **OPA0PD:** OPA0 Power Down

1Ah.6 **OPAOPSW:** Turn on the switch for the path from OPAOP to OPAO non-inverting input(V+)

0:switch off 1:switch on

1Ah.5 **DACOSW:** Turn on the switch for the path from DAC0 to OPA0 non-inverting input(V+)

0:switch off 1:switch on

1Ah.4 **DAC0BFSW:** Turn on the switch for DAC0 output Buffer

0:switch off 1:switch on

1Ah.3 **OPA1PD:** OPA1 Power Down

1Ah.2 **OPA1PSW:** Turn on the switch for the path from OPA1P to OPA1 non-inverting input(V+)

0:switch off 1:switch on

1Ah.1 **DAC1SW:** Turn on the switch for the path from DAC1 to OPA1 non-inverting input(V+)

0:switch off 1:switch on

1Ah.0 **DAC1BFSW:** Turn on the switch for DAC1 output Buffer

0:switch off 1:switch on

1Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BCMCTL2	DACPD	DAC0VREFS	DAC1VREFS	OPAEL	OPA0OFTS	OPA10FTS	OPA0OSTUS	OPA1OSTUS
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R
Reset	0	1	1	0	0	0	-	-

1Bh.7 **DACPD:**DAC0,DAC1,OPA0,OPA1 bias Power Down

DACOVREFS: DACO reference voltage selection

1Bh.6 0:LDO1.2V 1:VR

1Bh.5 **DAC1VREFS:** DAC1 reference voltage selection

 $0:V_{CC}$ 1:VR

1Bh.4 **OPAEL:** Force OPO output low.

1Ah.3 **OPA0OFTS:** OPA0 non-inverting input(V+) is connected to inverting input(V-) for OPA0 trim

1Bh.2 **OPA10FTS:** OPA1 non-inverting input(V+) is connected to inverting input(V-) for OPA1 trim

1Bh.1 **OPA0OSTUS:** OPA0 comparator output status

1Bh.0 **OPA1OSTUS:** OPA1 comparator output status

1Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
DAC0DH				DAC0DH					
R/W			R/W	R/W	R/W	R/W	R/W	R/W	
Reset	_	_	0	0	0	0	0	0	

1Ch.5~0 **DAC0DH:** DAC0 Data bit13~bit8

1Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
DAC0DL		DAC0DL							
R/W		R/W							
Reset	1	1	0	1	1	0	1	0	

1Dh.7~0 **DAC0DL:** DAC0 Data bit7~bit0 Write DAC0DL first, then DAC0DH

1Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DAC1DH	_	_			DAC	1DH		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	-	-	1	1	0	0	1	1

1Eh.5~0 **DAC1DH:** DAC1 Data bit13~bit8

1Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DAC1DL		-	-	DAC	1DL	-	-	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	0	0	1	1	0	1	0

1Fh.7~0 **DAC1DL:** DAC1 Data bit7~bit0 Write DAC1DL first, then DAC1DH

110h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OP0TRIM					OP07	RIM		
R/W			R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	_	_	_	_	_	_

110h.5~0 **OP0TRIM:** 6-bit OPA0 trim value

111h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OP1TRIM					OP17	TRIM		
R/W			R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	_	_	_	_	_	_

111h.5~0 **OP1TRIM:** 6-bit OPA1 trim value

112h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OP2TRIM			-		-	OP2TRIM	-	-
R/W				R/W	R/W	R/W	R/W	R/W
Reset	_	_	_	_	_	_	_	_

112h.4~0 **OP2TRIM:** 5-bit OPA2 trim value

DS-TM5670C2_E 71 Rev 0.91, 2025/01/17

114h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BCMCTL3	OPA2PD	SOPP	OP2TOPAD	SOTV	SO	PG	SO	PM
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	1	0	0	0

114h.7 **OPA2PD:** OPA2 Power Down

SOPP: OPA2 OPP selection. 114h.6

1:OPON (if SOPAN=0) or OP1N (if SOPAN=1) 0:OP2P (PB6)

OP2TOPAD: OPA2 to iopad output enable.

114h.5 (weak driving capability)

0:switch off 1:switch on

SOTV: OPA2 VREF selection when OPA2 as comparator

114h.4 0: VSS 1: VR

SOPG: OPA2 negative feedback gain selection 114h.3~2

00: 1X 01: 10X 10: 20X 11: 50X

SOPM: OPA2 operating mode selection

00: opa with negative feedback (non-inverting amplifier)

non-inverting input(V+) = OPP

01: comparator for OPA2 trim, OPP is disconnected,

non-inverting input(V+) = VREF+offset, inverting input(V-) = VREF

114h.1~0 10: opa with negative feedback for OPA2 trim, OPP is disconnected,

non-inverting input(V+) = VSS+offset, inverting input(V-) = VSS

output voltage = offset*gain, gain=50

11: comparator as voltage level detector

non-inverting input(V+) = OPP, inverting input(V-) = VREF

	115h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Ī	PWRCTL	SVBIAS	SBI	FIN	SVBGT	VBGTOE	LDO3VPD		
Ī	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
I	Reset	0	1	1	0	0	0	-	-

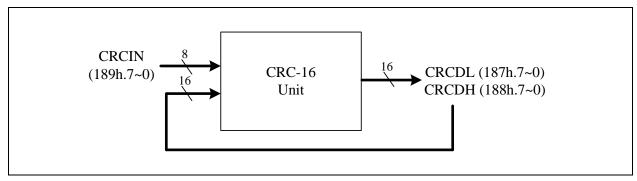
SVBGT: VBGT(PA3) output selection 115h.4

 $0:VBGT=V_{TEMP} \quad 1:VBGT=DACLDO1P2V$ (only for testing)

VBGTOE: VBGT(PA3) output enable. (only for testing)

115h.3 0:disable 1:enable

LDOV3VPD: LDO3V power down.


115h.2 0: LDO3V enable

1: LDO3V power down

6.10 Cyclic Redundancy Check (CRC)

The chip supports an integrated 16-bit Cyclic Redundancy Check function. The Cyclic Redundancy Check (CRC) calculation unit is an error detection technique test algorithm and uses to verify data transmission or storage data correctness. The CRC calculation takes an 8-bit data stream or a block of data as input and generates a 16-bit output remainder. The data stream is calculated by the same generator polynomial.

CRC16 Block Diagram

The CRC generator provides the 16-bit CRC result calculation based on the CRC-16-IBM polynomial. In this CRC generator, there is only one polynomial available for the numeric values calculation. It can't support the 16-bit CRC calculations based on any other polynomials. Each write operation to the CRCIN register creates a combination of the previous CRC value stored in the CRCDH and CRCDL registers. It will take one MCU instruction cycle to calculate.

CRC-16-IBM (Modbus) Polynomial representation: $\mathbf{X^{16} + X^{15} + X^2 + 1}$

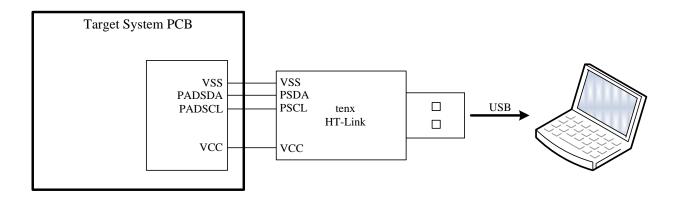
187h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
CRCDL		CRCDL								
R/W		R/W								
Reset	1	1	1	1	1	1	1	1		

187h.7~0 **CRCDL:** 16-bit CRC checksum data bit 7~0

188h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
CRCDH		CRCDH								
R/W		R/W								
Reset	1	1	1	1	1	1	1	1		

188h.7~0 **CRCDH:** 16-bit CRC checksum data bit 15~8

189h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
CRCIN		CRCIN								
W		W								
Reset	_	_	_	_	_	_	_	_		


189h.7~0 CRCIN: CRC data input, write this register to start CRC calculation

DS-TM5670C2_E 73 Rev 0.91, 2025/01/17

6.11 In Circuit Emulation (ICE)

The device supports in-circuit emulation, to use ICE mode, the user needs to set the PROT bit low and connect the ICE dedicated pins (PADSDA, PADSCL) to the tenx proprietary EV module. The benefit of this is that the user can emulate the entire system without changing the onboard target device.

DS-TM5670C2_E 74 Rev 0.91, 2025/01/17

MEMORY MAP

Name	Address	R/W	Rst	Description
INDF (00h/80				Function related to: RAM W/R
				Not a physical register, addressing INDF actually point to the register
INDF	00.7~0	R/W	-	whose address is contained in the FSR register
TM0 (01h/101	(h)			Function related to: Timer0
TM0	01.7~0	R/W	00	Timer0 content
PCL (02h/82h	1			Function related to: Programming Counter (PC)
PCL	02.7~0	R/W	00	Programming Counter data bit 7~0
STATUS (03h				Function related to: STATUS
IRP	03.7	R/W	0	Register Bank Select bit (used for indirect addressing)
RP1	03.6	R/W	0	Register Bank Select bit 1 for direct addressing
RP0	03.5	R/W	0	Register Bank Select bit 0 for direct addressing
T O	00.4			WDT timeout flag, cleared by PWRST, 'SLEEP' or 'CLRWDT'
TO	03.4	R	0	instruction
PD	03.3	R	0	Power down flag, set by 'SLEEP', cleared by 'CLRWDT' instruction
Z	03.2	R/W	0	Zero flag
DC	03.1	R/W	0	Decimal Carry flag
C	03.0	R/W	0	Carry flag
FSR (04h/84h	/104h/184			Function related to: RAM W/R
FSR	04.7~0	R/W	-	File Select Register, indirect address mode pointer
PAD (05h)	1 111			Function related to: Port
PAD	05.7~0	R/W	FF	Port A data
PBD (06h)	3011	· · ·		Function related to: Port
PBD	06.7~0	R/W	FF	Port B data
SFR0A (0Ah/s				Function related to: Programming Counter (PC)
GPR	0A.7~4	R/W	0	General Purpose Register
PCH_LAT	0A.3~0	R/W	0	Program counter high byte write buffer When the CPU executes any instruction that will modify PCL, PC[11:8] value is provided by register PCH_LAT. This function can be disabled by register SFR10C.
INTIE (0Bh/8)	Bh/10Bh/1	8Bh)		Function related to: Interrupt Enable
				ADC interrupt enable
ADCIE	0B.7	R/W	0	0: disable
				1: enable
				T2 interrupt enable
T2IE	0B.6	R/W	0	0: disable
				1: enable
				Timer1 interrupt enable
TM1IE	0B.5	R/W	0	0: disable
				1: enable
				Timer0 interrupt enable
TM0IE	0B.4	R/W	0	0: disable
				1: enable
*****	07.5		6	Wakeup Timer interrupt enable and Wakeup Timer enable
WKTIE	0B.3	R/W	0	0: disable
				1: enable
DATE	OD 2	D /53.7	0	INT2 pin (PA7 or PB5) interrupt enable
INT2IE	0B.2	R/W	0	0: disable
				1: enable

Name	Address	R/W	Rst	Description
				INT1 pin (PA1 or PB1) interrupt enable
INT1IE	0B.1	R/W	0	0: disable
			1	1: enable
				INT0 pin (PA3 or PB2) interrupt enable
INT0IE	0B.0	R/W	0	0: disable
			1	1: enable
INTIF (0Ch)				Function related to: Interrupt Flag
ADCIF	0C.7	R/W	0	ADC interrupt flag, set by H/W after ADC end of conversion.
преп	00.7	10, 11		write 0: clear this flag; write 1: no action
T2IF	0C.6	R/W	0	T2 interrupt event pending flag, set by H/W while T2 overflows
				write 0: clear this flag; write 1: no action
TM1IF	0C.5	R/W	0	Timer1 interrupt event pending flag, set by H/W while Timer1 overflows
				write 0: clear this flag; write 1: no action
TM0IF	0C.4	R/W	0	Timer0 interrupt event pending flag, set by H/W while Timer0 overflows
				write 0: clear this flag; write 1: no action WKT interrupt event pending flag, set by H/W while WKT time out.
WKTIF	0C.3	R/W	0	write 0: clear this flag; write 1: no action
			<u> </u>	INT2 (PA7 or PB5) interrupt event pending flag, set by H/W at INT2
INT2IF	0C.2	R/W	0	pin's falling edge
1111211	00.2	IX/ VV	U	write 0: clear this flag; write 1: no action
				INT1 (PA1 or PB1) interrupt event pending flag, set by H/W at INT1
INT1IF	0C.1	R/W	0	pin's falling/rising edge
11 (1 111	00.1	10 11		write 0: clear this flag; write 1: no action
			1	INTO (PA3 or PB2) interrupt event pending flag, set by H/W at INTO
INT0IF	0C.0	R/W	0	pin's falling/rising edge.
			1	write 0: clear this flag; write 1: no action
INTIE1 (0Dh))			Function related to: Interrupt Enable
				Global interrupt enable
EA	0D.7	R/W	1	0: disable
				1: enable
			1 _	UART interrupt enable
UARTIE	0D.6	R/W	0	0: disable
				1: enable
DWATE	0D 1	D/W		PWM interrupt enable
PWMIE	0D.1	R/W	0	0: disable 1: enable
				LVD interrupt enable
LVDIE	0D.0	R/W	0	0: disable
LVDIL	0.0	IX/ VV		1: enable
INTIF1 (0Eh)				Function related to: Interrupt Flag
22(2222 (0222)				UART interrupt event pending flag, set by H/W when UART
UARTIF	0E.6	R	0	transmission/reception is completed.
			1	write 0 to TI/RI flag will clear this flag.
				PWM interrupt event pending flag, set by H/W after PWM period counter
PWMIF	0E.1	R/W	0	roll over.
				write 0: clear this flag; write 1: no action
LVDIF	0E.0	R/W	0	LVD interrupt event pending flag, set by H/W while $V_{\text{CC}} < V_{\text{LVD}}$
		17/11		write 0: clear this flag; write 1: no action
CLKCTL (0F	h)			Function related to: Clock
ar Onrazzo	05.4	D ///		Stop Slow-clock after execute SLEEP instruction
SLOWSTP	0F.4	R/W	0	0: Slow-clock keeps running after execute SLEEP instruction
	 			1: Slow-clock stop running after execute SLEEP instruction
EACTOTE	OE 2	р ду	1	Stop Fast-clock O: Fast clock is rupping
FASTSTP	0F.3	R/W	1	0: Fast-clock is running 1: Fast-clock stops running
				1. Past-clock stops fullling

Name	Address	R/W	Rst	Description
				System clock(Fsys) source selection
CPUCKS	0F.2	R/W	0	0: Slow-clock
			<u> </u>	1: Fast-clock
CPUPSC	0F.1~0	R/W	3	System clock(Fsys) source prescaler. System clock source
		10 11		00: div 8 01: div 4 10: div 2 11: div 1
TM0RLD (10				Function related to: Timer0
TM0RLD	10.7~0	R/W	00	Timer0 reload data
TM0CTL (11)	<u>n)</u>			Function related to: Timer0
TMOCTD	11.6	D/W		Stop Timer0
TM0STP	11.6	R/W	0	0: Timer0 runs 1: Timer0 stops
			<u> </u>	TM0I (PA2) edge
TM0EDG	11.5	R/W	0	0: rising edge
TWOEDG	11.5	IX/ VV	U	1: falling edge
				Timer0 prescaler clock source
TM0CKS	11.4	R/W	0	0: Fsys/2
				1: TM0I (PA2)
				Timer0 prescaler. Timer0 prescaler clock source divided by
TM0PSC	11.3~0	R/W	0	0000: 1 0011: 8 0110: 64
TWOPSC	11.5~0	K/W	U	0001: 2 0100: 16 0111: 128
			1	0010: 4 0101: 32 1xxx: 256
TM1 (12h)				Function related to: Timer1
TM1	12.7~0	R/W	00	Timer1 content
TM1RLD (13				Function related to: Timer1
TM1RLD	13.7~0	R/W	00	Timer1 reload data
TM1CTL (14)	h)			Function related to: Timer1
			1 _	Stop Timer1
TM1STP	14.6	R/W	0	0: Timer1 runs
				1: Timer1 stops
			1	Timer1 prescaler. Timer1 clock source (Fsys/2) divided by 0000: 1 0011: 8 0110: 64
TM1PSC	14.3~0	R/W	0	0000: 1 0011: 8 0110: 64 0001: 2 0100: 16 0111: 128
			1	0010: 4 0101: 32 1xxx: 256
T2CTL (15h)				Function related to: T2
12C1L (13II)				Clear and stop T2
T2CLR	15.4	R/W	0	0: T2 runs
			1	1: T2 clear and stops
TOCKE	15.2.2	D/XX		T2 clock source selection
T2CKS	15.3~2	R/W	0	00: Slow-clock 11: Fsys/128 1x: FIRC/512 (9.216MHz/512)
T2PSC	15.1~0	R/W	0	T2 prescaler. T2 clock source divided by
12F3C	13.1~0	K/ W	0	00: 32768 01: 16384 10: 8192 11: 128
LVCTL (16h)				Function related to: LVD / LVR
LVDF	16.7	R	0	Low voltage detection flag
				$0: V_{CC} > V_{LVD} \qquad 1: V_{CC} < V_{LVD}$
LVDHYS	16.6	R/W	0	LVD Hysteresis
				0: disable 1: enable
LVRSAV	16.5	R/W	1	POR/LVR will be disabled during IDLE/STOP mode to reduce power
	<u> </u>			consumption
LVDSAV	16.4	R/W	1	LVD will be disabled during IDLE/STOP mode to reduce power
				consumption

Name	Address	R/W	Rst	Description
				LVD voltage (V _{LVD}) selection
				0000: disable 0100 : 2.65V 1000: 3.22V 1100: 3.78V
LVDS	16.3~0	R/W	0	0001: 2.24V 0101: 2.79V 1001: 3.36V 1101: 3.92V
				0010: 2.37V
				0011: 2.51V 0111: 3.07V 1011: 3.64V 1111: 4.20V
ADCDH (17h)				Function related to: ADC
ADCDH	17.7~0	R	-	ADC output data bit 11~4
ADCTL (18h)	1			Function related to: ADC
ADCDL	18.7~4	R	•	ADC output data bit 3~0
			_	ADC start bit.
ADST	18.3	R/W	0	0: H/W clear after end of conversion
				1: ADC start conversion
4 D GWG	10.2.0	D ///	0	ADC clock frequency selection. 1MHz(Typ.)
ADCKS	18.2~0	R/W	0	000: Fsys/256 010: Fsys/64 100: Fsys/16 110: Fsys/4
ADCTI 2 (10b))			001: Fsys/128 011: Fsys/32 101: Fsys/8 111: Fsys/2
ADCTL2 (19h))			Function related to: ADC
				ADC reference voltage selection
, D. I. D. E. E. G.	40 7 6	D 411	0.1	00: ADC reference voltage is V _{CC}
ADVREFS	19.7~6	R/W	01	01: ADC reference voltage is VR
				10: ADC reference voltage is LDO1.2V 11: Reserved
				11: Reserved
				ADC channel selection
				00000: ADC0 (PA0) 01000: ADC8 (PB0) 10000: ADC16 (OP1N)
				00001: ADC1 (PA1) 01001: ADC9 (PB1) 10001:VR
ADCHS 19.4~(00010: ADC2 (PA2) 01010: ADC10 (PB2) 10010:OPA2TOADC
	19.4~0 R/	R/W	1F	00011: ADC3 (PA3) 01011: ADC11 (PB3) 10011:V _{TEMP}
				00100: ADC4 (PA4) 01100: ADC12 (PB4) 10100:LDO1.2V
				00101: ADC5 (PA5) 01101: ADC13 (PB5) 10101:VSS
				00110: ADC6 (PA6) 01110: ADC14 (PB6) 10110:V _{CC} /201
				00111: ADC7 (PA7) 01111: ADC15 (OP0N) 10111:V _{CC} /4
BCMCTL (1A	h)			Function related to: BCM
OPA0PD	1A.7	R/W	0	OPA0 Power Down
				Turn on the switch for the path from OPA0P to OPA0 non-inverting
OPA0PSW	1A.6	R/W	1	input(V+)
				0:switch off 1:switch on
				Turn on the switch for the path from DAC0 to OPA0 non-inverting
DAC0SW	1A.5	R/W	1	input(V+)
				0:switch off 1:switch on
DAC0BFSW	1A.4	R/W	0	Turn on the switch for DAC0 output Buffer
				0:switch off 1:switch on
OPA1PD	1A.3	R/W	0	OPA1 Power Down
ODA 1 DOW	1 4 2	D //**	1	Turn on the switch for the path from OPA1P to OPA1 non-inverting
OPA1PSW	1A.2	R/W	1	input(V+)
				0:switch off 1:switch on
DACISW	1 A 1	R/W	1	Turn on the switch for the path from DAC1 to OPA1 non-inverting
DAC1SW	1A.1	IN/ VV	1	input(V+) 0:switch off 1:switch on
				Turn on the switch for DAC1 output Buffer
DAC1BFSW	1A.0	R/W	0	0:switch off 1:switch on
BCMCTL2 (11	Rh)			Function related to: BCM
DACPD	1B.7	R/W	0	DAC0,DAC1,OPA0,OPA1 bias voltage Power Down
				DAC0 reference voltage selection
DAC0VREFS	1B.6	R/W	1	0:LDO1.2V 1:VR
DAC1VREFS	1B.5	R/W	1	DAC1 reference voltage selection
21101 (1111)	12.5	14 11		2.12.1 Telefonee Tolinge Science

Name	Address	R/W	Rst	Description
				0:V _{CC} 1:VR
OPAEL	1B.4	R/W	0	Force OPO output low.
OPA0OFTS	1B.3	R/W	0	OPA0 non-inverting input (V+) is connected to the inverting input (V-) for OPA0 trim
OPA1OFTS	1B.2	R/W	0	OPA1 non-inverting input (V+) is connected to the inverting input (V-) for OPA1 trim
OPA0OSTUS	1B.1	R	-	OPA0 comparator output status
OPA1OSTUS	1B.0	R	-	OPA1 comparator output status
DACODH (1Cl	h)			Function related to: BCM
DAC0DH	1C.7~0	R/W	00	DAC0 Data bit13~bit8
DACODL (1Dh	n)			Function related to: BCM
DAC0DL	1D.7~0	R/W	DA	DAC0 Data bit7~bit0 Write DAC0DL first, then DAC0DH
DAC1DH (1El	<u>n)</u>			Function related to: BCM
DAC1DH	1E.7~0	R/W	33	DAC1 Data bit13~bit8
DAC1DL (1FI	1)			Function related to: BCM
DAC1DL	1F.7~0	R/W	9A	DAC1 Data bit7~bit0 Write DAC1DL first, then DAC1DH
User Data Mei	nory			
RAM	20~6F	R/W	-	RAM Bank0 area (80 Bytes)
RAM	70~7F	R/W	-	RAM common area (16 Bytes)

Name	Address	R/W	Rst	Description
OPTION (81h				Function related to: STATUS / INT / WDT / WKT
OI 11011 (011)	, IUII)			Enter/Exit interrupt subroutine, HW auto Save/Restore WREG, FSR,
*****	04.5	D 477	۱ ۵	TABR, PCH_LAT, DPL, DPH, and STATUS w/o TO, PD
HWAUTO	81.7	R/W	0	0:disable
			Ī	1: enable
			, 	INT0 pin edge interrupt event
INT0EDG	81.6	R/W	0	0: falling edge to trigger
			1	1: rising edge to trigger
			1	INT1 pin edge interrupt event
INT1EDG	81.5	R/W	0	0: falling edge to trigger
			<u> </u>	1: rising edge to trigger
WDTPSC	81.3~2	R/W	3	WDT period selections:
WBIIBE	01.5 2	10 11		00: 221ms 01: 443ms 10: 1771ms 11:3542ms @Vcc=5V
WKTPSC	81.1~0	R/W	3	WKT period selections:
		10 11		00: 28ms 01: 55ms 10: 111ms 11: 221ms @Vcc=5V
PAMOD10 (8:				Function related to: Port
PA1MOD	85.7~4	R/W	1	PA1 I/O mode control
PA0MOD	85.3~0	R/W	1	PA0 I/O mode control
PAMOD32 (8				Function related to: Port
PA3MOD	86.7~4	R/W	1	PA3 I/O mode control
PA2MOD	86.3~0	R/W	1	PA2 I/O mode control
PAMOD54 (8'	. /			Function related to: Port
PA5MOD	87.7~4	R/W	1	PA5 I/O mode control
PA4MOD	87.3~0	R/W	1	PA4 I/O mode control
PAMOD76 (8				Function related to: Port
PA7MOD	88.7~4	R/W	0	PA7 I/O mode control
PA6MOD	88.3~0	R/W	1	PA6 I/O mode control
PWMCTL (89	h)			Function related to: PWM
PWMEN	89.7	R/W	0	PWM Clock Enable 0: PWM Clock Disable 1: PWM Clock Enable
				PWM0 output mode
PWM0OM	89.5~4	R/W	0	00: Mode0 10: Mode2
r w wioowi	09.5~4	IX/ VV	U	01: Mode1 11: Mode3
				PWM0 non-overlap control
			Ī	0000: no non-overlap
			Ī	0001: non-overlap width are 1 PWM clock cycle
PWM0DZ	89.3~0	R/W	0	0010: non-overlap width are 2 PWM clock cycles
			Ī	ooto. Hon overlap width the 21 will clock eyeles
			Ī	1111: non-overlap width are 15 PWM clock cycles
PBMOD10 (8	Ch)			Function related to: Port
PB1MOD	8C.7~4	R/W	1	PB1 I/O mode control
PB0MOD	8C.3~0	R/W	1	PB0 I/O mode control
PBMOD32 (8)	l .			Function related to: Port
PB3MOD	8D.7~4	R/W	1	PB3 I/O mode control
PB2MOD	8D.3~0	R/W	1	PB2 I/O mode control
PBMOD54 (8)	l .			Function related to: Port
PB5MOD	8E.7~4	R/W	1	PB5 I/O mode control
PB4MOD	8E.3~0	R/W	1	PB4 I/O mode control
PBMOD76 (8)				Function related to: Port
-	8F.7~4	R/W	1	Reserved
PB6MOD	8F.3~0	R/W	1	PB6 I/O mode control
OPTION2 (91				Function related to: PWM0/INT2/INT1/INT0
,				PWM Clock Source selection
PWMCKS	91.5~4	R/W	00	0x: Fsys
		<u> </u>		VA. 1 3y 5

Name	Address	R/W	Rst	Description
				10: FIRC (18.432 MHz)
				11: FIRC*2 (36.864 MHz)
INT2SEL	91.2	R/W	0	INT2 pin selection
				0: PA7 1: PB5
INT1SEL	91.1	R/W	0	INT1 pin selection 0: PA1 1: PB1
				INTO pin selection
INT0SEL	91.0	R/W	0	0: PA3 1: PB0
PWMPRDH (92h)			Function related to: PWM
PWMPRDH	92.7~0	R/W	FF	PWM Period bit 15~8
PWMPRDL (9	93h)			Function related to: PWM
PWMPRDL	93.7~0	R/W	FF	PWM Period bit 7~0
PWM0DH (94	lh)			Function related to: PWM
PWM0DH	94.7~0	R/W	80	PWM0 Duty bit 15~8
PWM0DL (95	h)			Function related to: PWM
PWM0DL	95.7~0	R/W	00	PWM0 Duty bit 7~0
PWM1DH (96	oh)			Function related to: PWM
PWM1DH	96.7~0	R/W	80	PWM1 Duty bit 15~8
PWM1DL (97	h)			Function related to: PWM
PWM1DL	97.7~0	R/W	00	PWM1 Duty bit 7~0
PWM2DH (98	Bh)			Function related to: PWM
PWM2DH	98.7~0	R/W	80	PWM2 Duty bit 15~8
PWM2DL (99	h)			Function related to: PWM
PWM2DL	99.7~0	R/W	00	PWM2 Duty bit 7~0
User Data Mer	nory			
RAM	A0~EF	R/W	-	RAM Bank1 area (80 Bytes)

Name Address PWRCTL2 (105h) GPR2 105.7~6 - 105.4 - 105.3 HSINK 105.2 ROMODS 105.1~0 RDSTP (106h) RDSTP (109h) LVRPD (109h) LVRPD 109.7~0 PORPDF 109.1 LVRPDF 109.0 SFR10C (10Ch) SFR10C (10Ch) SFR10C 10C.7~0	R/W R/W R/W R/W W R/W	0 - 0 1 1 1 1 1 - 0 0 0 0 0 0 0 0 0 0 0	Function related to: ROM mode General purpose register Reserved Reserved All GPIO high sink current selection 0: low sink current 1: high sink current ROM mode selection 11: High speed mode 01: Medium power mode, Fsys < 4MHz 00: Low power mode, Fsys < 1MHz Function related to: ROM mode Before changing the ROM mode, the user must first write any value to this register to suspend ROM reading for a total of 4 system cycles to ensure that the ROM mode switch is successfully completed. Function related to: LVR/POR LVR and POR disable option selection. Write 37h to force both LVR and POR to be disabled Write 38h to force LVR to be disabled Write 39h to force POR to be disabled Writing other values will cancel this disable option POR disable option flag 0: POR has not been set by the LVRPD register
GPR2 105.7~6 - 105.5 - 105.4 - 105.3 HSINK 105.2 ROMODS 105.1~0 RDSTP (106h) RDSTP (109h) LVRPD (109h) LVRPD 109.7~0 PORPDF 109.1 LVRPDF 109.0 SFR10C (10Ch)	R/W R/W R/W W	- 0 1 1 -	Reserved Reserved Reserved All GPIO high sink current selection 0: low sink current 1: high sink current ROM mode selection 11: High speed mode 01: Medium power mode, Fsys < 4MHz 00: Low power mode, Fsys < 1MHz Function related to: ROM mode Before changing the ROM mode, the user must first write any value to this register to suspend ROM reading for a total of 4 system cycles to ensure that the ROM mode switch is successfully completed. Function related to: LVR/POR LVR and POR disable option selection. Write 37h to force both LVR and POR to be disabled Write 39h to force POR to be disabled Writing other values will cancel this disable option POR disable option flag
- 105.5 - 105.4 - 105.3 HSINK 105.2 ROMODS 105.1~0 RDSTP (106h) RDSTP (109h) LVRPD (109h) LVRPD 109.7~0 PORPDF 109.1 LVRPDF 109.0 SFR10C (10Ch)	R/W R/W R/W W	- 0 1 1 -	Reserved Reserved All GPIO high sink current selection 0: low sink current 1: high sink current ROM mode selection 11: High speed mode 01: Medium power mode, Fsys < 4MHz 00: Low power mode, Fsys < 1MHz Function related to: ROM mode Before changing the ROM mode, the user must first write any value to this register to suspend ROM reading for a total of 4 system cycles to ensure that the ROM mode switch is successfully completed. Function related to: LVR/POR LVR and POR disable option selection. Write 37h to force both LVR and POR to be disabled Write 38h to force LVR to be disabled Writing other values will cancel this disable option POR disable option flag
- 105.4 - 105.3 HSINK 105.2 ROMODS 105.1~0 RDSTP (106h) RDSTP (109h) LVRPD (109h) LVRPD 109.7~0 PORPDF 109.1 LVRPDF 109.0 SFR10C (10Ch)	R/W R/W R/W R/W W	0 1 1 11	Reserved All GPIO high sink current selection 0: low sink current 1: high sink current ROM mode selection 11: High speed mode 01: Medium power mode, Fsys < 4MHz 00: Low power mode, Fsys < 1MHz Function related to: ROM mode Before changing the ROM mode, the user must first write any value to this register to suspend ROM reading for a total of 4 system cycles to ensure that the ROM mode switch is successfully completed. Function related to: LVR/POR LVR and POR disable option selection. Write 37h to force both LVR and POR to be disabled Write 38h to force LVR to be disabled Writing other values will cancel this disable option POR disable option flag
- 105.3 HSINK 105.2 ROMODS 105.1~0 RDSTP (106h) RDSTP 106.7~0 LVRPD (109h) LVRPD 109.7~0 PORPDF 109.1 LVRPDF 109.0 SFR10C (10Ch)	R/W R/W R/W W	1 1 1	Reserved All GPIO high sink current selection 0: low sink current 1: high sink current ROM mode selection 11: High speed mode 01: Medium power mode, Fsys < 4MHz 00: Low power mode, Fsys < 1MHz Function related to: ROM mode Before changing the ROM mode, the user must first write any value to this register to suspend ROM reading for a total of 4 system cycles to ensure that the ROM mode switch is successfully completed. Function related to: LVR/POR LVR and POR disable option selection. Write 37h to force both LVR and POR to be disabled Write 39h to force LVR to be disabled Writing other values will cancel this disable option POR disable option flag
ROMODS 105.1~0 RDSTP (106h) RDSTP 106.7~0 LVRPD (109h) LVRPD 109.7~0 PORPDF 109.1 LVRPDF 109.0 SFR10C (10Ch)	R/W R/W W	-	0: low sink current 1: high sink current ROM mode selection 11: High speed mode 01: Medium power mode, Fsys < 4MHz 00: Low power mode, Fsys < 1MHz Function related to: ROM mode Before changing the ROM mode, the user must first write any value to this register to suspend ROM reading for a total of 4 system cycles to ensure that the ROM mode switch is successfully completed. Function related to: LVR/POR LVR and POR disable option selection. Write 37h to force both LVR and POR to be disabled Write 38h to force LVR to be disabled Writing other values will cancel this disable option POR disable option flag
ROMODS 105.1~0 RDSTP (106h) RDSTP 106.7~0 LVRPD (109h) LVRPD 109.7~0 PORPDF 109.1 LVRPDF 109.0 SFR10C (10Ch)	R/W W	-	ROM mode selection 11: High speed mode 01: Medium power mode, Fsys < 4MHz 00: Low power mode, Fsys < 1MHz Function related to: ROM mode Before changing the ROM mode, the user must first write any value to this register to suspend ROM reading for a total of 4 system cycles to ensure that the ROM mode switch is successfully completed. Function related to: LVR/POR LVR and POR disable option selection. Write 37h to force both LVR and POR to be disabled Write 38h to force LVR to be disabled Write 39h to force POR to be disabled Writing other values will cancel this disable option POR disable option flag
RDSTP (106h) RDSTP	W	-	11: High speed mode 01: Medium power mode, Fsys < 4MHz 00: Low power mode, Fsys < 1MHz Function related to: ROM mode Before changing the ROM mode, the user must first write any value to this register to suspend ROM reading for a total of 4 system cycles to ensure that the ROM mode switch is successfully completed. Function related to: LVR/POR LVR and POR disable option selection. Write 37h to force both LVR and POR to be disabled Write 38h to force LVR to be disabled Write 39h to force POR to be disabled Writing other values will cancel this disable option POR disable option flag
RDSTP 106.7~0	W	- 0	O0: Low power mode, Fsys < 1MHz Function related to: ROM mode Before changing the ROM mode, the user must first write any value to this register to suspend ROM reading for a total of 4 system cycles to ensure that the ROM mode switch is successfully completed. Function related to: LVR/POR LVR and POR disable option selection. Write 37h to force both LVR and POR to be disabled Write 39h to force LVR to be disabled Writing other values will cancel this disable option POR disable option flag
RDSTP 106.7~0	W	- 0	Before changing the ROM mode, the user must first write any value to this register to suspend ROM reading for a total of 4 system cycles to ensure that the ROM mode switch is successfully completed. Function related to: LVR/POR LVR and POR disable option selection. Write 37h to force both LVR and POR to be disabled Write 38h to force LVR to be disabled Write 39h to force POR to be disabled Writing other values will cancel this disable option POR disable option flag
RDSTP 106.7~0	W	- 0	Before changing the ROM mode, the user must first write any value to this register to suspend ROM reading for a total of 4 system cycles to ensure that the ROM mode switch is successfully completed. Function related to: LVR/POR LVR and POR disable option selection. Write 37h to force both LVR and POR to be disabled Write 38h to force LVR to be disabled Write 39h to force POR to be disabled Writing other values will cancel this disable option POR disable option flag
LVRPD (109h) LVRPD 109.7~0 PORPDF 109.1 LVRPDF 109.0 SFR10C (10Ch)	W	- 0	this register to suspend ROM reading for a total of 4 system cycles to ensure that the ROM mode switch is successfully completed. Function related to: LVR/POR LVR and POR disable option selection. Write 37h to force both LVR and POR to be disabled Write 38h to force LVR to be disabled Write 39h to force POR to be disabled Writing other values will cancel this disable option POR disable option flag
LVRPD 109.7~0 PORPDF 109.1 LVRPDF 109.0 SFR10C (10Ch)		- 0	LVR and POR disable option selection. Write 37h to force both LVR and POR to be disabled Write 38h to force LVR to be disabled Write 39h to force POR to be disabled Writing other values will cancel this disable option POR disable option flag
PORPDF 109.1 LVRPDF 109.0 SFR10C (10Ch)		0	Write 37h to force both LVR and POR to be disabled Write 38h to force LVR to be disabled Write 39h to force POR to be disabled Writing other values will cancel this disable option POR disable option flag
PORPDF 109.1 LVRPDF 109.0 SFR10C (10Ch)		0	Write 37h to force both LVR and POR to be disabled Write 38h to force LVR to be disabled Write 39h to force POR to be disabled Writing other values will cancel this disable option POR disable option flag
PORPDF 109.1 LVRPDF 109.0 SFR10C (10Ch)		0	Write 39h to force POR to be disabled Writing other values will cancel this disable option POR disable option flag
LVRPDF 109.0 SFR10C (10Ch)	R	0	Writing other values will cancel this disable option POR disable option flag
LVRPDF 109.0 SFR10C (10Ch)	R	0	POR disable option flag
LVRPDF 109.0 SFR10C (10Ch)	R	0	
LVRPDF 109.0 SFR10C (10Ch)		U	
SFR10C (10Ch)			1: POR has been set to force disabled by LVRPD register
SFR10C (10Ch)			LVR disable option flag
	R	0	0: LVR has not been set by the LVRPD register
			1: LVR has been set to force disabled by LVRPD register
SFR10C 10C.7~0			Function related to: Programming Counter (PC)
SFR10C 10C.7~0			Use the PCH_LAT function:
SFR10C 10C.7~0			The default setting of the chip is that when the CPU executes an "instruction that will modify PCL", PC[11:8] is provided by the register PCH_LAT.
SFR10C 10C.7~0			Disable PCH_LAT function:
	W	-	When the user writes 1C to the register SFR10C, the chip will disable the PCH_LAT function. When the CPU executes an "instruction that modifies PCL", it will leave PC[11:8] unchanged for easy table lookup. Please note that the PCH_LAT feature can only be disabled if the user is using assembly code.
			Restore PCH_LAT function:
			When the user writes any other value to SFR10C, the system resumes the PCH_LAT function.
PCH 10C.3~0	R	0	Program counter(PC) data bits 11~8, which are the high 4-bit value of the program counter.
CFG07 (10Dh)			Function related to: ADC / BCM
			Store 5-bit VBG trim value of LDO1.2V
CFG07 10D.4~0	R/W	CFG	if user want to accurate VBG for LDO1.2V, please write the CFG07 value to BGTRIM (10Eh).
BGTRIM (10Eh)			Function related to: ADC / BCM

Name	Address	R/W	Rst	Description
BGTRIM	10E.4~0	R/W	CFG	5-bit VBG trim value (default use VBG trim value for LDO3V)
IRCF (10Fh)				Function related to: Clock
IRCF	10F.6~0	R/W	CFG	7-bit FIRC trim value
OPOTRIM (11	(0h)			Function related to: BCM
OP0TRIM	110.5~0	R/W	CFG	6-bit OPA0 trim value
OP1TRIM (11	1h)			Function related to: BCM
OP1TRIM	111.5~0	R/W	CFG	6-bit OPA1 trim value
OP2TRIM (11				Function related to: BCM
OP2TRIM	112.4~0	R/W	CFG	5-bit OPA2 trim value
RDCTL (113h				Function related to: BCM
RDCTL	113.1~0	R/W	01	Select the delay time for ROM reading. 00:4ns 01:8ns 10:12ns 11: 16ns
BCMCTL3 (1	1/h)			Function related to: BCM
OPA2PD	114.7	R/W	0	OPA2 Power Down
	114./			OPA2 non-inverting input(V+) selection.
SOPP	114.6	R/W	0	0:OP2P (PB6) 1:OP0N (if SOPAN=0) or OP1N (if SOPAN=1)
				OPA2 to iopad output enable.
OP2TOPAD	114.5	R/W	0	(weak driving capability)
				0:switch off 1:switch on OPA2 VREF selection when OPA2 as comparator.
SOTV	114.4	R/W	0	0: VSS 1: VR
SOPG	114.3~2	R/W	10	OPA2 negative feedback gain selection.
501 0	114.5 2	10/11	10	00: 1X 01: 10X 10: 20X 11: 50X
SOPM	114.1~0	R/W	00	OPA2 operating mode selection. 00: opa with negative feedback (non-inverting amplifier) non-inverting input(V+) = OPP 01: comparator for OPA2 trim, OPP is disconnected, non-inverting input(V+) = VREF+offset inverting input(V-) = VREF 10: opa with negative feedback for OPA2 trim, OPP is disconnected, non-inverting input(V+) = VSS+offset inverting input(V-) = VSS output voltage = offset*gain, gain=50 11: comparator as voltage level detector non-inverting input(V+) = OPP inverting input(V-) = VREF
PWRCTL (11	5h)			Function related to: ADC / BCM
SVBIAS	115.7	R/W	0	Reference voltage of VT0 selection 0:V _{CC} 1:VR
SBFIN	115.6~5	R/W	11	ADC V_{TEMP} selection for temperature sensing $00:V_{TEMP} = VT0$ (Diode type) $01:V_{TEMP} = VT1$ (BJT type) $10:V_{TEMP} = VBG1.2V$ $11:V_{TEMP}$ is disabled
SVBGT	115.4	R/W	0	VBGT(PA3) output selection (only for testing) 0:VBGT=V _{TEMP} 1:VBGT=LDO1P2V
VBGTOE	115.3	R/W	0	VBGT(PA3) output enable. (only for testing)
LDO3VPD	115.2	R/W	0	LDO3V power down. 0: LDO3V enable 1: LDO3V power down

Name	Name Address R/W Rst Description			
User Data Memory				
RAM 120~16F R/W - RAM Bank2 area (80 Bytes)				

Name	Address	R/W	Rst	Description		
DPL (185h)				Function related to: IAP / Table Read		
DPL	185.7~0	R/W	00	TBL Data Pointer bit 7~0, DPTR={DPH,DPL}		
DPH (186h)				Function related to: IAP / Table Read		
DPH	186.3~0	R/W	00	TBL Data Pointer bit 11~8, DPTR={DPH,DPL}		
CRCDL (187h				Function related to: CRC16		
CRCDL	187.7~0	R/W	FF	16-bit CRC checksum data bit 7~0		
CRCDH (1881	1)			Function related to: CRC16		
CRCDH	188.7~0	R/W	FF	16-bit CRC checksum data bit 15~8		
CRCIN (189h))			Function related to: CRC16		
CRCIN	189.7~0	W	0	CRC data input, write this register to start CRC calculation		
TABR (18Ch)				Function related to: Table Read		
				When the user writes 01h to TABR, the W register will get the lower eight bits of the data in the address pointed to by DPTR.		
TABR	18C.7~0	R/W	0	When the user writes 02h to TABR, the W register will get the upper eight bits of the data in the address pointed to by DPTR.		
				in Assembly code, user can table read by TABRL/TABRH instruction or writing TABR register.		
				in C code, user can only table read by writing TABR register.		
IAPCTL (1901	1)			Function related to: IAP		
IAPTE	190.1~0	R/W	00	IAP Write Time-Out function selection 00: Disable, 01: 3.5ms, 10: 14ms, 11: 28ms		
IAPEN (191h) Function related to: IAP						
IAPEN	191.7~0	W	0	Function selection of Table Read and IAP. Write 47h to enable Main ROM Table Read and IAP functions. Write 50h to enable INFO ROM address 6'h20~ 6'h3F Table Read and IAP functions. Writing 33h will disable Table Read and IAP functions.		
IAPDTL (192h) Function related to: IAP						
IAPDTL	192.7~0	R/W	0	IAP Data Low byte When the user writes to this register, the hardware will automatically write the 16-bit value {IAPDTH, IAPDTL} to the location pointed to by DPTR.		
IAPDTH (193	h)			Function related to: IAP		
IAPDTH	193.7~0	R/W	0	IAP Data High byte		
SCON (195h)				Function related to: UART		
UART9	195.7	R/W	0	Number of data transfer bits select 0: 8-bit data transfer 1: 9-bit data transfer		
RIMASK	195.5	R/W	0	Receive flag mask control. If this bit is set, the receive flag function will be disabled when RX8 is 0		
RXEN	195.4	R/W	0	Receive function enable. 0: When UART1W is set low, the RXTX pin is disabled. When UART1W is set high, the RXTX pin is used as the TX pin. 1: When UART1W is set low, the RXTX pin is used as the RX pin. When UART1W is set high, the RXTX pin is used as the RX pin.		
TX8	195.3	R/W	0	(This bit is only valid when UART9=1)		

Name	Address	R/W	Rst	Description		
				This bit is the 9th value to be transmitted by TX pin.		
RX8	195.2	95.2 R/W 0		(This bit is only valid when UART9=1)		
KAO	193.2	IV/ VV	U	This bit is the 9th value received by RX pin.		
TI	195.1	R/W	0	Transmit flag. Set by H/W when transmission is completed. SW needs to write 0 to clear it, writing 1 does nothing. When TI=1 or RI=1, UARTIF will be set to 1.		
RI	195.0	R/W	0	Receive flag. Set by H/W when reception is completed. SW needs to write 0 to clear it, writing 1 does nothing. When TI=1 or RI=1, UARTIF will be set to 1.		
SBUF (196h)				Function related to: UART		
SBUF	196.7~0	R/W	-	UART transmit/receive data.		
UARTCTL (1	97h)			Function related to: UART		
UARTBRP	197.7~0	R/W	0	Define UART Baud Rate Prescaler UART Baud Rate = Fsys/16/UARTBRP		
UARTCTL2 ((198h)			Function related to: UART		
UART1W	198.7	R/W	0	Single-wire mode select 0: full-duplex communication 1: half-duplex communication (single-wire mode)		
-	198.6	R/W	0	Reserved		
TXS2	198.5	R/W	0	TX pin selection 2 0:disable 1:PB3 is used as TX pin		
TXS1	198.4	R/W	0	TX pin selection 1 0:disable 1:PB1 is used as TX pin		
TXS0	198.3	R/W	0	TX pin selection 0 0:disable 1:PA1 is used as TX pin		
RXTXS2	198.2	R/W	0	RXTX pin selection 2. 0: disable 1: If UART1W is set low, PB0 is used as RX pin. If UART1W is set high and RXEN is set low, PB0 is used as TX pin. If UART1W is set high and RXEN is set high, PB0 is used as RX pin.		
RXTXS1	198.1	R/W	0	RXTX pin selection 1. 0: disable 1: If UART1W is set low, PA5 is used as RX pin. If UART1W is set high and RXEN is set low, PA5 is used as TX pin. If UART1W is set high and RXEN is set high, PA5 is used as RX pin.		
RXTXS0	198.0	R/W	0	RXTX pin selection 0. 0: disable 1: If UART1W is set low, PA0 is used as RX pin. If UART1W is set high and RXEN is set low, PA0 is used as TX pin. If UART1W is set high and RXEN is set high, PA0 is used as RX pin.		

INSTRUCTION SET

Each instruction is a 16-bit word divided into an Op Code, which specifies the instruction type, and one or more operands, which further specify the operation of the instruction. The instructions can be categorized as byte-oriented, bit-oriented and literal operations list in the following table.

For byte-oriented instructions, "f" represents the address designator and "d" represents the destination designator. The address designator is used to specify which address in Program memory is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If "d" is "0", the result is placed in the W register. If "d" is "1", the result is placed in the address specified in the instruction.

For bit-oriented instructions, "b" represents a bit field designator, which selects the number of the bit affected by the operation, while "f" represents the address designator. For literal operations, "k" represents the literal or constant value.

Field/Legend	Description
f	Register File Address
b	Bit address
k	Literal. Constant data or label
d	Destination selection field, 0: Working register, 1: Register file
W	Working Register
Z	Zero Flag
С	Carry Flag or/Borrow Flag
DC	Decimal Carry Flag or Decimal/Borrow Flag
PC	Program Counter
TOS	Top Of Stack
GIE	Global Interrupt Enable Flag (i-Flag)
[]	Option Field
()	Contents
	Bit Field
В	Before
A	After
←	Assign direction

DS-TM5670C2_E 87 Rev 0.91, 2025/01/17

Mnemor	nic	Op Code	Cycle	Flag Affect	Description
		_		ister Instructio	-
ADDWX	f, d	ff00 0111 dfff ffff	1	C, DC, Z	Add W and "f"
ANDWX	f, d	ff00 0101 dfff ffff	1	Z	AND W with "f"
CLRX	f	ff00 0001 1fff ffff	1	Z	Clear "f"
CLRW		0000 0001 0100 0000	1	Z	Clear W
COMX	f, d	ff00 1001 dfff ffff	1	Z	Complement "f"
DECX	f, d	ff00 0011 dfff ffff	1	Z	Decrement "f"
DECXSZ	f, d	ff00 1011 dfff ffff	1 or 2	-	Decrement "f", skip if zero
INCX	f, d	ff00 1010 dfff ffff	1	Z	Increment "f"
INCXSZ	f, d	ff00 1111 dfff ffff	1 or 2	-	Increment "f", skip if zero
IORWX	f, d	ff00 0100 dfff ffff	1	Z	OR W with "f"
MOVX	f,d	ff00 1000 dfff ffff	1	Z	Move "f"
MOVXW	f	ff00 1000 Offf ffff	1	Z	Move "f" to W
MOVWX	f	ff00 0000 1fff ffff	1	-	Move W to "f"
RLX	f, d	ff00 1101 dfff ffff	1	С	Rotate left "f" through carry
RRX	f, d	ff00 1100 dfff ffff	1	С	Rotate right "f" through carry
SUBWX	f, d	ff00 0010 dfff ffff	1	C, DC, Z	Subtract W from "f"
SWAPX	f, d	ff00 1110 dfff ffff	1	-	Swap nibbles in "f"
TSTX	f	ff00 1000 1fff ffff	1	Z	Test if "f" is zero
XORWX	f, d	ff00 0110 dfff ffff	1	Z	XOR W with "f"
		Bit-Oriented	l File Regi	ster Instruction	n
BCX	f, b	ff11 00bb bfff ffff	1	-	Clear "b" bit of "f"
BSX	f, b	ff11 01bb bfff ffff	1	-	Set "b" bit of "f"
BTXSC	f, b	ff11 10bb bfff ffff	1 or 2	-	Test "b" bit of "f", skip if clear
BTXSS	f, b	ff11 11bb bfff ffff	1 or 2	-	Test "b" bit of "f", skip if set
		Literal a	nd Contro	l Instruction	
ADDLW	k	0001 1100 kkkk kkkk	1	C, DC, Z	Add Literal "k" and W
ANDLW	k	0001 1011 kkkk kkkk	1	Z	AND Literal "k" with W
LCALL	k	kk10 0kkk kkkk kkkk	2	-	Call subroutine "k"
CLRWDT		0001 1110 0000 0100	1	TO, PD	Clear Watch Dog Timer
LGOTO	k	kk10 1kkk kkkk kkkk	2	-	Jump to branch "k"
IORLW	k	0001 1010 kkkk kkkk	1	Z	OR Literal "k" with W
MOVLW	k	0001 1001 kkkk kkkK	1	-	Move Literal "k" to W
NOP		0000 0000 0000 0000	1	-	No operation
RET		0000 0000 0100 0000	2	-	Return from subroutine
RETI		0000 0000 0110 0000	2	-	Return from interrupt
RETLW	k	0001 1000 kkkk kkkk	2	-	Return with Literal in W
SLEEP		0001 1110 0000 0011	1	TO, PD	Go into Power-down mode, Clock oscillation stops
SUBLW	k	0001 1111 kkkk kkkk	1	C, DC, Z	Subtract W from literal
TABRH		0000 0000 0101 1000	2	-	Lookup ROM high data to W
TABRL		0000 0000 0101 0000	2	-	Lookup ROM low data to W
XORLW	k	0001 1101 kkkk kkkk	1	Z	XOR Literal "k" with W

Add Literal "k" and W **ADDLW**

Syntax ADDLW k Operands k:00h~FFh Operation $(W) \leftarrow (W) + k$ C, DC, Z Status Affected

0001 1100 kkkk kkkk OP-Code

Description The contents of the W register are added to the eight-bit literal 'k' and the result is

placed in the W register.

Cycle

Example ADDLW 0x15 B: W = 0x10

A: W = 0x25

Add W and "f" **ADDWX**

ADDWX f [,d] Syntax Operands $f: 000h \sim 1FFh, d: 0, 1$ Operation $(destination) \leftarrow (W) + (f)$

Status Affected C, DC, Z

OP-Code ff00 0111 dfff ffff

Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in Description

the W register. If 'd' is 1, the result is stored back in register 'f'.

Cycle

Example ADDWX FSR, 0 B : W = 0x17, FSR = 0xC2

A: W = 0xD9, FSR = 0xC2

ANDLW Logical AND Literal "k" with W

ANDLW k **Syntax** Operands k: 00h ~ FFh Operation $(W) \leftarrow (W) \text{ AND } k$

Status Affected Z

OP-Code 0001 1011 kkkk kkkk

Description The contents of W register are AND'ed with the eight-bit literal 'k'. The result is

placed in the W register.

Cycle

Example ANDLW 0x5F B : W = 0xA3

A: W = 0x03

ANDWX AND W with "f"

 \overline{ANDWX} f [,d] **Syntax Operands** $f: 000h \sim 1FFh, d: 0, 1$ Operation $(destination) \leftarrow (W) AND (f)$

Status Affected Z

OP-Code ff00 0101 dfff ffff

AND the W register with register 'f'. If 'd' is 0, the result is stored in the W Description

register. If 'd' is 1, the result is stored back in register 'f'.

Cycle

Example ANDWX FSR, 1 B: W = 0x17, FSR = 0xC2

A: W = 0x17, FSR = 0x02

BCX Clear "b" bit of "f"

Syntax BCX f [,b]

Operands $f: 000h \sim 1FFh, b: 0 \sim 7$

Operation $(f.b) \leftarrow 0$

Status Affected

OP-Code ff11 00bb bfff ffff

Description Bit 'b' in register 'f' is cleared.

Cycle 1

Example BCX FLAG_REG, 7 B: FLAG_REG =0xC7

 $A : FLAG_REG = 0x47$

BSX Set "b" bit of "f"

Syntax BSX f [,b]

Operands $f: 000h \sim 1FFh, b: 0 \sim 7$

Operation $(f.b) \leftarrow 1$

Status Affected -

OP-Code ff11 01bb bfff ffff
Description Bit 'b' in register 'f' is set.

Cycle 1

Evaporate PSV FLAC REC 7

Example BSX FLAG_REG, 7 B: FLAG_REG =0x0A

A: FLAG_REG =0x8A

BTXSC Test "b" bit of "f", skip if clear(0)

Syntax BTXSC f [,b]

Operands $f: 000h \sim 1FFh, b: 0 \sim 7$ Operation Skip next instruction if (f.b) = 0

Status Affected -

OP-Code ff11 10bb bfff ffff

Description If bit 'b' in register 'f' is 1, then the next instruction is executed. If bit 'b' in register

'f' is 0, then the next instruction is discarded, and a NOP is executed instead,

making this a 2nd cycle instruction.

Cycle 1 or 2

Example LABEL1 BTXSC FLAG, 1 B: PC =LABEL1

TRUE LGOTO SUB1 A: if FLAG.1 =0, PC =FALSE FALSE ... A: if FLAG.1 =1, PC =TRUE

BTXSS Test "b" bit of "f", skip if set(1)

Syntax BTXSS f [,b]

Operands $f: 000h \sim 1FFh, b: 0 \sim 7$ Operation Skip next instruction if (f.b) = 1

Status Affected -

OP-Code ff11 11bb bfff ffff

Description If bit 'b' in register 'f' is 0, then the next instruction is executed. If bit 'b' in register

'f' is 1, then the next instruction is discarded, and a NOP is executed instead,

making this a 2nd cycle instruction.

Cycle 1 or 2

Example LABEL1 BTXSS FLAG, 1 B: PC =LABEL1

TRUE LGOTO SUB1 A: if FLAG.1 =0, PC =TRUE if FLAG.1 =1, PC =FALSE

CLRX Clear "f"

 $\begin{array}{lll} \text{Syntax} & \text{CLRX f} \\ \text{Operands} & \text{f}: 000\text{h} \sim 1\text{FFh} \\ \text{Operation} & \text{(f)} \leftarrow 00\text{h, Z} \leftarrow 1 \end{array}$

Status Affected Z

OP-Code ff00 0001 1fff ffff

Description The contents of register 'f' are cleared and the Z bit is set.

Cycle 1

Example $CLRX FLAG_REG = 0x5A$

 $A: FLAG_REG = 0x00, Z = 1$

CLRW Clear W

Syntax CLRW

Operands -

Operation (W) \leftarrow 00h, Z \leftarrow 1

Status Affected Z

OP-Code 0000 0001 0100 0000

Description W register is cleared and Z bit is set.

Cycle 1

Example CLRW B: W = 0x5A

A: W = 0x00, Z = 1

CLRWDT Clear Watchdog Timer

Syntax CLRWDT

Operands -

Operation WDT Timer ← 00h

Status Affected TO, PD

OP-Code 0001 1110 0000 0100

Description CLRWDT instruction clears the Watchdog Timer

Cycle 1

Example CLRWDT B: WDT counter =?

A: WDT counter =0x00

COMX Complement "f"

 $\begin{array}{ll} \text{Syntax} & \text{COMX f [,d]} \\ \text{Operands} & \text{f: 000h} \sim 1 \text{FFh, d: 0, 1} \\ \text{Operation} & (\text{destination}) \leftarrow (\bar{\text{f}}) \\ \end{array}$

Status Affected Z

OP-Code ff00 1001 dfff ffff

Description The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W.

If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example COMX REG1, 0 B: REG1 =0x13

A : REG1 = 0x13, W = 0xEC

DECX	Decrement "f"

Syntax DECX f [,d]
Operands $f: 000h \sim 1FFh, d: 0, 1$ Operation (destination) \leftarrow (f) - 1

Status Affected Z

OP-Code ff00 0011 dfff ffff

Description Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the

result is stored back in register 'f'.

Cycle 1

Example DECX CNT, 1 B : CNT = 0x01, Z = 0

A : CNT = 0x00, Z = 1

DECXSZ Decrement "f", Skip if 0

Syntax DECXSZ f [,d]
Operands $f: 000h \sim 1FFh, d: 0, 1$

Operation (destination) \leftarrow (f) - 1, skip next instruction if result is 0

Status Affected -

OP-Code ff00 1011 dfff ffff

Description The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W

register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, then a NOP is executed instead, making

it a 2 cycle instruction.

Cycle 1 or 2

Example LABEL1 DECXSZ CNT, 1 B: PC =LABEL1

LGOTO LOOP A: CNT = CNT - 1

CONTINUE if CNT =0, PC =CONTINUE

if CNT \neq 0, PC =LABEL1 + 1

INCX Increment "f"

Syntax INCX f [,d]
Operands f: $000h \sim 1FFh$ Operation (destination) \leftarrow (f) + 1

Status Affected Z

OP-Code ff00 1010 dfff ffff

Description The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W

register. If 'd' is 1, the result is placed back in register 'f'.

Cycle 1

Example INCX CNT, 1 B: CNT =0xFF, Z=0

A : CNT = 0x00, Z = 1

INCXSZ Increment "f", Skip if 0

Syntax INCXSZ f [,d] Operands $f: 000h \sim 1FFh, d: 0, 1$

Operation (destination) \leftarrow (f) + 1, skip next instruction if result is 0

Status Affected

OP-Code ff00 1111 dfff ffff

Description The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W

register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead, making it a 2

cycle instruction.

Cycle 1 or 2

Example LABEL1 INCXSZ CNT, 1 B: PC =LABEL1

LGOTO LOOP A: CNT = CNT + 1

CONTINUE if CNT =0, PC =CONTINUE if CNT \neq 0, PC =LABEL1 + 1

IORLW Inclusive OR Literal with W

Syntax IORLW k
Operands $k: 00h \sim FFh$ Operation $(W) \leftarrow (W) OR k$

Status Affected Z

OP-Code 0001 1010 kkkk kkkk

Description The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is

placed in the W register.

Cycle

Example IORLW 0x35 B: W =0x9A

A : W = 0xBF, Z = 0

IORWX Inclusive OR W with "f"

SyntaxIORWF f [,d]Operands $f: 000h \sim 1FFh, d: 0, 1$ Operation(destination) \leftarrow (W) OR k

Status Affected Z

OP-Code ff00 0100 dfff ffff

Description Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the

W register. If 'd' is 1, the result is placed back in register 'f'.

Cycle 1

Example IORWX RESULT, 0 B: RESULT =0x13, W =0x91

A: RESULT =0x13, W =0x93, Z =0

LCALL Call subroutine "k"

 $\begin{array}{ccc} Syntax & & LCALL & k \\ Operands & & k:0000h \sim 1FFFh \end{array}$

Operation Operation: $TOS \leftarrow (PC) + 1$, $PC.12 \sim 0 \leftarrow k$

Status Affected

OP-Code kk10 0kkk kkkk kkkk

Description LCALL Subroutine. First, return address (PC+1) is pushed onto the stack. The

13-bit immediate address is loaded into PC bits <12:0>. LCALL is a two-cycle

instruction.

Cycle 2

Example LABEL1 LCALL SUB1 B: PC =LABEL1

A : PC = SUB1, TOS = LABEL1 + 1

LGOTO Unconditional Branch

 $\begin{array}{lll} \mbox{Syntax} & \mbox{LGOTO } \mbox{k} \\ \mbox{Operands} & \mbox{k} : 0000\mbox{h} \sim 1\mbox{FFFh} \\ \mbox{Operation} & \mbox{PC.}12{\sim}0 \leftarrow \mbox{k} \\ \end{array}$

Status Affected -

OP-Code kk10 1kkk kkkk kkkk

Description LGOTO is an unconditional branch. The 13-bit immediate value is loaded into PC

bits <12:0>. LGOTO is a two-cycle instruction.

Cycle 2

Example LABEL1 LGOTO SUB1 B: PC =LABEL1

A: PC =SUB1

MOVX Move f

SyntaxMOVX f[,d]Operands $f:000h \sim 1FFh, d:0, 1$ Operation(destination) \leftarrow (f)

Status Affected Z

OP-Code ff00 1000 dfff ffff

Description The contents of register 'f' are moved to a destination dependent upon the status of

d. If d=0, destination is W register. If d=1, the destination is file register f itself.

d=1 is useful to test a file register, since status flag Z is affected.

Cycle 1

Example MOVX FSR,0 B: FSR = 0xC2, W = ?

A: FSR = 0xC2, W = 0xC2

MOVXW Move "f" to W

SyntaxMOVXW fOperands $f:000h \sim 1FFh$ Operation $(W) \leftarrow (f)$ Status AffectedZ

OP-Code ff00 1000 0fff ffff

Description The contents of register 'f' are moved to W register.

Cycle 1

Example MOVXW FSR B : FSR = 0xC2, W = ?

A: FSR =0xC2, W =0xC2

MOVLW Move Literal to W

Syntax MOVLW k
Operands $k: 00h \sim FFh$ Operation $(W) \leftarrow k$

Status Affected -

OP-Code 0001 1001 kkkk kkkk

Description The eight-bit literal 'k' is loaded into W register. The don't cares will assemble as

0's.

Cycle 1

Example MOVLW 0x5A

B: W = ?A: W = 0x5A

MOVWX Move W to "f"

 $\begin{tabular}{lll} Syntax & MOVWX & f \\ Operands & f:000h \sim 1FFh \\ Operation & (f) \leftarrow (W) \\ \end{tabular}$

Status Affected -

OP-Code ff00 0000 1fff ffff

Description Move data from W register to register 'f'.

Cycle 1

Example MOVWX REG1 B: REG1 =0xFF, W =0x4F

A: REG1 =0x4F, W =0x4F

NOP No Operation

Syntax NOP Operands -

Operation No Operation

Status Affected -

OP-Code 0000 0000 0000 0000

Description No Operation

Cycle 1

Example NOP -

RET Return from Subroutine

Syntax RET Operands -

Operation $PC \leftarrow TOS$

Status Affected

OP-Code 0000 0000 0100 0000

Description Return from subroutine. The stack is POPed and the top of the stack (TOS) is

loaded into the program counter. This is a two-cycle instruction.

Cycle 2

Example RET A : PC = TOS

DS-TM5670C2_E 95 Rev 0.91, 2025/01/17

RETI Return from Interrupt

Syntax RETI Operands -

Operation $PC \leftarrow TOS, GIE \leftarrow 1$

Status Affected

OP-Code 0000 0000 0110 0000

Description Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the

PC. Interrupts are enabled. This is a two-cycle instruction.

Cycle 2

Example RETI A: PC =TOS, GIE =1

RETLW Return with Literal in W

Syntax RETLW k
Operands k: 00h ~ FFh

 $Operation \qquad \qquad PC \leftarrow TOS, (W) \leftarrow k$

Status Affected -

OP-Code 0001 1000 kkkk kkkk

Description The W register is loaded with the eight-bit literal 'k'. The program counter is

loaded from the top of the stack (the return address). This is a two-cycle

instruction.

Cycle

Example LCALL TABLE B: W = 0x07

: A: W = value of k8

TABLE ADDWX PCL, 1

RETLW k1 RETLW k2

:

RETLW kn

RLX Rotate Left "f" through Carry

Syntax RLX f [,d]

Operands $f: 000h \sim 1FFh, d: 0, 1$

Operation C Register f

Status Affected C

OP-Code ff00 1101 dfff ffff

Description The contents of register 'f' are rotated one bit to the left through the Carry Flag. If

'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in

register 'f'.

Cycle 1

Example RLX REG1, 0 B: REG1 = 1110 0110, C = 0

A: REG1 =1110 0110 W =1100 1100, C =1

RRX Rotate Right "f" through Carry

Syntax RRX f [,d]

Operands f: 000h ~ 1FFh, d: 0, 1

Operation 1.00011 ~ 1FFII, d.0, I

C Register f

Status Affected C

OP-Code ff00 1100 dfff ffff

Description The contents of register 'f' are rotated one bit to the right through the Carry Flag.

If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back

in register 'f'.

Cycle 1

Example RRX REG1, 0 B: REG1 = 1110 0110, C = 0

A: REG1 =1110 0110 W =0111 0011, C=0

SLEEP Go into Power-down mode, Clock oscillation stops

Syntax SLEEP
Operands Operation -

Status Affected TO, PD

OP-Code 001 1110 0000 0011

Description Go into Power-down mode with the oscillator stops.

Cycle 1

Example SLEEP -

SUBLW Subtract W from Literal

SyntaxSUBLW kOperands $k:00h \sim FFh$ Operation $(W) \leftarrow k - (W)$ Status AffectedC, DC, Z

OP-Code 0001 1111 kkkk kkkk

Description The W register is subtracted (2's complement method) from the eight-bit literal

"k". The result is placed in the W register.

Cycle 1

Example SUBLW 0x15 B: W = 0x25

A:W=0xF0

SUBWX	Subtract W from "f"	
Syntax	SUBWX f [,d]	
Operands	f: 000h ~ 1FFh, d: 0, 1	
Operation	$(destination) \leftarrow (f) - (W)$	
Status Affected	C, DC, Z	
OP-Code	ff00 0010 dfff ffff	
Description		od) W register from register 'f'. If 'd' is 0, the result is 1, the result is stored back in register 'f'.
Cycle	1	
Example	SUBWX REG1, 1	B: REG1 = $0x03$, W = $0x02$, C =?, Z =?
-		A : REG1 = 0x01, W = 0x02, C = 1, Z = 0
	SUBWX REG1, 1	B: REG1 =0x02, W =0x02, C =?, Z =?
		A: REG1 = $0x00$, W = $0x02$, C = 1 , Z = 1
	SUBWX REG1, 1	B: REG1 =0x01, W =0x02, C =?, Z =?
		A : REG1 = 0xFF, W = 0x02, C = 0, Z = 0

Syntax	SWAPX f [,d]		
Operands	f: 000h ~ 1FFh, d: 0, 1		
Operation	(destination, $7\sim4$) \leftarrow (f. $3\sim0$),	$(destination.3\sim0) \leftarrow (f.7\sim4)$	
Status Affected	-		
OP-Code	ff00 1110 dfff ffff		
Description	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W register. If 'd' is 1, the result is placed in register 'f'.		
Cycle	1		
Example	SWAPX REG1, 0	B: REG1 = 0xA5	
		A : REG1 = 0xA5, W = 0x5A	

TABRH Return DPTR high byte to W

		8 13 11 11		
Syntax	TABRH			
Operands	-			
Operation	$(W) \leftarrow ROM$	I[DPTR] high byte content,	Where $DPTR = \{DPH[max:8], DPL[7:0]\}$	
Status Affected	-			
OP-Code	0000 0000 0	101 1000		
Description	The W register is loaded with high byte of ROM[DPTR]. This is a two-cycle			
	instruction.			
Cycle	2			
Example	MOVLW	(TAB1&0xFF)		
	MOVWX	DPL	;Where DPL is register	
	MOVLW	(TAB1>>8)&0xFF		
	MOVWX	DPH	;Where DPH is register	
	TABRL		;W = 0x89	
	TABRH		W = 0x37	
		ORG 0234H		
	TAB1:			
	DT	0x3789, 0x2277	:ROM data 16 bits	

DS-TM5670C2_E 98 Rev 0.91, 2025/01/17

TABRL Return DPTR low byte to W

Syntax TABRL

Operands -

Operation (W) \leftarrow ROM[DPTR] low byte content, Where DPTR = {DPH[max:8], DPL[7:0]}

Status Affected

OP-Code 0000 0000 0101 0000

Description The W register is loaded with low byte of ROM[DPTR]. This is a two-cycle

instruction.

Cycle 2

Example MOVLW (TAB1&0xFF)

MOVWX DPL ;Where DPL is register

MOVLW (TAB1>>8)&0xFF

MOVWX DPH ;Where DPH is register

TABRL ;W =0x89TABRH ;W =0x37

ORG 0234H

TAB1:

DT 0x3789, 0x2277 ;ROM data 16 bits

TSTX Test if "f" is zero

Syntax TSTX f

Operands $f: 000h \sim 1FFh$ Operation Set Z flag if (f) is 0

Status Affected 2

OP-Code ff00 1000 1fff ffff

Description If the content of register 'f' is 0, Zero flag is set to 1.

Cycle 1

Example TSTX REG1 B : REG1 = 0, Z = ?

A : REG1 = 0, Z = 1

XORLW Exclusive OR Literal with W

 $\begin{array}{lll} \text{Syntax} & XORLW & k \\ \text{Operands} & k:00h \sim FFh \\ \text{Operation} & (W) \leftarrow (W) \ XOR \ k \end{array}$

Status Affected Z

OP-Code 0001 1101 kkkk kkkk

Description The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result

is placed in the W register.

Cycle 1

Example XORLW 0xAF B: W=0xB5

A:W=0x1A

XORWX	Exclusive OR W with "f"
Syntax	XORWX f [,d]
Operands	f: 000h ~ 1FFh, d: 0, 1
Operation	$(destination) \leftarrow (W) XOR (f)$
Status Affected	Z
OP-Code	ff00 0110 dfff ffff
Description	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.
Cycle	1

Example XORWX REG1, 1 B : REG1 = 0xAF, W = 0xB5A: REG1 = 0x1A, W = 0xB5

DS-TM5670C2_E 100 Rev 0.91, 2025/01/17

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings $(T_A = 25 \,^{\circ}\text{C})$

Parameter	Rating	Unit
Supply voltage	V_{SS} -0.3 to V_{SS} +5.5	
Input voltage	V_{SS} -0.3 to V_{CC} +0.3	V
Output voltage	V_{SS} -0.3 to V_{CC} +0.3	
Output current high per 1 PIN	-25	
Output current high per all PIN	-80	A
Output current low per 1 PIN	+30	mA
Output current low per all PIN	+150	
Maximum operating voltage	5.5	V
Operating temperature	-40 to +105	°C
Storage temperature	-65 to +150	C

2. DC Characteristics ($T_A = 25$ °C, $V_{CC} = 5.0$ V, unless otherwise specified)

Parameter	Symbol	Cond	itions	Min.	Typ.	Max.	Unit
Operating Voltage	V	Fsys = 18	.432 MHz	2.2	ı	5.5	V
Operating Voltage	V_{cc}	Fsys = 9.	216 MHz	2.0	-	5.5	
Input High Voltage	V_{IH}	All Input	$V_{CC} = 3.0 \sim 5.0 V$	$0.6V_{CC}$	-	V_{CC}	V
Input Low Voltage	$V_{\rm IL}$	All Input	$V_{CC} = 3.0 \sim 5.0 V$	V_{SS}	ı	$0.2V_{CC}$	V
I/O port Source Current	T	All I/O nin	$V_{CC} = 5.0V,$ $V_{OH} = 4.5V$	6	12	-	mA
	I_{OH}	All I/O pin	$V_{CC} = 3.0V,$ $V_{OH} = 2.7V$	2.5	5	_	IIIA
		All I/O pin	$V_{CC} = 5.0V,$ $V_{OL} = 0.5V$	38	75	_	mΛ
I/O port	T	(HSINK=1)	$V_{CC} = 3.0V,$ $V_{OL} = 0.3V$	18	35	_	mA
Sink Current	I_{OL}	All I/O pin (HSINK=0)	$V_{CC} = 5.0V,$ $V_{OL} = 0.5V$	22	43	_	— mA
			$V_{CC} = 3.0V,$ $V_{OL} = 0.3V$	10	19	_	
Input Leakage Current (pin high)	I_{ILH}	All Input	$V_{IN} = V_{CC}$	_	-	1	μΑ
Input Leakage Current (pin low)	I_{ILL}	All Input	$V_{\rm IN} = 0V$	_	ı	-1	μΑ
I/O pull un register	D	$V_{IN} = 0 V$	$V_{CC} = 5.0V$		35.8		ΚΩ
I/O pull-up resister	R_{UP}	Ports A, B	$V_{CC} = 3.0V$		36.4		K22

DS-TM5670C2_E 101 Rev 0.91, 2025/01/17

Parameter	Symbol	Cond	itions	Min.	Typ.	Max.	Unit
		FAST mode	$V_{CC} = 5.0V$	_	4.3	_	
		FIRC18.432 MHz	$V_{CC} = 3.0V$	_	2.5	_	
		FAST mode $V_{CC} = 5.0V$	_	2.5	-		
		FIRC 9.216 MHz	$V_{CC} = 3.0V$	_	1.5		mA
		FAST mode	$V_{CC} = 5.0V$	_	1.9	-	ША
		FIRC 4.608 MHz	$V_{CC} = 3.0V$	_	1.2	_	
		FAST mode	$V_{CC} = 5.0V$	_	1.6	_	
		FIRC 2.304 MHz	$V_{CC} = 3.0V$	_	1.0	_	
		SLOW mode FIRC disable ROMODS=00	$V_{\rm CC} = 5.0 V$	-	140	_	
		LDO3V disable LDO1.2V disable POR/LVR enable LVD enable	$V_{\rm CC} = 3.0V$	_	95	ı	
Operating Current	$I_{ m DD}$	SLOW mode FIRC disable ROMODS=00 LDO3V disable	$V_{CC} = 5.0V$	_	95	1	
		LDO3 v disable LDO1.2V disable POR/LVR disable LVD enable	$V_{CC} = 3.0V$	_	60	1	
		SLOW mode FIRC disabled ROMODS=00 LDO3V disable	$V_{\rm CC} = 5.0V$	-	18	ı	μΑ
		LDO1.2V disable POR/LVR disable LVD disable	$V_{\rm CC} = 3.0V$	_	9	ı	
		IDLE mode	$V_{\rm CC} = 5.0 V$	_	80	_	
		POR/LVR disable LVD enable	$V_{CC} = 3.0V$	_	50	_	
		IDLE mode	$V_{CC} = 5.0V$	_	6.5	_	
		POR/LVR disable	$V_{\rm CC} = 3.0 \text{V}$	_	2.0	_	
	LVD disable STOP mode	$V_{CC} = 5.0V$ $V_{CC} = 5.0V$	_	_	0.1		
		POR/LVR disable LVD disable	$V_{\rm CC} = 3.0 \text{V}$	_	_	0.1	

3. Clock Characteristics

Parameter	Condi	tion	Min.	Typ.	Max.	Unit
FIRC Frequency (*)	$T_A = -40^{\circ} \text{C} \sim 105^{\circ} \text{C}$	$V_{CC} = 3.0 \sim 5.5 V$	-2%	18.432	+6%	
	$T_A = -40^{\circ} \text{C} \sim 105^{\circ} \text{C}$	$V_{CC} = 5.0 \text{ V}$	-1.5%	18.432	+1%	MHz
	$T_A = 25 \degree C$	$V_{CC} = 5.0 \text{ V}$	-0.5%	18.432	+0.5%	

^{*}System clock(F_{sys}) can be divided by 1/2/4/8.

Parameter		Condition	Min.	Typ.	Max.	Unit
SIRC Frequency (*)	$T_A = 25$ °C	$V_{\rm CC} = 5.0 \text{ V}$	-	37	-	KHz
	$T_A = 25$ °C	$V_{CC} = 3.0 \text{ V}$	-	33	-	КПХ

^{*}System clock(F_{sys}) can be divided by 1/2/4/8.

4. Reset Timing Characteristics $(T_A = 25^{\circ}C)$

Parameter	Conditions	Min.	Тур.	Max.	Unit
RESET Input Low width	Input $V_{CC} = 5.0 \text{ V} \pm 10 \%$	-	30		μs
CPU start up time	$V_{CC} = 5.0 \text{ V}$	_	51	_	
	$V_{CC} = 3.0 \text{ V}$	_	57	_	ms
WDT time	$V_{CC} = 5.0 \text{ V, WDTPSC} = 11b$		3542		
	$V_{CC} = 3.0 \text{ V, WDTPSC} = 11\text{b}$	_	3972	_	ms

5. Wakeup Timer (WKT) Timing Characteristics $(T_A = 25^{\circ}C)$

Parameter	Conditions	Min.	Тур.	Max.	Unit
WKT time	$V_{CC} = 5.0 \text{ V, WKTPSC} = 11b$	_	221	-	***
	$V_{CC} = 3.0 \text{ V}, \text{WKTPSC} = 11\text{b}$	-	248	-	ms

DS-TM5670C2_E 103 Rev 0.91, 2025/01/17

6. LVR Circuit Characteristics $(T_A = 25 \,^{\circ}\text{C})$

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
		SYSCFG.11~8 = $0000b$	-	2.13	-	
		SYSCFG.11~8 = $0001b$	-	2.26	_	
		SYSCFG.11~8 = $0010b$	-	2.40	_	
		SYSCFG.11~8 = $0011b$	-	2.54	_	
		SYSCFG.11~8 = $0100b$	-	2.69	_	
		SYSCFG.11~8 = $0101b$	-	2.83	_	
		SYSCFG.11~8 = $0110b$	-	2.97	_	
L VD Voltoge	LVD	SYSCFG.11~8 = 0111b	-	3.11	_	V
LVR Voltage	LVR _{th}	SYSCFG.11~8 = 1000b	-	3.26	_	V
		SYSCFG.11~8 = 1001b	-	3.40	_	
		SYSCFG.11~8 = 1010b	-	3.54	_	
		SYSCFG.11~8 = 1011b	-	3.68	_	
		SYSCFG.11~8 = 1100b	-	3.84	_	
		SYSCFG.11~8 = 1101b	-	3.98	_	
		SYSCFG.11~8 = 1110b	-	4.12	_	
		SYSCFG.11~8 = 1111b	-	4.26	_	
LVR Hysteresis Window	V _{HYS_LVR}	-	_	20	_	mV
Low Voltage Detection time	T_{LVR}	-	100	_	_	μs

7. LVD Circuit Characteristics $(T_A = 25 \,^{\circ}\text{C})$

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
		LVDS = 0001b	_	2.24	_	
		LVDS = 0010b	_	2.37	_	
		LVDS = 0011b	_	2.51	_	
		LVDS = 0100b	_	2.65	_	
		LVDS = 0101b	_	2.79	_	
		LVDS = 0110b	_	2.93	_	
		LVDS = 0111b	_	3.07	_	
LVD Voltage	$\mathrm{LVD}_{\mathrm{th}}$	LVDS = 1000b	_	3.22	_	V
		LVDS = 1001b	_	3.36	_	
		LVDS = 1010b	_	3.50	_	
		LVDS = 1011b	_	3.64	_	
		LVDS = 1100b	_	3.78	_	
		LVDS = 1101b	_	3.92	_	
		LVDS = 1110b	_	4.06	_	
		LVDS = 1111b	_	4.20	_	
THE		LVDHYS = 0	_	20	_	
LVD Hysteresis Window	V_{HYS_LVD}	LVDHYS = 1 (LVDS=0001b)	_	40	_	mV
WIIIUOW		LVDHYS = 1 (LVDS=1111b)		80		
Low Voltage Detection time	$T_{ m LVD}$	-	100	_	_	μs

8. ADC Characteristics ($T_A = 25$ °C, $V_{CC} = 3.0$ V to 5.5V, $V_{SS} = 0$ V)

Parameter	Conditions	Min.	Тур.	Max.	Units
Total Accuracy		-	±3	±13	
Integral Non-Linearity	$V_{CC} = 5.0V, V_{SS} = 0V, F_{ADC} = 1 \text{ MHz}$	_	±3.2	±15	LSB
Differential Non-Linearity		-	±1	±4	
	Source impedance (Rs<10K ohm)	Ī	_	4	
May Input Clask from (E.)	Source impedance (Rs<20K ohm)	-	_	2	MHz
Max Input Clock freq. (F _{ADC})	Source impedance (Rs<50K ohm)	Ī	_	1	MITIZ
	Source is internal voltage	Ī	_	4	
Conversion Time	$F_{ADC} = 2 \text{ MHz}$	Ī	25	1	μs
V _{CC} /4 reference voltage	25° C, $V_{CC} = 3.0V \sim 5.5V$	-1%	$0.25V_{CC}$	+1%	V
Input Voltage	_	V_{ss}	_	V_{CC}	V

9. VBG Characteristics $(V_{CC} = 5.0V, V_{SS} = 0V)$

Parameter	Conditions	Min.	Typ.	Max.	Units
Bandgap Reference Voltage (LDO1.2V)	25°C	-1%	1.2	+1%	V
	-20°C~105°C	-1.5%	1.2	+1.5%	V
Bandgap Reference Voltage	25°C	-1%	3.0	+1%	V
(VR, LDO3V)	-20°C~105°C	-1.5%	3.0	+1.5%	V

10. OPA Characteristics ($T_A = 25\,^{\circ}\text{C},\, V_{CC} = 5.0\text{V},\, V_{SS} = 0\text{V})$

Parameter	Conditions	Min.	Typ.	Max.	Units
Power supply	_	2.2	_	5.5	V
Vicm	_	0.1	_	V _{CC} -0.7	V
Vos2	After trim	-	2	_	mV
$\Delta \operatorname{Vos}/\Delta \operatorname{T}$	After trim	-	4	8	μV/C
AVOL	RL = 1M ohm, CL = 100 pF, Vi = 0.1 to 4V, Vo = 1 to 4V	_	100	_	dB
GBW	RL = 1M ohm, $CL = 100$ pF	_	2	-	MHz
CMRR	Vo = 2V	_	80	-	dB
PSRR	Vo = 2V	_	80	-	dB
ICC	Gain = 1, OPP = 5V, OPO > 2.5V at $V_{CC} = 5V$	-	200	_	uA
SR	No load	_	1.2	-	V/µs
ЮН	Gain = 1, OPP = 5V, OPO > 2.5V at $V_{CC} = 5V$	_	8	_	mA
IOL	Gain = 1, OPP = 5V, OPO > 2.5V at $V_{CC} = 5V$	_	14	_	mA

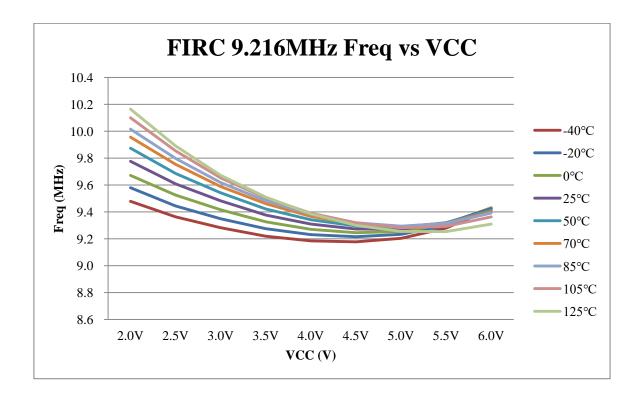
DS-TM5670C2_E 105 Rev 0.91, 2025/01/17

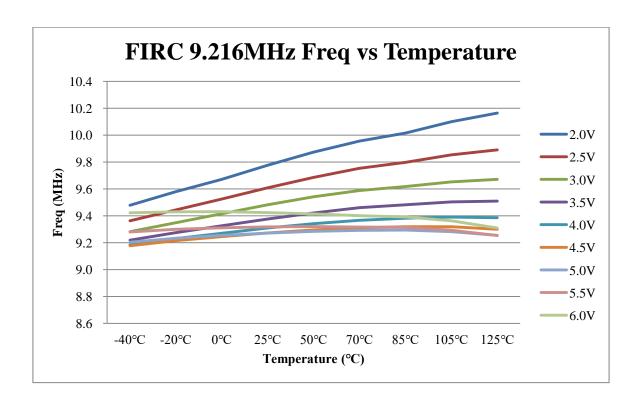
11. Comparator Characteristics ($T_A = 25$ °C, $V_{CC} = 3.0$ V to 5.5V, $V_{SS} = 0$ V)

The VSS voltage used by the DAC0/DAC1 module will be raised by about 10mV.

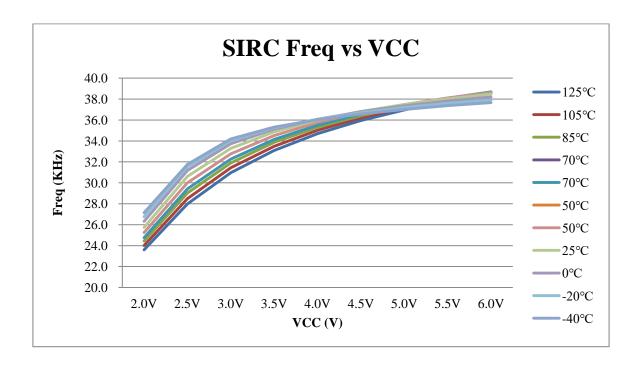
Parameter	Conditions	Min.	Typ.	Max.	Units
Power supply	_	2.2	_	5.5	V
Quiescent Current	$V_{CC} = 5.0V$	Í	100	_	μΑ
DAC Current	$V_{CC} = 5.0V$	60	_	220	μΑ
V_{OS_CMP}	$V_{CC} = 5.0V$	-15	_	15	mV
$V_{\mathrm{CM_CMP}}$	$V_{CC} = 5.0V$	0	_	V _{CC} -0.5	V
V_{HYS_CMP}	$V_{CC} = 5.0V$	5	10	20	mV

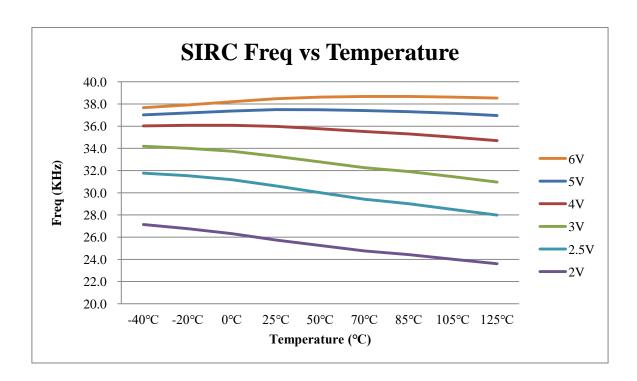
12. Emulated EEPROM Characteristics


Parameter	Conditions	Min	Тур	Max	Unit
Write Voltage	25°C	4.5	5	5.5	V
Write Endurance*	-20°C~85°C	0.5K	-	ı	ovalos
	25°C	1K	-	-	cycles

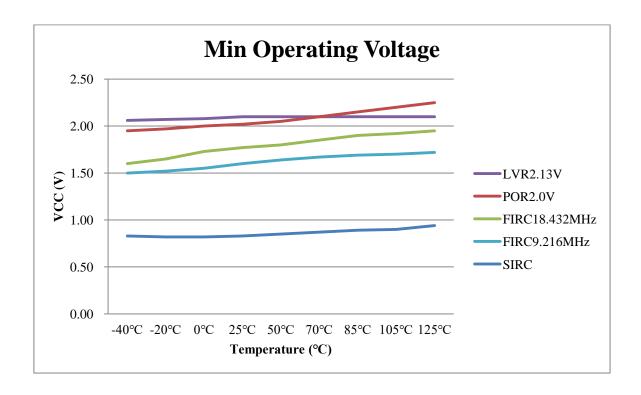

^{*}The value of this parameter is based on the characteristics of tested samples.

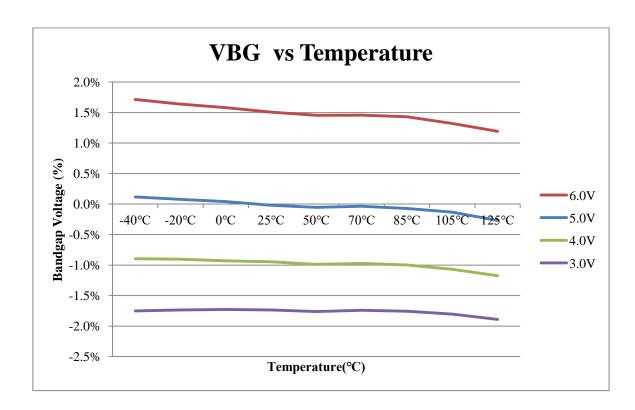
DS-TM5670C2_E 106 Rev 0.91, 2025/01/17


Characteristics Graphs



DS-TM5670C2_E 107 Rev 0.91, 2025/01/17

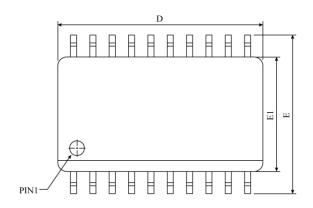


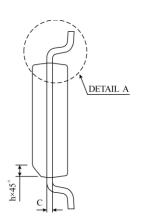


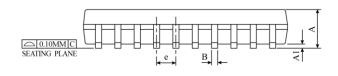
DS-TM5670C2_E 108 Rev 0.91, 2025/01/17

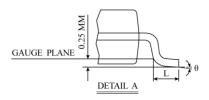
DS-TM5670C2_E 109 Rev 0.91, 2025/01/17

PACKAGING INFORMATION


Please note that the package information provided is for reference only. Since this information is frequently updated, users can contact Sales to consult the latest package information and stocks. The ordering information:


Ordering number	Package
TM56F70C23S	SOP 20-pin (300 mil)
TM56F70C23T	TSSOP 20-pin (173 mil)
TM56F70C23Q	QFN 20-pin (3*3*0.75-0.4mm)
TM56F70C22S	SOP 16-pin (150 mil)

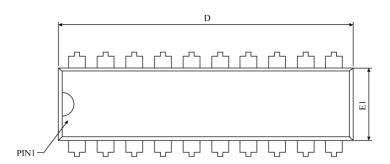

DS-TM5670C2_E 110 Rev 0.91, 2025/01/17

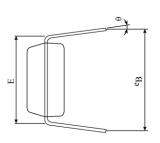


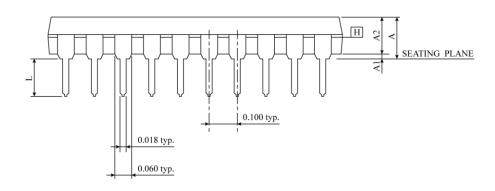
SOP-20 (300 mil) Package Dimension

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH		
STMBOL	MIN	NOM	MAX	MIN	NOM	MAX
A	2.35	2.50	2.65	0.0926	0.0985	0.1043
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118
В	0.33	0.42	0.51	0.0130	0.0165	0.0200
С	0.23	0.28	0.32	0.0091	0.0108	0.0125
D	12.60	12.80	13.00	0.4961	0.5040	0.5118
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992
e		1.27 BSC		0.050 BSC		
h	0.25	0.50	0.75	0.0100	0.0195	0.0290
L	0.40	0.84	1.27	0.0160	0.0330	0.0500
θ	0°	4°	8°	0°	4°	8°
JEDEC	MS-013 (AC)					

* NOTES : DIMENSION " D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.


MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL


NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

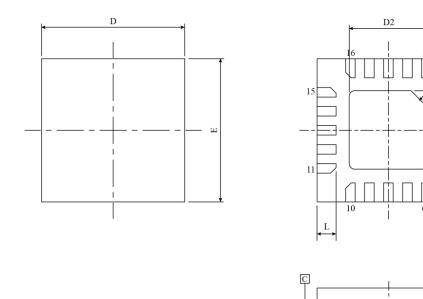

DS-TM5670C2_E 111 Rev 0.91, 2025/01/17

DIP-20 (300mil) Package Dimension

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH		
	MIN	NOM	MAX	MIN	NOM	MAX
A	-	-	4.445	-	-	0.175
A1	0.381	-	-	0.015	-	-
A2	3.175	3.302	3.429	0.125	0.130	0.135
D	25.705	26.061	26.416	1.012	1.026	1.040
Е	7.620	7.747	7.874	0.300	0.305	0.310
E1	6.223	6.350	6.477	0.245	0.250	0.255
L	3.048	3.302	3.556	0.120	0.130	0.140
e _B	8.509	9.017	9.525	0.335	0.355	0.375
θ	0°	7.5°	15°	0°	7.5°	15°
JEDEC	MS-001 (AD)					

NOTES:

- 1. "D" , "E1" DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOTEXCEED .010 INCH.
- 2. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.
- 3. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.
- 4. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.
- 5. DATUM PLANE III COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.


DS-TM5670C2_E 112 Rev 0.91, 2025/01/17

C 0.35×45°

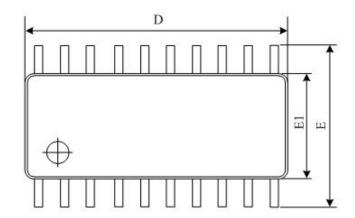
E2

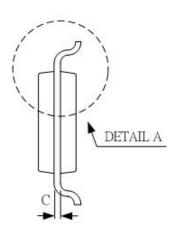
QFN-20 (3*3*0.75-0.4mm) Package Dimension

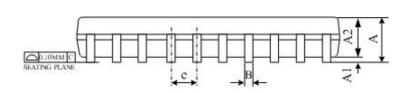
O.08 MAX C
SEATING PLANE

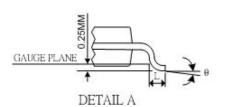
SYMBOL	DIMENSION IN MM			DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	0.70	0.75	0.80	0.028	0.030	0.031	
A1	0.00	0.02	0.05	0.000	0.001	0.002	
A3	0.203 REF.			0.008 REF.			
В	0.15	0.20	0.25	0.006	0.008	0.010	
D	3.00 BSC			0.118 BSC			
Е		3.00 BSC			0.118 BSC		
e		0.40 BSC		0.016 BSC			
K	0.20	-	-	0.008	-	-	
E2	1.60	1.65	1.70	0.063	0.065	0.067	
D2	1.60	1.65	1.70	0.063	0.065	0.067	
L	0.30	0.40	0.50	0.012	0.016	0.020	
JEDEC							

⚠ * NOTES : 1. ALL DIMENSION ARE IN MILLIMETRS.


- 2. DIMENSION B APPLIES TO METALLLIZED TERMINAL AND IS MEASURED BETWEEN 0.15mm AND 0.30mm FROM THE TERMINAL TIP.


 IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION B SHOULD NOT BE MEASURED IN THAT RADIUS AREA.
- 3. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.

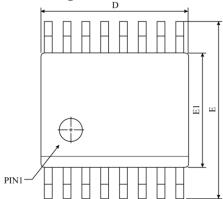

DS-TM5670C2_E 113 Rev 0.91, 2025/01/17

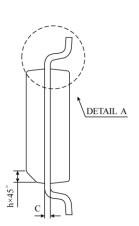


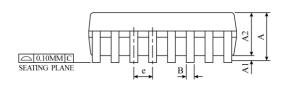
TSSOP-20 (173 mil) Package Dimension

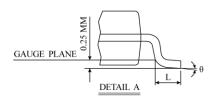
cua mor	D	IMENSION IN M	IM	DI	MENSION IN I	NCH
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
A			1.2		*	0.047
Al	0.05	0.10	0.15	0.002	0.004	0.006
A2	0.8	0.93	1.05	0.031	0.036	0.041
В	0.19		0.3	0.007	19	0.013
D	6.4	6.5	6.6	0.252	0.256	0.260
E	6.25	6.4	6.55	0.246	0.252	0.258
EI	4.3	4.4	4.5	0.169	0.173	0.177
e		0.65 BSC			0.026 BSC	
L	0.45	0.60	0.75	0.018	0.024	0.030
θ	0 °		8 °	0 '		8 "
JEDEC	MO-153 AC REV.F					

1.DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.

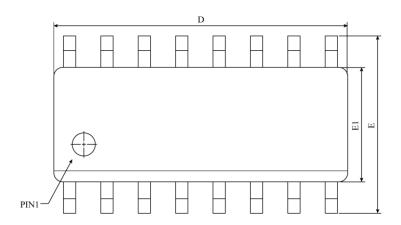

2.DIMENSION "E1" DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR

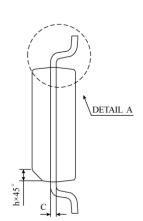

114 Rev 0.91, 2025/01/17 $DS-TM5670C2_E$

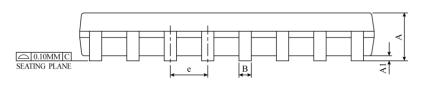

^{2.}DIMENSION ET DOES NOT INCLUDE INTERLEAD PLASH OR PROTRUSION, INTERLEAD PLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE,
3.DIMENSION "B" DOES NOT INCLUDE DAMBAR PROTRUSION, ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08MM TOTAL IN EXCESS OF THE "B" DIMENSION AT MAXIMUM METERIAL CONDITION, DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT, MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD IS 0.07MM.



SSOP-16 (150mil) Package Dimension


SYMBOL	DI	MENSION IN M	IM	DIMENSION IN INCH		
STIVIBOL	MIN	NOM	MAX	MIN	NOM	MAX
A	1.35	1.55	1.75	0.053	0.061	0.069
A1	0.10	0.18	0.25	0.004	0.007	0.010
A2	-	-	1.50	-	-	0.059
В	0.20	0.25	0.30	0.008	0.010	0.012
С	0.18	0.22	0.25	0.007	0.009	0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
Е	5.79	6.00	6.20	0.228	0.236	0.244
E1	3.81	3.90	3.99	0.150	0.154	0.157
e	0.635 BSC			0.025 BSC		
L	0.41	0.84	1.27	0.016	0.033	0.050
θ	0°	4°	8°	0°	4°	8°
JEDEC	M0-137 (AB)					


*NOTES: DIMENSION "D" DOES NOT INCLUDE MOLD PROTRUSIONS OR GATE BURRS, MOLD PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.


DS-TM5670C2_E 115 Rev 0.91, 2025/01/17



SOP-16 (150 mil) Package Dimension

SYMBOL	DI	MENSION IN M	ſМ	DIMENSION IN INCH		
	MIN	NOM	MAX	MIN	NOM	MAX
A	1.35	1.55	1.75	0.0532	0.0610	0.0688
A1	0.10	0.18	0.25	0.0040	0.0069	0.0098
В	0.33	0.42	0.51	0.0130	0.0165	0.0200
С	0.19	0.22	0.25	0.0075	0.0087	0.0098
D	9.80	9.90	10.00	0.3859	0.3898	0.3937
Е	5.80	6.00	6.20	0.2284	0.2362	0.2440
E1	3.80	3.90	4.00	0.1497	0.1536	0.1574
e		1.27 BSC		0.050 BSC		
h	0.25	0.38	0.50	0.0099	0.0148	0.0196
L	0.40	0.84	1.27	0.0160	0.0330	0.0500
θ	0°	4°	8°	0°	4°	8°
JEDEC	MS-012 (AC)					

*NOTES: DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL

NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

DS-TM5670C2_E 116 Rev 0.91, 2025/01/17