

TM52F4974

DATA SHEET Rev 1.7

(Please read the precautions on the second page before use)

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. tenx does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. tenx products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses tenx products for any such unintended or unauthorized application, Buyer shall indemnify and hold tenx and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that tenx was negligent regarding the design or manufacture of the part.

PRECAUTIONS

- 1. Chip cannot enter Halt/Stop Mode if INTn pin is low and wakeup is enabled. (INTn=0 and EXn=1, n=0~2)
- 2. SFR.LVRCON (E3h) need to be set first when power on.
- 3. If TKPD=0, F/W must assign TK0 as a TK pin.
- 4. EEPROM has 50K erase times at least when used within the specification (F_{SYS} =FRC/2, 3.5V<V_{CC}<5.5V, -20°C~105°C). If used under 3V conditions, it has 20K erase times at least (F_{SYS} =FRC/2, 3.0V<V_{CC}<5.5V, -20°C~50°C)

DS-TM52F4974_E 2 Rev 1.7, 2025/10

AMENDMENT HISTORY

Version	Date	Description
V1.0	Jun, 2024	New Release
V1.1	Oct, 2024	 Corrected the description errors of Pin3 and Pin4 of SOP-20 package. Modified the package of ordering number. Added ADC and TK conversion current. Some error correction.
V1.2	Dec, 2024	 Modified the package of ordering number. Some error correction.
V1.3	Mar, 2025	Add TM52F49745S3 SOP28 package type. Some error correction.
V1.4	Jun, 2025	 Add TM52F49743S2 SOP20 package type. Modify ADC Electrical Characteristics. Modify Port0~Port3 pin change wake up or interrupt can be used in Fast/Slow/Idle mode. Some error correction.
V1.5	Jul, 2025	 Added description on EEPROM erase times. Some error correction.
V1.6	Aug, 2025	 Add TM52F49744E SSOP24 package type. Corrected SRAM to 1536 bytes. (including IRAM 256 bytes and XRAM 1280 bytes) Some error correction.
V1.7	Oct, 2025	 Modify description on EEPROM erase times. Some error correction.

DS-TM52F4974_E 3 Rev 1.7, 2025/10

CONTENTS

PRE	ECAUTIONS	
AMI	ENDMENT HISTORY	3
GEN	NERAL DESCRIPTION	6
FEA	ATURES	7
	ASSIGNMENT	
	DESCRIPTION	
	SUMMERY	
	NCTIONAL DESCRIPTION	
	CPU Core	
1.		
	1.1 Accumulator (ACC)	
	1.3 Stack Pointer (SP)	
	1.4 Dual Data Pointer (DPTRs)	
	1.5 Program Status Word (PSW)	
2.	Memory	18
	2.1 Program Memory	
	2.2 EEPROM Memory	
	2.3 Precautions for using EEPROM	
	2.4 Information Memory	
	2.5 Data Memory	28
3.	LVR and LVD setting	31
4.	Reset	33
	4.1 Power on Reset (POR)	33
	4.2 External Pin Reset (XRST)	
	4.3 Software Command Reset (SWRST)	
	4.4 Watchdog Timer Reset (WDTR)	
	4.5 Low Voltage Reset (LVR)	
5.	Clock Circuitry & Operation Mode	36
	5.1 System Clock	
	5.2 Operation Modes	
6.	Interrupt & Wake-up	40
	6.1 Interrupt Enable and Priority Control	
	6.2 Suggestions on interrupting subroutines	
	6.3 Pin Interrupt and LVD interrupt6.4 Idle mode Wake up and Interrupt	
	6.4 Idle mode Wake up and Interrupt6.5 Halt/Stop mode Wake up and Interrupt	
7		
7.		
	7.1 Port0~Port 3	

8. Timers	64
8.1 Timer0 / Timer1	64
8.2 Timer2	
8.3 Timer3	
9. UARTs	
10. PWMs	
10.1 PWM0	
10.2 PWM1~PWM6	
11. ADC	84
11.1 ADC Channels	85
11.2 ADC Conversion Time	86
12. Touch Key (FTK)	89
13. S/W Controller LCD Driver	97
14. LED Controller/Driver	102
14.1 LED Matrix (MX) Mode	
14.2 LED Dot Matrix (DMX) Mode	
15. Serial Peripheral Interface (SPI)	
16. Cyclic Redundancy Check (CRC)	
17. Multiplier and Divider	
18. Master I C Interface	
19. Slave I℃ Interface	
20. In Circuit Emulation (ICE) Mode	126
SFR & CFGW MAP	
SFR & CFGW DESCRIPTION	
INSTRUCTION SET	149
ELECTRICAL CHARACTERISTICS	
1. Absolute Maximum Ratings	
2. DC Characteristics	
3. Clock Timing	
4. Reset Timing Characteristics	
5. LVR Circuit Characteristics	154
6. LVD Circuit Characteristics	154
7. ADC Electrical Characteristics	
8. TK Electrical Characteristics	
9. EEPROM Characteristics	
10. Characteristic Graphs	
Package and Dice Information	

GENERAL DESCRIPTION

TM52 series **F4974** are versions of a new, fast 8051 architecture for an 8-bit microcontroller single chip with an instruction set fully compatible with industry standard 8051, and retains most 8051 peripheral's functional block. Typically, the **TM52** executes instructions six times faster than the standard 8051 architecture.

The **TM52-F4974** provides improved performance, lower cost and fast time-to-market by integrating features on the chip, including 16K Bytes Flash program memory, 128 Bytes EEPROM, 1536 Bytes SRAM, Low Voltage Reset (LVR), Low Voltage Detector (LVD), dual clock power saving operation mode, 8051 standard UART and Timer0/1/2, real time clock Timer3, LCD/LED driver, 7 sets 16-bit PWMs, 26 channels 12-bit A/D Convertor, 23 channels Touch Key, I²C interface, SPI interface and Watch Dog Timer. It's a high reliability and low power consumption feature can be widely applied in consumer and home appliance products.

TM52_{series} F4974

DS-TM52F4974_E 6 Rev 1.7, 2025/10

FEATURES

1. Standard 8051 Instruction set, fast machine cycle

• Executes instructions six times faster than the standard 8051.

2. Flash Program Memory

- 16K Bytes Flash program memory
- Support "In Circuit Programming" (ICP) or "In System Programming" (ISP) for the Flash code
- Byte Write "In Application Programming" (IAP) mode is convenient as Data EEPROM access
- Code Protection Capability
- 10K erase times at least
- 10 years data retention at least

3. 128 Bytes EEPROM Memory

- 50K erase times at least
- 10 years data retention at least

4. Total 1536 Bytes SRAM (IRAM + XRAM)

- 256 Bytes IRAM in the 8051 internal data memory area
- 1280 Bytes XRAM in the 8051 external data memory area (accessed by MOVX Instruction)

5. Four System Clock type selections

- Fast clock from 1~18MHz Crystal (FXT)
- Fast clock from Internal RC (FRC, 18.432 MHz)
- Slow clock from 32768Hz Crystal (SXT)
- Slow clock from Internal RC (SRC, 41 KHz)
- System Clock can be divided by 1/2/4/16 option

6. 8051 Standard Timer – Timer 0/1/2

- 16-bit Timer0, also supports T0O clock output for Buzzer application
- 16-bit Timer1, also supports T1O clock output for Buzzer application
- 16-bit Timer2, also supports T2O clock output for Buzzer application

7. 24-bit Timer3

- Clock source is Slow clock or FRC/512
- with reload function
- with clear and hold function

8. UARTs

- UART1, 8051 standard UART
- UART2, the second UART, supports only Mode1 and Mode3
- Additional Baud Rate generator option
- With UART pin select option

DS-TM52F4974_E 7 Rev 1.7, 2025/10

9. Seven 16-bit PWMs

[16-bit PWM0 P+N]

- with period-adjustment/buffer-reload/clear and hold function
- Non-overlap durations adjustable
- Half-bridge phase control output
- FRC * 2 (36MHz), FRC (18MHz) or system clock source selectable

[16-bit PWM1~6]

- share period
- with period-adjustment/buffer-reload/clear and hold function
- FRC * 2 (36MHz), FRC (18MHz) or system clock source selectable

10. I²C interface (Master / Slave)

• with I²C pin select option

11. SPI interface

- Master or Slave mode selectable
- Programmable transmit bit rate
- Serial clock phase and polarity options
- MSB-first or LSB-first selectable

12. 12-bit ADC with 26 channels External Pin Input and 2 channels Internal Reference Voltage

- Internal Reference Voltage: V_{BG}, 1/4V_{CC}
- ADC reference voltage: V_{BG} / V_{CC}

13. 23-Channel Touch Key (FTK)

- Internal reference key
- With 4 scanning methods

14. LCD Driver

- Software controlled COM00~07, COM10~17, COM20~21, COM30~37 (Max. 26 pins)
- 1/2 LCD Bias

15. LED Controller/Driver

- COM with Dead Time
- 8-level Brightness selection
- Brightness uniform / enhancement option

Matrix (MX) mode

• 4Cx12S ~ 8Cx8S selectable, Max. 16 pins up to 48~64 dots

[Dot matrix (DMX) mode]

• 4Cx4S, 5Cx5S, 6Cx6S, 6Cx7S, 7Cx7S, 7Cx8S, Max. 8 pins up to 56 dots

DS-TM52F4974_E 8 Rev 1.7, 2025/10

16. 14 Sources, 4-level priority Interrupt

- Timer0/Timer1/Timer2/Timer3 Interrupt
- INT0/INT1 pin Falling-Edge/Low-Level Interrupt
- INT2 pin Falling-Edge Interrupt
- Port0/1/2/3 Pin Change Interrupt
- UART1 TX/RX Interrupt
- UART2 TX/RX Interrupt
- ADC/Touch Key Interrupt
- I²C/SPI interrupt
- LVD Interrupt
- PWM0/PWM1 Interrupt

17. Pin Interrupt can Wake up CPU from Halt/Stop mode

- P3.2/P3.3 (INT0/INT1) Interrupt & Wake-up
- P3.7 (INT2) Interrupt & Wake-up
- Each Port0/1/2/3 pin can be defined as Interrupt & Wake-up pin (by pin change)

Note: Chip cannot enter Halt/Stop mode if INTn pin is low and wakeup is enabled. (INTn=0 and EXn=1, $n=0\sim2$)

18. Max. 26 Programmable I/O pins

- CMOS Output
- Pseudo-Open-Drain, or Open-Drain Output
- Schmitt Trigger Input
- Pin Pull-up can be Enabled or Disabled
- All pin with High sink option ($80\text{mA@V}_{CC}=5\text{V}$, $V_{OL}=0.1\text{V}_{CC}$)

19. Independent RC Oscillating Watch Dog Timer

• 400ms/200ms/100ms/50ms selectable WDT timeout options

20. Five types Reset

- Power on Reset
- Selectable External Pin Reset
- Selectable Watch Dog Reset
- Software Command Reset
- Selectable Low Voltage Reset

21. 16-level Low Voltage Reset (LVR)

2.05V/2.19V/2.33V/2.47V/2.61V/2.75V/2.89V/3.03V/
 3.17V/3.31V/3.45V/3.59V/3.73V/3.87V/4.01V/4.15V (step=0.14V)

DS-TM52F4974_E 9 Rev 1.7, 2025/10

22. 16-level Low Voltage Detect (LVD)

- 2.05V/2.19V/2.33V/2.47V/2.61V/2.75V/2.89V/3.03V/
 3.17V/3.31V/3.45V/3.59V/3.73V/3.87V/4.01V/4.15V (step=0.14V)
- LVD detect polarity option
- LVD Hysteresis 30mV~80mV

23. Five Power Operation Modes

• Fast/Slow/Idle/Halt/Stop mode

24. Integrated 16-bit Cyclic Redundancy Check function

25. Multiplication and Division

- 8 bits Multiplier & Divider (standard 8051)
- 16 bits Multiplier & Divider
- 32 bits ÷ 16 bits Divider

26. On-chip Debug/ICE interface

- Use P3.0/P3.1 pin or P0.0/P0.1 pin
- Share with ICP programming pin
- Mass production writer only supports P3.0/P3.1

27. Operating Voltage and Current

- $V_{CC} = 2.2V \sim 5.5V @F_{SYSCLK} = 18.432MHz (-40°C \sim +105°C)$
- $I_{CC} = 0.2 \mu A$ @Stop mode, PWRSAV=1, $V_{CC}=3V$
- $I_{CC} = 2.4 \mu A$ @Halt mode, PWRSAV=1, $V_{CC}=3V$
- $I_{CC} = 3.6\mu A$ @Idle mode, PWRSAV=1, PORPD=1, $V_{CC}=3V$

28. Operating Temperature Range

• $-40^{\circ}\text{C} \sim +105^{\circ}\text{C}$

29. Package Types

- 28-pin SOP (300 mil)
- 28-pin SSOP (150 mil)
- 24-pin SSOP (150 mil)
- 20-pin SOP (300 mil)
- 16-pin SOP (150 mil)

DS-TM52F4974_E 10 Rev 1.7, 2025/10

10 P3.1/TK2/AD2/TXD/SDA/LCDC31/PSDA

9 P3.0/TK3/AD3/RXD/SCL/LCDC30/PSCL

PIN ASSIGNMENT

TM52F49745S/5E PSCL/LCDC00/COM0/LED0/TXD/AD23/P0.0 1 28 **VCC** 27 **VSS** PSDA/LCDC01/COM1/LED1/SCL/RXD/AD22/P0.1 2 LCDC02/COM2/LED2/SDA/RXD2/AD21/P0.2 3 26 P0.7/TK19/AD24/PWM6/SEG6/LCDC07 LCDC03/COM3/LED3/TXD2/AD20/TK18/P0.3 25 P0.6/TK20/AD25/PWM5/SEG7/LCDC06 LCDC20/SEG8/COM4/LED4/XI/PWM0N/AD18/TK16/P2.0 24 P0.5/TK21/AD26/PWM4/LCDC05 LCDC21/SEG9/COM5/LED5/XO/PWM0P/AD19/TK17/P2.1 23 P0.4/TK22/AD27/PWM3/LCDC04 LCDC37/SEG10/COM6/LED6/INT2/RSTn/PWM6/AD17/TK15/P3.7 SOP-28 22 P3.3/TK0/AD0/PWM2/INT1/LCDC33 LCDC34/SEG11/COM7/LED7/T0O/T0/PWM5/AD16/TK14/P3.4 21 P3.2/TK1/AD1/PWM1/INT0/LCDC32/VBGO SSOP-28 LCDC35/SEG0/MOSI/T10/T1/PWM4/AD15/TK13/P3.5 9 20 P3.1/TK2/AD2/TXD/SDA/LCDC31/PSDA LCDC36/SEG1/SCK/RXD2/AD14/TK12/P3.6 10 19 P3.0/TK3/AD3/RXD/SCL/LCDC30/PSCL LCDC17/SEG2/MISO/TXD2/AD11/TK11/P1.7 11 18 P1.0/TK4/AD4/T2/T2O/LCDC10 LCDC16/SEG3/PWM3/AD10/TK10/P1.6 12 17 P1.1/TK5/AD5/T2EX/LCDC11 LCDC15/SEG4/PWM2/AD9/TK9/P1.5 13 16 P1.2/TK6/AD6/PWM0P/LCDC12 LCDC14/SEG5/CKO/PWM1/AD8/TK8/P1.4 14 15 P1.3/TK7/AD7/PWM0N/LCDC13 TM52F49744E PSCL/LCDC00/COM0/LED0/TXD/AD23/P0.0 1 28 **VCC** PSDA/LCDC01/COM1/LED1/SCL/RXD/AD22/P0.1 27 **VSS** 26 P0.4/TK22/AD27/PWM3/LCDC04 LCDC02/COM2/LED2/SDA/RXD2/AD21/P0.2 3 LCDC03/COM3/LED3/TXD2/AD20/TK18/P0.3 4 25 **P3.3/TK0/AD0/PWM2/INT1/LCDC33** LCDC20/SEG8/COM4/LED4/XI/PWM0N/AD18/TK16/P2.0 24 P3.2/TK1/AD1/PWM1/INT0/LCDC32/VBGO LCDC21/SEG9/COM5/LED5/XO/PWM0P/AD19/TK17/P2.1 23 P3.1/TK2/AD2/TXD/SDA/LCDC31/PSDA SSOP-24 LCDC37/SEG10/COM6/LED6/INT2/RSTn/PWM6/AD17/TK15/P3.7 22 P3.0/TK3/AD3/RXD/SCL/LCDC30/PSCL LCDC34/SEG11/COM7/LED7/T0O/T0/PWM5/AD16/TK14/P3.4 21 P1.0/TK4/AD4/T2/T2O/LCDC10 LCDC35/SEG0/MOSI/T10/T1/PWM4/AD15/TK13/P3.5 20 P1.1/TK5/AD5/T2EX/LCDC11 LCDC36/SEG1/SCK/RXD2/AD14/TK12/P3.6 10 19 P1.2/TK6/AD6/PWM0P/LCDC12 LCDC17/SEG2/MISO/TXD2/AD11/TK11/P1.7 11 18 P1.3/TK7/AD7/PWM0N/LCDC13 LCDC16/SEG3/PWM3/AD10/TK10/P1.6 12 17 P1.4/TK8/AD8/PWM1/CKO/SEG5/LCDC14 TM52F49743S PSCL/LCDC00/COM0/LED0/TXD/AD23/P0.0 1 20 **VCC** PSDA/LCDC01/COM1/LED1/SCL/RXD/AD22/P0.1 19 **VSS** LCDC02/COM2/LED2/SDA/RXD2/AD21/P0.2 18 P0.7/TK19/AD24/PWM6/SEG6/LCDC07 LCDC03/COM3/LED3/TXD2/AD20/TK18/P0.3 4 17 P3.3/TK0/AD0/PWM2/INT1/LCDC33 LCDC37/SEG10/COM6/LED6/INT2/RSTn/PWM6/AD17/TK15/P3.7 16 P3.2/TK1/AD1/PWM1/INT0/LCDC32/VBGO SOP-20 LCDC34/SEG11/COM7/LED7/T0O/T0/PWM5/AD16/TK14/P3.4 6 15 P3.1/TK2/AD2/TXD/SDA/LCDC31/PSDA LCDC35/SEG0/MOSI/T10/T1/PWM4/AD15/TK13/P3.5 7 14 P3.0/TK3/AD3/RXD/SCL/LCDC30/PSCL LCDC36/SEG1/SCK/RXD2/AD14/TK12/P3.6 8 13 P1.2/TK6/AD6/PWM0P/LCDC12 LCDC17/SEG2/MISO/TXD2/AD11/TK11/P1.7 12 P1.3/TK7/AD7/PWM0N/LCDC13 11 P1.4/TK8/AD8/PWM1/CKO/SEG5/LCDC14 LCDC16/SEG3/PWM3/AD10/TK10/P1.6 10 TM52F49742S LCDC37/SEG10/COM6/LED6/INT2/RSTn/PWM6/AD17/TK15/P3.7 16 P0.1/AD22/RXD/SCL/LED1/COM1/LCDC01/PSDA LCDC34/SEG11/COM7/LED7/T0O/T0/PWM5/AD16/TK14/P3.4 2 15 P0.0/AD23/TXD/LED0/COM0/LCDC00/PSCL 14 **VSS** LCDC35/SEG0/MOSI/T10/T1/PWM4/AD15/TK13/P3.5 LCDC36/SEG1/SCK/RXD2/AD14/TK12/P3.6 13 **VCC** SOP-16 LCDC17/SEG2/MISO/TXD2/AD11/TK11/P1.7 12 P3.3/TK0/AD0/PWM2/INT1/LCDC33 LCDC16/SEG3/PWM3/AD10/TK10/P1.6 6 11 P3.2/TK1/AD1/PWM1/INT0/LCDC32/VBGO

LCDC13/PWM0N/AD7/TK7/P1.3 7

LCDC12/PWM0P/AD6/TK6/P1.2 8

TM52F49745S3

PSDA/LCDC31/SDA/TXD/AD2/TK2/P3.1 1 VBGO/LCDC32/INT0/PWM1/AD1/TK1/P3.2 2 LCDC33/INT1/PWM2/AD0/TK0/P3.3 3 LCDC05/PWM4/AD26/TK21/P0.5 4 LCDC06/SEG7/PWM5/AD25/TK20/P0.6 5 LCDC07/SEG6/PWM6/AD24/TK19/P0.7 6 VSS 7 VCC 8 PSCL/LCDC00/COM0/LED0/TXD/AD23/P0.0 9 PSDA/LCDC01/COM1/LED1/SCL/RXD/AD22/P0.1 10 LCDC02/COM2/LED2/SDA/RXD2/AD21/P0.2 11 LCDC03/COM3/LED3/TXD2/AD20/TK18/P0.3 12 LCDC20/SEG8/COM4/LED4/X1/PWM0N/AD18/TK16/P2.0 13 LCDC21/SEG9/COM5/LED5/XO/PWM0P/AD19/TK17/P2.1 14	28 P3.0/TK3/AD3/RXD/SCL/LCDC30/PSCL 27 P1.0/TK4/AD4/T2/T2O/LCDC10 26 P1.1/TK5/AD5/T2EX/LCDC11 25 P1.2/TK6/AD6/PWM0P/LCDC12 24 P0.4/TK22/AD27/PWM3/LCDC04 23 P1.3/TK7/AD7/PWM0N/LCDC13 22 P1.4/TK8/AD8/PWM1/CKO/SEG5/LCDC14 21 P1.5/TK9/AD9/PWM2/SEG4/LCDC15 20 P1.6/TK10/AD10/PWM3/SEG3/LCDC16 19 P1.7/TK11/AD11/TXD2/MISO/SEG2/LCDC17 18 P3.6/TK12/AD14/RXD2/SCK/SEG1/LCDC36 17 P3.5/TK13/AD15/PWM4/T1/T1O/MOSI/SEG0/LCDC35 16 P3.4/TK14/AD16/PWM5/T0/T0O/LED7/COM7/SEG11/LCDC34 15 P3.7/TK15/AD17/PWM6/RSTn/INT2/LED6/COM6/SEG10/LCDC37
--	---

TM52F49743S2

LCDC12/PWM0P/AD6/TK6/P1.2		1 M152F4974352	
	PSCL/LCDC30/SCL/RXD/AD3/TK3/P3.0 2 PSDA/LCDC31/SDA/TXD/AD2/TK2/P3.1 3 VBGO/LCDC32/INT0/PWM1/AD1/TK1/P3.2 4 LCDC33/INT1/PWM2/AD0/TK0/P3.3 5 LCDC07/SEG6/PWM6/AD24/TK19/P0.7 6 VSS 7 VCC 8 PSCL/LCDC00/COM0/LED0/TXD/AD23/P0.0 9	SOP-20	P1.4/TK8/AD8/PWMI/CKO/SEG5/LCDC14

DS-TM52F4974_E 12 Rev 1.7, 2025/10

PIN DESCRIPTION

Name	In/O ut	Pin Description
P0.0~P0.7 P1.0~P1.7 P2.0~P2.1 P3.3~P3.7	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "open-drain" output. Pull-up resistors are assignable by software. These pin's level change can interrupt/wake up CPU from Idle/Halt/Stop mode.
P3.0~P3.2	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "pseudo open drain" output. Pull-up resistors are assignable by software. These pin's level change can interrupt/wake up CPU from Idle/Halt/Stop mode.
INT0, INT1	I	External low level or falling edge Interrupt input, Idle/Halt/Stop mode wake up input.
INT2	I	External falling edge Interrupt input, Idle/Halt/Stop mode wake up input.
RXD	I/O	UART1 Mode0 transmit & receive data, Mode1/2/3 receive data
RXD2	I/O	UART2 Mode1/3 receive data
TXD	I/O	UART1 Mode0 transmit clock, Mode1/2/3 transmit data.
TXD2	I/O	UART2 Mode1/3 transmit data.
T0, T1, T2	I	Timer0, Timer1, Timer2 event count pin input.
T2EX	I	Timer2 external trigger input.
T0O	О	Timer0 overflow divided by 64 output
T1O	О	Timer1 overflow divided by 2 output
T2O	О	Timer2 overflow divided by 2 output
СКО	О	System Clock divided by 2 output
VBGO	О	Bandgap voltage output
PWM1~PWM6 PWM0P/PWM0N	О	16 bit PWM output
AD0~AD11, AD14~AD27	I	ADC input
TK0~TK22	I	Touch Key input
LCD00~LCD07 LCD10~LCD17 LCD20~LCD21 LCD30~LCD37	О	LCD 1/2 bias output
COM0~COM7	О	LED Matrix mode common output
SEG0~SEG11	О	LED Matrix mode segment output
LED0~LED7	О	LED Dot matrix mode output
SCK	I/O	SPI clock output for master or clock input for slave mode
MISO	I/O	SPI data input for master mode, data output for slave mode
MOSI	I/O	SPI data output for master mode, data input for slave mode
SCL	I/O	I ² C SCL
SDA	I/O	I ² C SDA
PSCL	I/O	I ² C SCL for program
PSDA	I/O	I ² C SDA for program
RSTn	I	External active low reset input, Pull-up resistor is fixed enable.
XI, XO	_	Crystal/Resonator oscillator connection for System clock (FXT or SXT)
VCC, VSS	P	Power input pin and ground

PIN SUMMERY

Pin				I	npu	ıt	Oı	ıtpu	t	Al	tern	ativ	e Fı	ıncı	tion		MISC
#					F -			Ť									
SOP-28	Pin Name	Type	Initial State	Pull-up Control	Wake up	Ext. Interrupt	CMOS Push-Pull	Pseudo Open Drain	Open Drain	LED MX mode	LED DMX mode	ADC	Touch Key	PWM	Timer	I^2C / SPI / UART	
1	PSCL/LCDC00/COM0/LED0/TXD/AD23/P0.0	I/O	Hi-Z	•	•	•	•		• •	•	•	•				•	PSDL
2	PSDA/LCDC01/COM1/LED1/SCL/RXD/AD22/P0.1	I/O	Hi-Z	•	•	•	•		• •	•	•	•				•	PSDA
3	LCDC02/COM2/LED2/SDA/RXD2/AD21/P0.2	I/O	Hi-Z	•	•	•	•		• •	•	•	•				•	
4	LCDC03/COM3/LED3/TXD2/AD20/TK18/P0.3			•	•	•	•		• •	•	•	•	•			•	
5	LCDC20/SEG8/COM4/LED4/XI/PWM0N/AD18/TK16/P2.0	I/O	Hi-Z	•	•	•	•		•	•	•	•	•	•			Crystal
6	LCDC21/SEG9/COM5/LED5/XO/PWM0P/AD19/TK17/P2.1	I/O	Hi-Z	•	•	•	•		•	•	•	•	•	•			Crystal
7	LCDC37/SEG10/COM6/LED6/INT2/RSTn/PWM6/AD17/TK15/P3.7			•	•	•	•		•	•	•	•	•	•			Reset
8	LCDC34/SEG11/COM7/LED7/T0O/T0/PWM5/AD16/TK14/P3.4			•	•	•	•		•	•	•	•	•	•	•		T0O
9	LCDC35/SEG0/MOSI/T10/T1/PWM4/AD15/TK13/P3.5			•	•	•	•		•	•		•	•	•	•	•	T10
10	LCDC36/SEG1/SCK/RXD2/AD14/TK12/P3.6	I/O	Hi-Z	•	•	•	•		•	•		•	•			•	
11	LCDC17/SEG2/MISO/TXD2/AD11/TK11/P1.7			•	•	•	•		• •	•		•	•			•	
12	LCDC16/SEG3/PWM3/AD10/TK10/P1.6			•	•	•	•		• •	•		•	•	•			
13	LCDC15/SEG4/PWM2/AD9/TK9/P1.5			•	•	•	•		•	•		•	•	•			
14	LCDC14/SEG5/CKO/PWM1/AD8/TK8/P1.4			•	•	•	•		•	•		•	•	•			CKO
15	LCDC13/PWM0N/AD7/TK7/P1.3			•	•	•	•		•			•	•	•			
16	LCDC12/PWM0P/AD6/TK6/P1.2	I/O	Hi-Z	•	•	•	•		•			•	•	•			
17	LCDC11/T2EX/AD5/TK5/P1.1	I/O	Hi-Z	•	•	•	•		• •			•	•		•		
18	LCDC10/T2O/T2/AD4/TK4/P1.0	I/O	Hi-Z	•	•	•	•		• •			•	•		•		T2O
19	PSCL/LCDC30/SCL/RXD/AD3/TK3/P3.0	I/O	Hi-Z	•	•	•	•	•	• •			•	•			•	PSCL
20	PSDA/LCDC31/SDA/TXD/AD2/TK2/P3.1	I/O	Hi-Z	•	•	•	•	•	•			•	•			•	PSDA
21	VBGO/LCDC32/INT0/PWM1/AD1/TK1/P3.2	I/O	Hi-Z	•	•	•	•	•	•			•	•	•			VBGO
22	LCDC33/INT1/PWM2/AD0/TK0/P3.3	I/O	Hi-Z	•	•	•	•		• •			•	•	•			
23	LCDC04/PWM3/AD27/TK22/P0.4	I/O	Hi-Z	•	•	•	•		•			•	•	•			
24	LCDC05/PWM4/AD26/TK21/P0.5	I/O	Hi-Z	•	•	•	•		•			•	•	•			
25	LCDC06/SEG7/PWM5/AD25/TK20/P0.6	I/O	Hi-Z	•	•	•	•		•	•		•	•	•			
26	LCDC07/SEG6/PWM6/AD24/TK19/P0.7	I/O	Hi-Z	•	•	•	•		• •	•		•	•	•			
27	VSS	P															
28	VCC	P															

FUNCTIONAL DESCRIPTION

1. CPU Core

In the 8051 architecture, the C programming language is used as a development platform. The TM52 device features a fast 8051 core in a highly integrated microcontroller, allowing designers to be able to achieve improved performance compared to a classic 8051 device. TM52 series microcontrollers provide a complete binary code with standard 8051 instruction set compatibility, ensuring an easy migration path to accelerate the development speed of system products. The CPU core includes an ALU, a program status word (PSW), an accumulator (ACC), a B register, a stack point (SP), DPTRs, a program counter, an instruction decoder, and core special function registers (SFRs).

1.1 Accumulator (ACC)

This register provides one of the operands for most ALU operations. Accumulators are generally referred to as A or Acc and sometimes referred to as Register A. In this document, the accumulator is represented as "A" or "ACC" including the instruction table. The accumulator, as its name suggests, is used as a general register to accumulate the intermediate results of a large number of instructions. The accumulator is the most important and frequently used register to complete arithmetic and logical operations. It holds the intermediate results of most arithmetic and logic operations and assists in data transportation.

SFR E0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ACC	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

E0h.7~0 **ACC:** Accumulator

1.2 B Register (B)

The "B" register is very similar to the ACC and may hold a 1 Byte value. This register provides the second operand for multiply or divide instructions. Otherwise, it may be used as a scratch pad register. The B register is only used by two 8051 instructions, MUL and DIV. When A is to be multiplied or divided by another number, the other number is stored in B. For MUL and DIV instructions, it is necessary that the two operands are in A and B.

ex: DIV AB

When this instruction is executed, data inside A and B are divided, and the answer is stored in A.

SFR F0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
В	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F0h.7~0 **B:** B register

DS-TM52F4974_E 15 Rev 1.7, 2025/10

1.3 Stack Pointer (SP)

The SP register contains the Stack Pointer. The Stack Pointer is used to load the program counter into memory during LCALL and ACALL instructions and is used to retrieve the program counter from memory in RET and RETI instructions. The stack may also be saved or loaded using PUSH and POP instructions, which also increment and decrement the Stack Pointer.

SFR 81h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
SP		SP										
R/W				R/	W							
Reset	0	0	0	0	0	1	1	1				

81h.7~0 **SP:** Stack Point

1.4 Dual Data Pointer (DPTRs)

TM52 device has two DPTRs, which share the same SFR address. Each DPTR is 16 bits in size and consists of two registers: the DPTR high byte (DPH) and the DPTR low byte (DPL). The DPTR is used for 16-bit-address external memory accesses, for offset code byte fetches, and for offset program jumps. Setting the DPSEL control bit allows the program code to switch between the two physical DPTRs.

SFR 82h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DPL				Dl	PL			
R/W				R/	W			
Reset	0	0	0	0	0	0	0	0

82h.7~0 **DPL:** Data Point low byte

SFR 83h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
DPH		DPH										
R/W		R/W										
Reset	0	0	0	0	0	0	0	0				

83h.7~0 **DPH:** Data Point high byte

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	CLRPWM0	CLRPWM1	_	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	_	R/W
Reset	0	0	0	0	1	1	_	0

F8h.0 **DPSEL:** Active DPTR Select

DS-TM52F4974_E 16 Rev 1.7, 2025/10

1.5 Program Status Word (PSW)

This register contains status information resulting from CPU and ALU operations. The instructions that affect the PSW are listed below.

Instruction		Flag	
Instruction	<u> </u>	ov	AC
ADD	X	X	X
ADDC	X	X	X
SUBB	X	X	X
MUL	0	X	
DIV	0	X	
DA	X		
RRC	X		
RLC	X		
SETB C	1		

Instruction		Flag	
Instruction	C	ov	AC
CLR C	0		
CPL C	X		
ANL C, bit	X		
ANL C, /bit	X		
ORL C, bit	X		
ORL C, /bit	X		
MOV C, bit	X		
CJNE	X		

A "0" means the flag is always cleared, a "1" means the flag is always set and an "X" means that the state of the flag depends on the result of the operation.

SFR D0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PSW	CY	AC	F0	RS1	RS0	OV	F1	P
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

D0h.7 **CY:** ALU carry flag

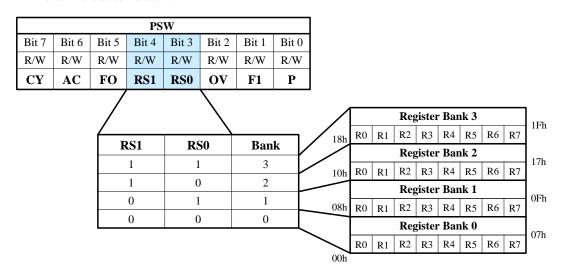
D0h.6 **AC:** ALU auxiliary carry flag

D0h.5 **F0:** General purpose user-definable flag

D0h.4~3 **RS1, RS0:** The contents of (RS1, RS0) enable the working register banks as:

00: Bank 0 (00h~07h)

01: Bank 1 (08h~0Fh)

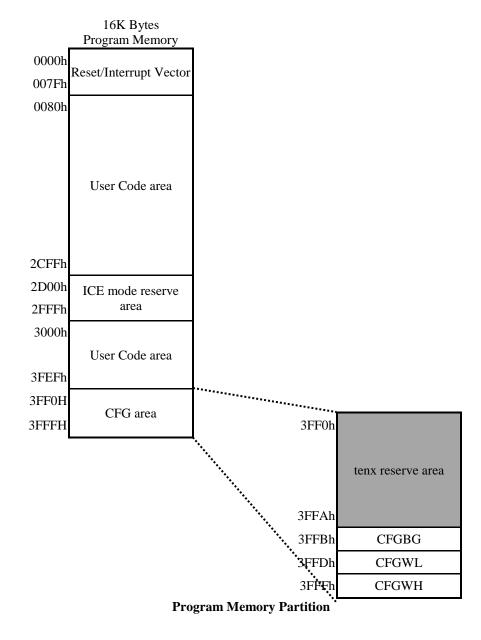

10: Bank 2 (10h~17h)

11: Bank 3 (18h~1Fh)

D0h.2 **OV:** ALU overflow flag

D0h.1 **F1:** General purpose user-definable flag

D0h.0 **P:** Parity flag. Set/cleared by hardware each instruction cycle to indicate odd/even number of "one" bits in the accumulator.


2. Memory

2.1 Program Memory

The Chip has a 16K Bytes Flash program memory which can support In Circuit Programming (ICP), In Application Programming (IAP) and In System Programming (ISP) function modes. The Flash write endurance is at least 10K cycles. The program memory address continuous space (0000h~3FFFh) is partitioned to several sectors for device operation.

2.1.1 Program Memory Functional Partition

The last 16 bytes (3FF0h~3FFFh) of program memory is defined as chip Configuration Word (CFGW), which is loaded into the device control registers upon power on reset (POR). The 0000h~007Fh is occupied by Reset/Interrupt vectors as standard 8051 definition. In the in-circuit emulation (ICE) mode, user also needs to reserve the address space 2D00h~2FFFh for ICE System communication. CRC16H/L is the reserved area of the checksum. Tenx can provide a CRC verification subroutine. The user can calculate the checksum by the CRC verification subroutine to compare with CRC16H/L and check the validity of the ROM code.

2.1.2 Flash ICP Mode

The Flash memory can be programmed by the tenx proprietary writer (TWR99/TWR100), which needs at least four wires (VCC, VSS, P3.0 and P3.1) to connect to this chip. If user wants to program the Flash memory on the target circuit board (In Circuit Program, ICP), these pins must be reserved sufficient freedom to be connected to the Writer.

Writer wire number	Pin connection
4-Wire	VCC, VSS, P3.0, P3.1

2.1.3 Flash IAP Mode

This chip has "In Application Program" (IAP) capability, which allows software to read/write data from/to the Flash memory during CPU run time as conveniently as data EEPROM access. The IAP function is byte writable, meaning that the chip does not need to erase one Flash page before write. The available IAP data space is 240 Bytes after chip reset, and can be re-defined by the "IAPALL" control register as shown below.

	16K Bytes Flash Program memory
0000h	
	IAP-All area
3EFFh	
3F00h	
	IAP-Free area
3FEFh	
3FF0h	
	CFGW area
3FFFh	

Flash memory	IAPALL	MOVC Accessible	MOVX (IAP) Accessible	
0000h~3EFFh	0	Yes	No	
0000II~3EFFII	1	Yes	Yes	
3F00h~3FEFh	X	Yes	Yes	
3FF0h~3FF7h	X	Yes	Yes	
2EE95 2EEE5	0	Yes	No	
3FF8h~3FFEh	1	Yes	Yes	
3FFFh	X	Yes	No	

In IAP mode, the program Flash memory is separated into three sectors: IAP-All area, IAP-Free area, and CFGW area. These three sectors are regulated differently.

The **IAP-All area** is protected by the IAPALL register to prevent IAP mode from writing application data to the program area, resulting in a program code error that cannot be repaired. The size of this area is 16128 Bytes. Enabling IAPALL requires writing 65h to SFR SWCMD 97h to set the IAPALL control flag. Then, software can use MOVX instructions to write application data to flash memory from 0000h to 3EFFh. If user wants to disable IAPALL function, user can write other values to SFR SWCMD 97h to clear the IAPALL control flag. User must be careful not to overwrite program code which is already resided on the same Flash memory area.

The **IAP-Free area** has no control bit to protect. It can be used to reliably store system application data that needs to be programmed once or periodically during system operation. Other areas of Flash memory can be used to store data, but this area is usually better. The size of this area is 240 Bytes, equivalent to an EEPROM, and Flash memory can provide byte access to read and write commands. The chip has a physical 128 byte EEPROM memory. It has the wider writing voltage range and the better write endurance than Flash memory. It is recommended to use EEPROM memory to store application data first.

DS-TM52F4974_E 19 Rev 1.7, 2025/10

The **CFGW** area has 3 data bytes (CFGWH, CFGWL and CFGBG), which is located at the last 16 addresses of Flash memory. The CFGWH is not accessible to IAP, while the CFGWL and CFGBG can be read or written by IAP in case the IAPALL flag is set. CFGWL is copied to the SFR F6h and CFGBG is copied to the SFR F5h after power on reset, software then take over CFGWL's and CFGBG's control capability by modifying the SFR F6h and F5h.

2.1.4 IAP Mode Access Routines

Flash IAP Write is simply achieved by a "MOVX @DPTR, A" instruction while the DPTR contains the target Flash address (0000h~3FFEh), and the ACC contains the data being written. The chip accepts IAP write command only when IAPWE=1. Flash IAP writing one byte requires approximately 1 ms @ V_{CC} =5.0V. Meanwhile, the CPU stays in a waiting state, but all peripheral modules (Timers, LED, and others) continue running during the writing time. The software must handle the pending interrupts after an IAP write. The chip has a build-in IAP Time-out function for escaping write fail state. Flash IAP writing needs setting the system clock to FRC/2 (or slower) and V_{CC} >4.0V.

Because the Program memory and the IAP data space share the same entity, a **Flash IAP Read** can be performed by the "MOVX A, @DPTR" or "MOVC" instruction as long as the target address points to the 0000h~3FFEh area. A Flash IAP read does not require extra CPU wait time.

```
; IAP example code (ASM)
; need 4.0V < V_{CC} < 5.5V
MOV
           DPTR. #3F00h
                                  ; DPTR=3F00h=target IAP address
MOV
           A, #5Ah
                                  ; A=5Ah=target IAP write data
                                  ; IAP write enable
MOV
           IAPWE, #47h
MOV
           AUX2, #02h
                                  ; IAP Time-Out function enable
MOVX
           @DPTR, A
                                  ; Flash[3F00h] =5Ah, after IAP write
                                  ; 1ms~2ms H/W writing time, CPU wait
MOV
           IAPWE, #00h
                                  ; IAP write disable, immediately after IAP write
CLR
                                  : A=0
MOVX
           A, @DPTR
                                  ; A=5Ah
CLR
                                  A=0
           Α
MOVC
           A, @A+DPTR
                                  ; A=5Ah
 ; IAP example code (C)
 ; need 4.0V < V_{CC} < 5.5V
unsigned char xdata PROM[4096] _at_ 0x2000 // 0x2000 = start address
unsigned char code CODE[4096] _at_ 0x2000 // 0x2000 = start address
IAPALL = 0x65;
IAPWE = 0x47;
PROM[0x02] = wdata; // write data into ROM[0x2002]
IAPWE = 0x00;
IAPALL = 0x00;
rdata = CODE[0x105]; // read data from ROM[0x2105]
```

DS-TM52F4974_E 20 Rev 1.7, 2025/10

SFR 97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SWCMD				IAPALL	/SWRST			
R/W				V	V			
Reset				-	_			

97h.7~0 **IAPALL (W):**

Write 65h to set IAPALL flag. Write other value to clear IAPALL flag.

SFR 97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SWCMD			_	_			WDTO	IAPALL
R/W			I	R			R	R
Reset			()			0	0

97h.0 **IAPALL (R):** Flag indicates Flash can be written by IAP or not

0: Flash IAP disable1: Flash IAP enable

SFR C9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IAPCON		IAPCON						
R/W		W						
Reset	_	_	_	_	_	_	_	_

C9h.7~0 **IAPCON** (**W**):

Write 47h or 74h to set IAPWE flag; Write 47h can write 1 byte at once, write 74h can write 2 bytes at once. Write other value to clear IAPWE flag. It is recommended to clear it immediately after IAP write.

Write A1h to set INFOWE flag; write other value to clear INFOWE flag. It is recommended to clear it immediately after IAP write.

Write E2h to set EEPWE flag; write other value to clear EEPWE flag. It is recommended to clear it immediately after EEPROM write.

SFR C9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IAPCON	IAPWE	IAPTO	EEPWE	INFOWE	_	_	_	_
R/W	R	R	R	R			_	_
Reset	0	0	0	0	_	_	_	_

C9h.7 **IAPWE (R):** Flag indicates Flash memory can be written by IAP or not

0: IAP Write disable

1: IAP Write enable

C9h.6 **IAPTO (R):** Time-Out flag of IAP write/EEPROM write/INFO write. Set by H/W when IAP or EEPROM write or INFO write Time-out occurs. Cleared this flag by H/W when IAPWE=0 or EEPWE=0 or INFOWE=0.

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WI	OTE	PWRSAV	VBGOUT	DIV32	IAF	PΤΕ	MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	1	1	0

F7h.2~1 **IAPTE:** IAP (or EEPROM) write watchdog timer enable

00: Disable

01: wait 3ms trigger watchdog time-out flag, and escape the write fail state

10: wait 6ms trigger watchdog time-out flag, and escape the write fail state

11: wait 25ms trigger watchdog time-out flag, and escape the write fail state

DS-TM52F4974_E 21 Rev 1.7, 2025/10

2.1.5 Flash ISP Mode

The "In System Programming" (ISP) usage is similar to IAP, except the purpose is to refresh the Program code. User can use UART/SPI or other method to get new Program code from external host, then writes code as the same way as IAP. ISP operation is complicated; basically it needs to assign a Boot code area to the Flash which does not change during the ISP process.

DS-TM52F4974_E 22 Rev 1.7, 2025/10

2.2 EEPROM Memory

This chip contains 128 bytes of data EEPROM memory. It is organized as a separate data space, in which single bytes can be read and written. The EEPROM has an endurance of at least 50K write/erase cycles.

_	EEPROM Memory
EE00h	EEPROM[0]
EE02h	EEPROM[1]
EE04h	
	•
	•
EEFCh	EEPROM[126]
EEFEh	EEPROM[127]

(Only even addresses can be used, odd addresses are invalid)

The EEPROM Write usage is similar to Flash IAP mode. It is simply achieved by a "MOVX @DPTR, A" instruction while the DPTR contains the target EEPROM address (EE00h~EEFEh, ADDR=ADDR+2), and the ACC contains the data being written. EEPROM writing requires approximately 2 ms @ V_{CC} =3.0V, 1 ms @ V_{CC} =5.0V. Meanwhile, the CPU stays in a waiting state, but all peripheral modules (Timers, LED, and others) continue running during the writing time. The software must handle the pending interrupts after an EEPROM write. The chip has a build-in EEPROM Time-out function shared with Flash IAP for escaping write fail state. EEPROM writing needs V_{CC} >3.0V @ -20°C~50°C.

The EEPROM Read can be performed by the "MOVX A, @DPTR" instruction as long as the target address points to the EE00h~EEFEh area. The EEPROM read does require approximately 300ns.

; EEPROM example code ; need $3.0V < V_{CC} < 5.5V$ MOV DPTR, #0EE00

MOV

MOV DPTR, #0EE00h ; DPTR=EE00h=target EEPROM[0] address MOV A, #0A5h ; A=A5h=target EEPROM[0] write data

MOV EEPWE, #0E2h ; EEPROM write enable

MOV AUX2, #004h ; EEPROM Time-Out function enable
MOVX @DPTR, A ; EEPROM[0]=A5h, after EEPROM write
; 1ms~2ms H/W writing time, CPU wait

; EEPROM write disable, immediately after EEPROM write

 $\begin{array}{ccc} CLR & A & ; A=0 \\ MOVX & A, @DPTR & ; A=A5h \end{array}$

EEPWE, #000h

DS-TM52F4974_E 23 Rev 1.7, 2025/10

2.3 Precautions for using EEPROM

2.3.1 About the writing characteristics of EEPROM

- (1) The writing time of EEPROM is not fixed. It takes different time to write different data.
- (2) The writing time is affected by voltage, temperature, and data conversion conditions. Higher voltage makes the writing time shorter. When the temperature is high or there are more data 0, the writing time is longer.
- (3) The CPU is in a waiting state during the EEPROM writing process, but all peripheral modules (timers, etc.) continue to run. The software must handle the interrupt generated during the process after the EEPROM data is written.
- (4) This chip has a built-in timeout watchdog timer to protect the write timeout, ensuring that the system can execute the program normally.

2.3.2 About the write time of EEPROM

The write time of EEPROM is related to voltage, temperature, and the number of writes.

At least 50,000 erase cycles (F_{SYS}=FRC/2, 3.5V<V_{CC}<5.5V, -20°C~105°C)

At least 20,000 erase cycles (F_{SYS}=FRC/2, 3.0V<V_{CC}<5.5V, -20°C~50°C)

2.3.3 Write verification

Depending on the specific application, it is generally required to read back the value written to the program EEPROM for comparison and verification.

2.3.4 Protection against erroneous writes

When starting the write operation, the following operations can prevent erroneous writes:

- (1) Under-voltage detection. When writing EEPROM, the voltage must be >3.0V. The LVD function can be used to monitor the voltage.
- (LVD monitoring voltage is recommended to be greater than 3.7V to prevent power failure and leave enough time for writing EEPROM)
- (2) Clear the watchdog (WDT) every time a byte is written. Prevent the watchdog from resetting when multiple bytes are written continuously.
- (3) When writing data, it is necessary to temporarily disable the interrupt and enable the interrupt after the writing is completed.
- (4) In case of software failure, add an EEPROM read-back mechanism to the program to ensure that the data is written correctly.
- (5) Timeout protection: Enable the write timeout watchdog (IAPTE) in the program to prevent the system from freezing due to write timeout.
- (6) Power glitch: Connecting capacitors in parallel to the VCC and VSS pins according to the waveform can stabilize the system power supply.

DS-TM52F4974_E 24 Rev 1.7, 2025/10

SFR C9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
IAPCON		IAPCON								
R/W		W								
Reset	_	_	_	_	_	_	_	_		

C9h.7~0 **IAPCON** (**W**):

Write 47h or 74h to set IAPWE flag; Write 47h can write 1 byte at once, write 74h can write 2 bytes at once. Write other value to clear IAPWE flag. It is recommended to clear it immediately after IAP write.

Write A1h to set INFOWE flag; write other value to clear INFOWE flag. It is recommended to clear it immediately after IAP write.

Write E2h to set EEPWE flag; write other value to clear EEPWE flag. It is recommended to clear it immediately after EEPROM write.

SFR C9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IAPCON	IAPWE	IAPTO	EEPWE	INFOWE	_	_	_	_
R/W	R	R	R	R	_	_	_	_
Reset	0	0	0	0	_	_	_	_

C9h.6 **IAPTO** (**R**): Time-Out flag of IAP write/EEPROM write/INFO write. Set by H/W when IAP or EEPROM write or INFO write Time-out occurs. Cleared this flag by H/W when IAPWE=0 or EEPWE=0 or INFOWE=0.

C9h.5 **EEPWE (R):** Flag indicates EEPROM memory can be written or not

0: EEPROM Write disable1: EEPROM Write enable

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WI	OTE	PWRSAV	VBGOUT	DIV32	IAPTE		MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	1	1	0

F7h.2~1 **IAPTE:** IAP (or EEPROM) write watchdog timer enable

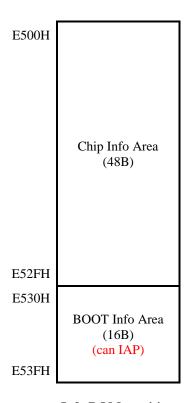
00: Disable

01: wait 3ms trigger watchdog time-out flag, and escape the write fail state

10: wait 6ms trigger watchdog time-out flag, and escape the write fail state

11: wait 25ms trigger watchdog time-out flag, and escape the write fail state

DS-TM52F4974_E 25 Rev 1.7, 2025/10


2.4 Information Memory

The Chip has a 64 bytes Information memory. The Information memory address continuous space (E500h~E53Fh) is partitioned to several sectors for device operation.

Chip Info area is tenx reserved defined as production information, such as ID, Special Regulations, Code Num, checksum. BOOT Info area allow IAP write, user can store new checksum code in this area after Flash IAP.

To use IAP function, user need to meet the following conditions:

- 1. Only BOOT Info Area can be written by IAP.
- 2. Set INFOWE=1.

Info ROM partition

Info ROM IAP Write is simply achieved by a "MOVX @DPTR, A" instruction while the DPTR contains the target Flash address, and the ACC contains the data being written. Flash writing requires approximately 0.6 ms @ V_{CC} =4.0 V_{CC} 5.5 V_{CC} 0 capacitance greater than 220 V_{CC} 1. During the period of IAP, the CPU stays in a waiting state, but all peripheral modules continue running during the writing time. The software must handle the pending interrupts after an IAP write. The chip has a build-in write Time-out function selected by IAPTE (F7h.2 $^{-1}$ 1) to escape write fail state.

Info ROM IAP Read only can be performed by the "MOVX" instruction as long as the target address points to the E500h~E53Fh area. An Info ROM IAP read does not require extra CPU wait time.

DS-TM52F4974_E 26 Rev 1.7, 2025/10

Info ROM IAP Example:

; need $4.0V < V_{CC} < 5.5V$

ORL PWRCON, #80h ; IVC disable

MOV DPTR, #E530h ; DPTR=E530h=target IAP address
MOV A, #5Ah ; A=5Ah=target IAP write data
MOV AUX2, #04h ; IAP Time-Out function select
MOV IAPCON, #A1h ; Info ROM IAP write enable.

MOVX @DPTR, A ; IAP Write Info ROM

; Info ROM[E530h] =5Ah after IAP write

MOV IAPCON, #00h ; IAP write disable, immediately after IAP write

ANL PWRCON, #7Fh ; IVC Enable

MOVX A, @DPTR ; Read Info ROM. A=5Ah

SFR C9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
IAPCON		IAPCON								
R/W		W								
Reset	_	_	_	_	_	_	_	_		

C9h.7~0 **IAPCON** (**W**):

Write 47h or 74h to set IAPWE flag; Write 47h can write 1 byte at once, write 74h can write 2 bytes at once. Write other value to clear IAPWE flag. It is recommended to clear it immediately after IAP write

Write A1h to set INFOWE flag; write other value to clear INFOWE flag. It is recommended to clear it immediately after IAP write.

Write E2h to set EEPWE flag; write other value to clear EEPWE flag. It is recommended to clear it immediately after EEPROM write.

SFR C9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IAPCON	IAPWE	IAPTO	EEPWE	INFOWE	_	_	_	_
R/W	R	R	R	R	_	_	_	_
Reset	0	0	0	0	_	_	_	_

C9h.6 **IAPTO** (**R**): Time-Out flag of IAP write/EEPROM write/INFO write. Set by H/W when IAP or EEPROM write or INFO write Time-out occurs. Cleared this flag by H/W when IAPWE=0 or EEPWE=0 or INFOWE=0.

C9h.4 **INFOWE (R):** Flag indicates INFO memory can be written by IAP or not

0: INFO IAP Write disable

1: INFO IAP Write enable

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WI	OTE	PWRSAV	VBGOUT	DIV32	IAI	PTE	MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	1	1	0

F7h.2~1 **IAPTE:** IAP write/EEPROM write/INFO write watchdog timer enable

00: Disable

01: wait 3ms trigger watchdog time-out flag, and escape the write fail state

10: wait 6ms trigger watchdog time-out flag, and escape the write fail state

11: wait 25ms trigger watchdog time-out flag, and escape the write fail state

DS-TM52F4974_E 27 Rev 1.7, 2025/10

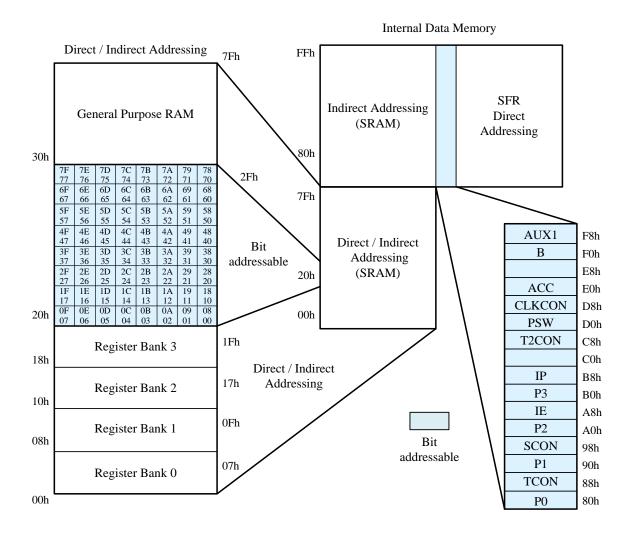
2.5 Data Memory

As the standard 8051, the Chip has both Internal and External Data Memory space. The Internal Data Memory space consists of 256 Bytes IRAM and SFRs, which are accessible through a rich instruction set. The External Data Memory space consists of 1280 Bytes XRAM, 16 Bytes LCD RAM, 3 Bytes TM3 Reload Data, 24 Bytes TK ITRIM RAM, 64 Bytes TK DATA RAM, 128 Bytes EEPROM, 64 Bytes INFO ROM and IAP Flash, which can be only accessed by MOVX instruction.

	Inte Data M			External Data Memory
FFh 80h	IRAM Indirect Addressing	SFR Direct Addressing	0000h 3FFFh	IAP Flash shared with Program memory
7Fh	IRAM Direct/Indirect Addressing		E500h	INFO ROM Data memory
00h	<i>B</i>		E53Fh	
			EE00h	EEPROM
			EEFFh	Data memory
			C800h	
			Coun	LRAM
			C80Fh	
			E000h	
			E017h	TK ITRIM RAM
			E1001	
			E100h	TK DATA
			E1FFh	RAM
			F240h	TD 42
			F241h F242h	TM3 Reload Data
			F24211	
			FB00h	
				XRAM
			FFFFh	

DS-TM52F4974_E 28 Rev 1.7, 2025/10

2.5.1 IRAM


IRAM is located in the 8051 internal data memory space. The whole 256 Bytes IRAM are accessible using indirect addressing but only the lower 128 Bytes are accessible using direct addressing. There are four directly addressable register banks (switching by PSW), which occupy IRAM space from 00h to 1Fh. The address 20h to 2Fh 16 Bytes IRAM space is bit-addressable. IRAM can be used as scratch pad registers or program stack.

2.5.2 XRAM

XRAM is located in the 8051 external data memory space (address from FB00h to FFFFh). The 1280 Bytes XRAM can be only accessed by "MOVX" instruction.

2.5.3 SFRs

All peripheral functional modules such as I/O ports, Timers and UART operations for the chip are accessed via Special Function Registers (SFRs). These registers occupy upper 128 Bytes of direct Data Memory space locations in the range 80h to FFh. There are 14 bit-addressable SFRs (which means that eight individual bits inside a single byte are addressable), such as ACC, B register, PSW, TCON, SCON, and others. The remaining SFRs are only byte addressable. SFRs provide control and data exchange with the resources and peripherals of the Chip. The TM52 series of microcontrollers provides complete binary code with standard 8051 instruction set compatibility. Beside the standard 8051 SFRs, the Chip implements additional SFRs used to configure and access subsystems such as the ADC/TK/LED/LCD..., which are unique to the Chip.

_	8/0	9/1	A/2	B/3	C/4	D/5	E/6	F/7
F8h	AUX1							
F0h	В	CRCDL	CRCDH	CRCIN		CFGBG	CFGWL	AUX2
E8h		PWM4DH	PWM4DL	PWM5DH	PWM5DL	PWM6DH	PWM6DL	AUX3
E0h	ACC	MICON	MIDAT	LVRCON	LVDCON	EFTCON	EXA	EXB
D8h	CLKCON	PWM0PRDH	PWM0PRDL	PWM1PRDH	PWM1PRDL	PWM3DH	PWM3DL	UART1CON
D0h	PSW	PWM0DH	PWM0DL	PWM1DH	PWM1DL	PWM2DH	PWM2DL	TKCON3
C8h	T2CON	IAPCON	RCP2L	RCP2H	TL2	TH2	EXA2	EXA3
C0h		SIADR	SICON	SIRCD1	SITXRCD2	ATKCH0	ATKCH1	ATKCH2
B8h	IP	IPH	IP1	IP1H	SPCON	SPSTA	SPDAT	
B0h	P3	LXDCON	LXDCON2	P3LOE	TKTMRL	TKTMRH	PWMOE0	PWMOE1
A8h	IE	INTE1	ADCDL	ADCDH	P1LOE	TKCON	ADCHSEL	PWMCON2
A0h	P2	PWMCON	P1MODL	P1MODH	P3MODL	P3MODH	PINMOD	TKCHS
98h	SCON	SBUF	SCON2	SBUF2	P0WKUP	P2WKUP	P3WKUP	
90h	P1	P0MODL	P0MODH	P2MODL	OPTION	INTFLG	P1WKUP	SWCMD
88h	TCON	TMOD	TL0	TL1	TH0	TH1	P2LOE	UART2CON
80h	P0	SP	DPL	DPH	INTE2	INTFLG2	P0LOE	PCON

SFR table

DS-TM52F4974_E 30 Rev 1.7, 2025/10

3. LVR and LVD setting

The Chip provides LVR and Low Voltage Detection (LVD) functions. There are 16-level LVR can be selected by LVRCON and 16-level LVD can be selected by SFR LVDCON. The SFR PWRSAV bits also affect LVR function as tables below.

Operation		SFR				
Mode	LVRPD	PWRSAV	LVRSEL	LVR	Function	Note
	0	X	0000	ON	LV Reset 2.05V	
	0	X	0001	ON	LV Reset 2.19V	
	0	X	0010	ON	LV Reset 2.33V	
	0	X	0011	ON	LV Reset 2.47V	
	0	X	0100	ON	LV Reset 2.61V	
	0	X	0101	ON	LV Reset 2.75V	
	0	X	0110	ON	LV Reset 2.89V	
Fast	0	X	0111	ON	LV Reset 3.03V	
Slow	0	X	1000	ON	LV Reset 3.17V	
	0	X	1001	ON	LV Reset 3.31V	
	0	X	1010	ON	LV Reset 3.45V	
	0	X	1011	ON	LV Reset 3.59V	
	0	X	1100	ON	LV Reset 3.73V	
	0	X	1101	ON	LV Reset 3.87V	
	0	X	1110	ON	LV Reset 4.01V	
	0	X	1111	ON	LV Reset 4.15V	
	0	0	0000	ON	LV Reset 2.05V	
	0	0	0001	ON	LV Reset 2.19V	
	0	0	0010	ON	LV Reset 2.33V	
	0	0	0011	ON	LV Reset 2.47V	
	0	0	0100	ON	LV Reset 2.61V	
	0	0	0101	ON	LV Reset 2.75V	
T 11	0	0	0110	ON	LV Reset 2.89V	
Idle	0	0	0111	ON	LV Reset 3.03V	Current consumption
Stop Halt	0	0	1000	ON	LV Reset 3.17V	about 60∼80uA
Han	0	0	1001	ON	LV Reset 3.31V	
	0	0	1010	ON	LV Reset 3.45V	
	0	0	1011	ON	LV Reset 3.59V	
	0	0	1100	ON	LV Reset 3.73V	
	0	0	1101	ON	LV Reset 3.87V	
	0	0	1110	ON	LV Reset 4.01V	
	0	0	1111	ON	LV Reset 4.15V	
Idle	0	1	XXXX	ON	Disable LVR Enable POR 1.75V	Current consumption about 18uA
Stop Halt	0	1	XXXX	OFF	Disable	*Minimum Current consumption
Idle	1	X	XXXX	ON	Disable LVR Enable POR 1.75V	Current consumption about 18uA
Stop Halt	1	X	XXXX	OFF	Disable	*Minimum Current consumption

Note: The current consumption of Halt mode is more than Stop mode about 2~7uA, because SRC is enabled.

DS-TM52F4974_E 31 Rev 1.7, 2025/10

SFR E3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LVRCON	_	_	PORPD	LVRPD	LVRSEL			
R/W	_	_	R/W	R/W	R/W			
Reset	_	_	0	0	0	0	0	0

E3h.5 **PORPD:** Power on Reset select

0: POR is enable 1: POR is disable

E3h.4 LVRPD: Low Voltage Reset function select

0: LVR is enable 1: LVR is disable

E3h.3~0 **LVRSEL:** Low Voltage Reset select (step=0.14V)

0000: Set LVR at 2.05V 1000: Set LVR at 3.17V 0001: Set LVR at 2.19V 1001: Set LVR at 3.31V 0010: Set LVR at 2.33V 1010: Set LVR at 3.45V 0011: Set LVR at 2.47V 1011: Set LVR at 3.59V 0100: Set LVR at 2.61V 1100: Set LVR at 3.73V 0101: Set LVR at 2.75V 1101: Set LVR at 3.87V 0110: Set LVR at 2.89V 1110: Set LVR at 4.01V 0111: Set LVR at 3.03V 1111: Set LVR at 4.15V

SFR E4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LVDCON	LVDM	LVDO	LVDHYS	LVDPD	LVDSEL			
R/W	R/W	R	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0

E4h.7 **LVDM:** Low Voltage Detect function mode

0: $V_{CC} < V_{LVD}$ (LVDIF = 1 while LVDO = 1)

1: $V_{CC} > V_{LVD}$ (LVDIF = 1 while LVDO = 0)

E4h.6 LVDO: Low Voltage Detect real time output

E4h.5 **LVDHYS:** LVD Hysteresis Enable

0: LVD Hysteresis disable1: LVD Hysteresis enable

E4h.4 **LVDPD:** Low Voltage Detect function select (Auto disable in Idle/Halt/Stop mode)

0: enable 1: disable

E4h.3~0 **LVDSEL:** Low Voltage Detect select (step=0.14V)

1000: Set LVD at 3.17V 0000: Set LVD at 2.05V 0001: Set LVD at 2.19V 1001: Set LVD at 3.31V 0010: Set LVD at 2.33V 1010: Set LVD at 3.45V 1011: Set LVD at 3.59V 0011: Set LVD at 2.47V 0100: Set LVD at 2.61V 1100: Set LVD at 3.73V 0101: Set LVD at 2.75V 1101: Set LVD at 3.87V 0110: Set LVD at 2.89V 1110: Set LVD at 4.01V 0111: Set LVD at 3.03V 1111: Set LVD at 4.15V

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WDTE		PWRSAV	VBGOUT	DIV32	IAI	PTE	MULDIV16
R/W	R/	W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	1	1	0

F7h.5 **PWRSAV:** chip power-saving option

Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode

4. Reset

The Chip has five types of reset methods. Resets can be caused by Power on Reset (POR), External Pin Reset (XRST), Software Command Reset (SWRST), Watchdog Timer Reset (WDTR), or Low Voltage Reset (LVR). The CFGWH controls the Reset functionality. The SFRs are returned to their default value after Reset.

4.1 Power on Reset (POR)

After power-on reset, the device stays in the reset state and the preheating time of this chip is about 40 ms. A power-on reset requires the voltage on the VCC pin to discharge to near the VSS level before rising above 2.2V. POR is automatically turned off when the chip enters Halt/Stop mode and can be enabled or disabled by PORPD (E3h.5) when the chip enters Halt/Stop mode.

4.2 External Pin Reset (XRST)

External Pin Reset is active low. It needs to keep at least 2 SRC clock cycle long to be seen by the Chip. External Pin Reset can be disabled or enabled by CFGW.

4.3 Software Command Reset (SWRST)

Software Reset is activated by writing data 56h to SWCMD (97h).

4.4 Watchdog Timer Reset (WDTR)

WDT overflow Reset is disabled or enabled by WDTE (F7h.7~6). The WDT uses SRC as its counting time base. It runs in Fast/Slow mode and runs or stops in Idle/Halt/Stop mode. The watchdog timer overflow speed can be defined by WDTPSC (94h.5~4). WDT is cleared by CLRWDT (F8h.7) or reset.

4.5 Low Voltage Reset (LVR)

Low voltage reset (LVR) can select 16 different voltage thresholds through LVRCON (E3h.3~0). When PWRSAV (F7h.5) =1, the LVR will automatically turn off when the chip enters Idle/Halt/Stop mode. It can be enabled or disabled by LVRPD (E3h.4).

Note: refer to AP-TM52XXXXX_02S for LVR setting information

DS-TM52F4974_E 33 Rev 1.7, 2025/10

Flash 3FFFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWH	PROT	XRSTE	PORSEL	HVS	_	_	_	_

3FFFh.6 **XRSTE:** External Pin Reset control

0: Disable External Pin Reset1: Enable External Pin Reset

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	TKBUFS	TM3CKS	WDTPSC		ADCKS		TKOFC	
R/W	R/W	R/W	R/W		R/	W	R/	W
Reset	0	0	0	0	0	0	0	0

94h.5~4 **WDTPSC:** Watchdog Timer prescaler time select

00: 400ms WDT overflow rate 01: 200ms WDT overflow rate 10: 100ms WDT overflow rate 11: 50ms WDT overflow rate

SFR 97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
SWCMD		IAPEN/SWRST							
R/W		W							
Reset				-	_				

97h.7~0 **SWRST:** Write 56h to generate S/W Reset

SFR E3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LVRCON	_	_	PORPD	LVRPD	LVRSEL			
R/W	_	_	R/W	R/W	R/W			
Reset	_	_	0	0	0	0	0	0

E3h.5 **PORPD:** Power on Reset select

0: POR is enable1: POR is disable

E3h.4 LVRPD: Low Voltage Reset function select

0: LVR is enable 1: LVR is disable

E3h.3~0 **LVRSEL:** Low Voltage Reset select (step=0.14V)

0000: Set LVR at 2.05V 0001: Set LVR at 2.19V 0010: Set LVR at 2.33V 0011: Set LVR at 2.47V 0100: Set LVR at 2.61V 0101: Set LVR at 2.75V 0110: Set LVR at 2.89V 0111: Set LVR at 3.03V 1000: Set LVR at 3.17V 1001: Set LVR at 3.31V 1010: Set LVR at 3.45V 1011: Set LVR at 3.59V 1100: Set LVR at 3.73V

1101: Set LVR at 3.87V 1110: Set LVR at 4.01V 1111: Set LVR at 4.15V

DS-TM52F4974_E 34 Rev 1.7, 2025/10

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WI	DTE	PWRSAV	VBGOUT	DIV32	IAI	PTE	MULDIV16
R/W	R/	R/W		R/W	R/W	R	W	R/W
Reset	0	0	0	0	0	1	1	0

F7h.7~6 **WDTE:** Watchdog Timer Reset control

0x: Watchdog Timer Reset disable

10: Watchdog Timer Reset enable in Fast/Slow mode, disable in Idle/Halt/Stop mode

11: Watchdog Timer Reset always enable

F7h.5 **PWRSAV:** chip power-saving option

Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	CLRPWM0	CLRPWM1	_	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	_	R/W
Reset	0	0	0	0	1	1	_	0

F8h.7 **CLRWDT:** Set to clear WDT, H/W auto clear it at next clock cycle

SFR E4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LVDCON	LVDM	LVDO	LVDHYS	LVDPD	LVDSEL			
R/W	R/W	R	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0

E4h.7 **LVDM:** Low Voltage Detect function mode

0: $V_{CC} < V_{LVD}$ (LVDIF = 1 while LVDO = 1)

1: $V_{CC} > V_{LVD}$ (LVDIF = 1 while LVDO = 0)

E4h.6 LVDO: Low Voltage Detect real time output

E4h.5 **LVDHYS:** LVD Hysteresis Enable

0: LVD Hysteresis disable

1: LVD Hysteresis enable

E4h.4 **LVDPD:** Low Voltage Detect function select (Auto disable in Idle/Halt/Stop mode)

0: enable 1: disable

E4h.3~0 **LVDSEL:** Low Voltage Detect select (step=0.14V)

0000: Set LVD at 2.05V

0001: Set LVD at 2.19V

0010: Set LVD at 2.33V

0011: Set LVD at 2.47V

0100: Set LVD at 2.61V

0101: Set LVD at 2.75V

0110: Set LVD at 2.89V

0111: Set LVD at 3.03V

1000: Set LVD at 3.17V

1001: Set LVD at 3.31V

1001. Set E v D at 3.31 v

1010: Set LVD at 3.45V

1011: Set LVD at 3.59V

1100: Set LVD at 3.73V 1101: Set LVD at 3.87V

1110: Set LVD at 4.01V

1110. Set LVD at 4.01V

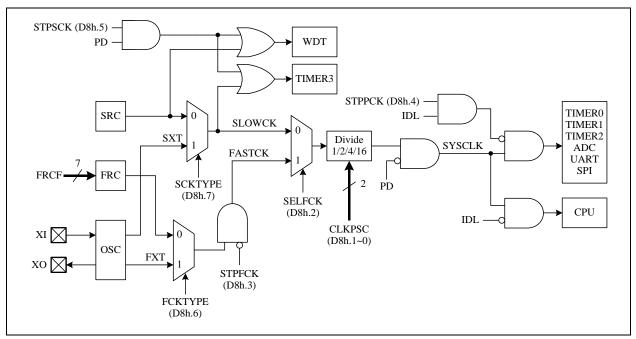
DS-TM52F4974_E 35 Rev 1.7, 2025/10

5. Clock Circuitry & Operation Mode

5.1 System Clock

The Chip is designed with dual-clock system. During runtime, user can directly switch the System clock from fast to slow or from slow to fast. It also can directly select a clock divider of 1, 2, 4 or 16. The Fast clock can be selected as FXT (Fast Crystal, 1~18 MHz) or FRC (Fast Internal RC, 18.432 MHz). The Slow clock can be selected as SXT (Slow Crystal, 32 KHz) or SRC (Slow Internal RC, 41 KHz). Fast mode and Slow mode are defined as the CPU running at Fast and Slow clock speeds.

After Reset, the device is running at Slow mode with 41 KHz SRC. S/W should select the proper clock rate for chip operation safety. The higher V_{CC} allows the chip to run at a higher System clock frequency. In a typical condition, a 18 MHz System clock rate requires $V_{CC} > 2.2V$.


The Chip has an external oscillators connected to the XI/XO pins. It relies on external circuitry for the clock signal and frequency stabilization, such as a stand-alone oscillator, quartz crystal, or ceramic resonator. In Fast mode, the fast oscillator can be used in the range from 1~18 MHz. In Slow mode, the slow oscillator can only use a clock frequency of 32.768 KHz.

The **CLKCON** SFR controls the System clock operating. H/W automatically blocks the S/W abnormally setting for this register. S/W can only change the Slow clock type in Fast mode and change the Fast clock type in Slow mode. Never to write both STPFCK=1 & SELFCK=1. It is recommended to write this SFR bit by bit.

If user wants to switch F_{SYSCLK} from Slow clock to FXT, user should be following the step below

- 1. Set FCKTYPE (D8h.6)
- 2. Wait 2ms until FXT oscillation stable
- 3. Set SELFCK (D8h.2)

The chip can also output the "System clock divided by 2" signal (CKO) to P1.4 pin. CKO pin's output setting is controlled by PINMOD SFR (see Chapter 7).

Clock Structure

Note: Because of the CLKPSC delay, it needs to wait for 16 clock cycles (max.) before switching Slow clock to Fast clock. Also refer to AP-TM52XXXXX 01S and AP-TM52XXXXX 02S about System Clock Application Note.

DS-TM52F4974_E 36 Rev 1.7, 2025/10

		CLKCO	N (D8h)	
SYSCLK	bit7	bit6	bit3	bit2
	SCKTYPE	FCKTYPE	STPFCK	SELFCK
Fast FXT	0/1	1	0	1
Fast FRC	0/1	0	0	1
Slow SXT	1	0/1	0/1	0
Slow SRC	0	0/1	0/1	0
Fast type change	0/1	0 ← → 1	0/1	0
Slow type change	0 ← → 1	0/1	0	1
Stop FRC/FXT	0/1	0/1	0 → 1	0
Switch to FRC/FXT	0/1	0/1	0	0 → 1
Switch to SRC/SXT	0/1	0/1	0	1 → 0

Flash 3FFDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWL	_				FRCF			

3FFDh.6~0 FRCF: FRC frequency adjustment.

FRC is trimmed to 18.432 MHz in chip manufacturing. FRCF records the adjustment data.

SFR F6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
CFGWL	_		FRCF						
R/W	_		R/W						
Reset	_	_	_	_	_	_	_	_	

F6h.6~0 **FRCF:** FRC frequency adjustment

00h= lowest frequency, 7Fh=highest frequency.

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCON	SCKTYPE	FCKTYPE	STPSCK	STPPCK	STPFCK	SELFCK	CLKPSC	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	1	0	0	0	1	1

D8h.7 **SCKTYPE:** Slow clock type. This bit can be changed only in Fast mode (SELFCK=1).

0: SRC

1: SXT, P2.0 and P2.1 are crystal pins

D8h.6 **FCKTYPE:** Fast clock type. This bit can be changed only in Slow mode (SELFCK=0).

0: FRC

1: FXT, P2.0 and P2.1 are crystal pins, oscillator gain is high for FXT

D8h.5 **STPSCK:** Set 1 to stop Slow clock in PDOWN mode

D8h.4 **STPPCK:** Set 1 to stop UARTs/Timer0/Timer1/Timer2/ADC clock in Idle mode for current reducing. If set, only Timer3 and pin interrupts are alive in Idle Mode.

D8h.3 **STPFCK:** Set 1 to stop Fast clock for power saving in Slow/Idle mode. This bit can be changed only in Slow mode.

D8h.2 **SELFCK:** System clock source selection. This bit can be changed only when STPFCK=0.

0: Slow clock

1: Fast clock

D8h.1~0 **CLKPSC:** System clock prescaler. Effective after 16 clock cycles (Max.) delay.

00: System clock is Fast/Slow clock divided by 16

01: System clock is Fast/Slow clock divided by 4

10: System clock is Fast/Slow clock divided by 2

11: System clock is Fast/Slow clock divided by 1

5.2 Operation Modes

There are five operation modes for this device. **Fast Mode** is defined as the CPU running at Fast clock speed. **Slow Mode** is defined as the CPU running at Slow clock speed. When the System clock speed is lower, the power consumption is lower.

Idle Mode is entered by setting the IDL bit in PCON SFR. Both Fast and Slow clock can be set as the System clock source in Idle Mode, but Slow clock is better for power saving. In Idle mode, the CPU puts itself to sleep while the on-chip peripherals stay active. The "STPPCK" bit in CLKCON SFR can be set to furthermore reduce Idle mode current. If STPPCK is set, only Timer3 and pin interrupts are alive in Idle Mode, others peripherals such as Timer0/1/2, UARTs and ADC are stop. The slower System clock rate also helps current saving. It can be achieved by setup the CLKPSC SFR to divide System clock frequency. Idle mode is terminated by Reset or enabled Interrupts wake up.

Stop Mode is entered by setting the PD bit in PCON SFR and STPSCK is set. This mode is the so-called "Power Down" mode in standard 8051. In Stop mode, all clocks stop except the WDT could be alive if it is enabled. Stop Mode is terminated by Reset or pin wake up.

Halt Mode is entered by setting the PD bit in PCON SFR and STPSCK is cleared. In Halt mode, all clocks stop except the Timer3 and WDT could be alive if they are enabled. Halt Mode is terminated by Reset, pin wake up or Timer3 interrupt. In this mode, Timer3 clock source can only choose Slow clock, not FRC/512.

Note: Chip cannot enter Halt/Stop Mode if INTn pin is low and wakeup is enabled. (INTn=0 and EXn=1, $n=0\sim2$)

Note: FW must turn off Bandgap to obtain Tiny Current (VBGOUT=0)

SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	_	_	_	GF1	GF0	PD	IDL
R/W	R/W	_	_	_	R/W	R/W	R/W	R/W
Reset	0	_	_	_	0	0	0	0

87h.1 **PD:** Power down control bit, set 1 to enter Halt/Stop mode.

87h.0 **IDL:** Idle mode control bit, set 1 to enter Idle mode.

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCON	SCKTYPE	FCKTYPE	STPSCK	STPPCK	STPFCK	SELFCK	CLKPSC	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	1	0	0	0	1	1

D8h.7 **SCKTYPE:** Slow clock type. This bit can be changed only in Fast mode (SELFCK=1).

0: SRC 1: SXT, P2.0 and P2.1 are crystal pins

D8h.6 **FCKTYPE:** Fast clock type. This bit can be changed only in Slow mode (SELFCK=0).

0: FRC 1: FXT, P2.0 and P2.1 are crystal pins, oscillator gain is high for FXT

D8h.5 **STPSCK:** Set 1 to stop Slow clock in PDOWN mode

D8h.4 **STPPCK:** Set 1 to stop UART/Timer0/Timer1/Timer2/ADC clock in Idle mode for current reducing. If set, only Timer3 and pin interrupts are alive in Idle Mode.

D8h.3 **STPFCK:** Set 1 to stop Fast clock for power saving in Slow/Idle mode. This bit can be changed only in Slow mode.

D8h.2 **SELFCK:** System clock source selection. This bit can be changed only when STPFCK=0.

0: Slow clock

1: Fast clock

D8h.1~0 CLKPSC: System clock prescaler. Effective after 16 clock cycles (Max.) delay.

00: System clock is Fast/Slow clock divided by 16

01: System clock is Fast/Slow clock divided by 4

10: System clock is Fast/Slow clock divided by 2

11: System clock is Fast/Slow clock divided by 1

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	TKBUFS	TM3CKS	WDTPSC		ADCKS		TKOFC	
R/W	R/W	R/W	R/W		R/W		R/	W
Reset	0	0	0	0	0	0	0	0

94h.6 **TM3CKS:** Timer3 cock source select

0: Slow clock (SXT/SRC)

1: FRC/512

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WDTE		PWRSAV	VBGOUT	DIV32	IAPTE N		MULDIV16
R/W	R/	W	R/W	R/W	R/W	R/	W	R/W
Reset	0	0	0	0	0	1	1	0

F7h.4 **VBGOUT:** V_{BG} voltage output to P3.2

0: Disable 1: Enable

6. Interrupt & Wake-up

This Chip has a 14-source four-level priority interrupt structure. Only the Pin Interrupts can wake up CPU from Halt/Stop mode. Each interrupt source has its own enable control bit. An interrupt event will set its individual Interrupt Flag, no matter whether its interrupt enable control bit is 0 or 1. The Interrupt vectors and flags are list below.

Vector	Flag	Description
0003	IE0	INTO external pin Interrupt (can wake up Halt/Stop mode)
000B	TF0	Timer0 Interrupt
0013	IE1	INT1 external pin Interrupt (can wake up Halt/Stop mode)
001B	TF1	Timer1 Interrupt
0023	RI+TI	Serial Port (UART1) Interrupt
002B	TF2+EXF2	Timer2 Interrupt
0033	_	Reserved for ICE mode use
003B	TF3	Timer3 Interrupt
0043	PCIF	Port0~Port3 external pin change Interrupt (can wake up Halt/Stop
		mode)
004B	IE2	INT2 external pin Interrupt (can wake up Halt/Stop mode)
0053	ADIF/TKIF	ADC/TK Interrupt
	SPIF	
005B	MIIF	SPI/I ² C interrupt
	TXDF/RCD2F/RCD1F	•
0063	LVDIF	LVD Interrupt
006B	RI2+TI2	Serial Port (UART2) Interrupt
0073	PWM0IF PWM1IF	PWM0~ PWM1 Interrupt

Interrupt Vector & Flag

Vector	Item	Interrupt enable	Sub-interrupt enable	Interrupt flag
0003	IE0	IE A8.0		TCON 88.1
000B	TF0	IE A8.1		TCON 88.5
0013	IE1	IE A8.2		TCON 88.3
001B	TF1	IE A8.3		TCON 88.7
0023	RI+TI	IE A8.4		SCON 98.1~0
002B	TF2+EXF2	IE A8.5		T2CON C8.7~6
0033	_			
003B	TF3	INTE1 A9.0		INTFLG 95.0
0043	PCIF	INTE1 A9.1		INTFLG 95.1
004B	IE2	INTE1 A9.2		INTFLG 95.2
0053	ADIF/TKIF	INTE1 A9.3		INTFLG 95.4 INTFLG 95.5
005B	SPIF MIIF TXDF/RCD2F/RCD1F	INTE1 A9.4	SICON C2.7 SICON C2.6~4	SPSTA BD.7 MICON E1.5 SICON C2.2~0
0063	LVDIF	INTE1 A9.5		INTFLG 95.7
006B	RI2+TI2	INTE1 A9.6		SCON2 9A.1~0
0073	PWM0IF PWM1IF	INTE1 A9.7	INTE2 84.6 INTE2 84.5	INTFLG2 85.6 INTFLG2 85.5

Interrupt related SFRs

DS-TM52F4974_E 40 Rev 1.7, 2025/10

6.1 Interrupt Enable and Priority Control

The IE and INTE1 SFRs decide whether the pending interrupt is serviced by CPU. The P0WKUP, P1WKUP, P2WKUP and P3WKUP SFR controls the individual Port0~3 pin's wake-up and interrupt capability. The IP, IPH, IP1 and IP1H SFRs decide the interrupt priority. An interrupt will be serviced as long as an interrupt of equal or higher priority is not already being serviced. If an interrupt of equal or higher level priority is being serviced, the new interrupt will wait until it is finished before being serviced. If a lower priority level interrupt is being serviced, it will be stopped and the new interrupt serviced. When the new interrupt is finished, the lower priority level interrupt that was stopped will be completed.

6.2 Suggestions on interrupting subroutines

When entering the interrupt program, in addition to the traditionally known SFR A or PSW that should be PUSH, POP, some SFRs used for indexing should also be added to the ranks of PUSH POP. To avoid writing and reading these SFRs before and after the interruption may cause inconsistencies. In addition, PWMDH, PWMDL, PWMPRDH or PWMPRDL is a 16-bit operation, and the program should avoid interrupts when writing and reading the high byte and low byte. If you are reading and writing these 16-bit SFRs in the meantime an interrupt occurs. And these SFRs are read and written in the interrupt. It is easy to cause read and write errors. For the 16-bit PWM period and duty to read and write, it is recommended to update the data only in the main program, or update the data only in the interrupt to avoid possible errors.

SFR A8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IE	EA	_	ET2	ES	ET1	EX1	ET0	EX0
R/W	R/W	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	_	0	0	0	0	0	0

A8h.7 **EA:** Global interrupt enable control.

0: Disable all Interrupts.

1: Each interrupt is enabled or disabled by its individual interrupt control bit

A8h.5 **ET2:** Timer2 interrupt enable

0: Disable Timer2 interrupt

1: Enable Timer2 interrupt

A8h.4 **ES:** Serial Port (UART1) interrupt enable

0: Disable Serial Port (UART1) interrupt

1: Enable Serial Port (UART1) interrupt

A8h.3 **ET1:** Timer1 interrupt enable

0: Disable Timer1 interrupt

1: Enable Timer1 interrupt

A8h.2 **EX1:** External INT1 pin Interrupt enable and Halt/Stop mode wake up enable

0: Disable INT1 pin Interrupt and Halt/Stop mode wake up

1: Enable INT1 pin Interrupt and Halt/Stop mode wake up, it can wake up CPU from Halt/Stop mode no matter EA is 0 or 1.

A8h.1 **ET0:** Timer0 interrupt enable

0: Disable Timer0 interrupt

1: Enable Timer0 interrupt

A8h.0 **EX0:** External INT0 pin Interrupt enable and Halt/Stop mode wake up enable

0: Disable INT0 pin Interrupt and Halt/Stop mode wake up

1: Enable INT0 pin Interrupt and Halt/Stop mode wake up, it can wake up CPU from Halt/Stop mode no matter EA is 0 or 1.

DS-TM52F4974_E 41 Rev 1.7, 2025/10

SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	ES2	LVDIE	SPI2CE	ADTKIE	EX2	PCIE	TM3IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

A9h.7 **PWMIE:** PWM0~PWM1 interrupt enable

0: Disable PWM0~PWM1 interrupt

1: Enable PWM0~PWM1 interrupt

A9h.6 ES2: Serial Port (UART2) interrupt enable

0: Disable Serial Port (UART2) interrupt

1: Enable Serial Port (UART2) interrupt

LVDIE: LVD interrupt enable A9h.5

0: Disable LVD interrupt

1: Enable LVD interrupt.

SPI2CE: SPI/I²C interrupt enable A9h.4

0: Disable SPI/I²C interrupt

1: Enable SPI/I²C interrupt

ADTKIE: ADC/TK interrupt enable A9h.3

0: Disable ADCTK interrupt

1: Enable ADC/TK interrupt

A9h.2 **EX2:** External INT2 pin Interrupt enable and Halt/Stop mode wake up enable

0: Disable INT2 pin Interrupt and Halt/Stop mode wake up

1: Enable INT2 pin Interrupt and Halt/Stop mode wake up, it can wake up CPU from Halt/Stop mode no matter EA is 0 or 1.

A9h.1 PCIE: Port0~Port3 pin change interrupt enable. This bit does not affect Halt/Stop mode wake up capability.

0: Disable Port0~Port3 pin change interrupt

1: Enable Port0~Port3 pin change interrupt

A9h.0 TM3IE: Timer3 interrupt enable

0: Disable Timer3 interrupt

1: Enable Timer3 interrupt

SFR 84 h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE2	_	PWM1IE	PWM0IE	_	_	_	_	_
R/W	_	R/W	R/W	_	_	_	_	_
Reset	_	0	0	_	_	_	_	_

84h.6 **PWM1IE:** PWM1 Interrupt Enable

0: disable

1: enable (note: PWMIE must be 1 at the same time to generate PWM interrupt)

84h.5 PWM0IE: PWM0 Interrupt Enable

1: enable (note: PWMIE must be 1 at the same time to generate PWM interrupt)

42 Rev 1.7, 2025/10 DS-TM52F4974_E

SFR B9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IPH	_	_	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

SFR B8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP	_	_	PT2	PS	PT1	PX1	PT0	PX0
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

B9h.5, B8h.5 **PT2H, PT2:** Timer2 Interrupt Priority control. (PT2H, PT2) =

11: Level 3 (highest priority)

10: Level 2 01: Level 1

00: Level 0 (lowest priority)

B9h.4, B8h.4 **PSH**, **PS:** Serial Port (UART1) Interrupt Priority control. Definition as above.

B9h.3, B8h.3 **PT1H, PT1:** Timer1 Interrupt Priority control. Definition as above.

B9h.2, B8h.2 PX1H, PX1: External INT1 pin Interrupt Priority control. Definition as above.

B9h.1, B8h.1 **PT0H, PT0:** Timer0 Interrupt Priority control. Definition as above.

B9h.0, B8h.0 PX0H, PX0: External INT0 pin Interrupt Priority control. Definition as above.

SFR BBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP1H	PPWMH	PS2H	PLVDH	PSPI2CH	PADTKIH	PLVDH	PPCH	РТ3Н
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR BAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP1	PPWM	PS2	PLVD	PSPI2C	PADTKI	PLVD	PPC	PT3
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

BBh.7, BAh.7 **PPWMH, PPWM:** PWM0~PWM1 Interrupt Priority control. Definition as above.

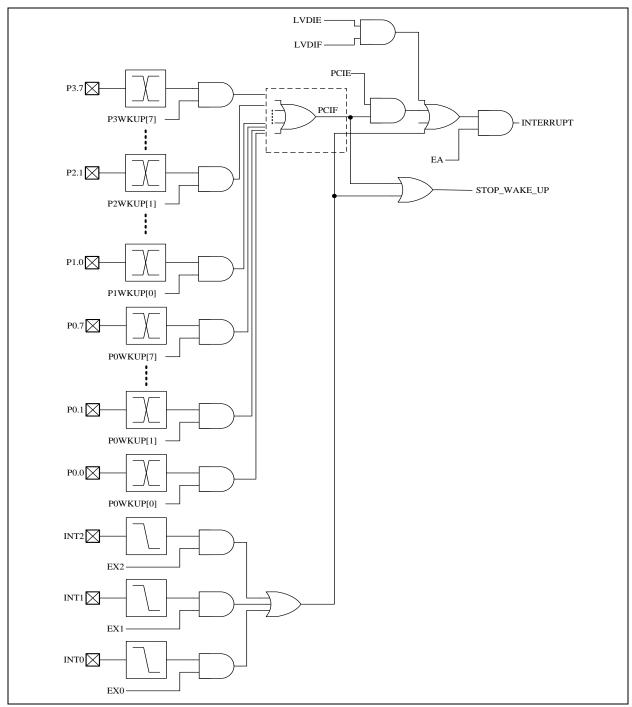
BBh.6, BAh.6 PS2H, PS2: Serial Port (UART2) Interrupt Priority control. Definition as above.

BBh.5, BAh.5 PLVDH, PLVD: LVD Interrupt Priority control. Definition as above.

BBh.4, BAh.4 **PSPI2CH, PSPI2C:** SPI/I²C Interrupt Priority control. Definition as above.

BBh.3, BAh.3 PADTKIH, PADTKI: ADC/TK Interrupt Priority control. Definition as above.

BBh.1, BAh.1 **PPCH, PPC:** Port0~ Port 3 Pin Change Interrupt Priority control. Definition as above.


BBh.0, BAh.0 PT3H, PT3: Timer3 Interrupt Priority control. Definition as above.

DS-TM52F4974_E 43 Rev 1.7, 2025/10

6.3 Pin Interrupt and LVD interrupt

Pin Interrupts include INT0 (P3.2), INT1 (P3.3), INT2 (P3.7) and Port0~Port3 pin change interrupt. These pins also have the Halt/Stop mode wake up capability. INT0 and INT1 are falling edge or low level triggered as the 8051 standard. INT2 is falling edge triggered and Port0~Port3 Pin Change Interrupt is triggered by I/O state change. For details, see Chapter 7. Pin Mode and pin change enable settings. LVD interrupt can be used to detect the V_{CC} voltage level and generate an interrupt.

Pin interrupt/Wake up & LVD interrupt

Note: Chip cannot enter Halt/Stop Mode if INTn pin is low and wakeup is enabled. (INTn=0 and EXn=1, $n=0\sim2$)

SFR 9Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
P0WKUP		POWKUP								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

9Ch.7~0 **P0WKUP:** P0.7~P0.0 pin individual Wake-up / Interrupt enable control

0: Disable 1: Enable

SFR 96h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
P1WKUP		P1WKUP								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

96h.7~0 **P1WKUP:** P1.7~P1.0 pin individual Wake-up / Interrupt enable control

0: Disable1: Enable

SFR 9Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2WKUP	_	_	_	_	_	_	P2WKUP	
R/W	_	_	_	_	_	_	R/W	
Reset	_	_	_	_	_	_	0	0

9Dh.7~0 **P2WKUP:** P2.1~P2.0 pin individual Wake-up / Interrupt enable control

0: Disable 1: Enable

SFR 9Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
P3WKUP		P3WKUP								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

9Eh.7~0 **P3WKUP:** P3.7~P3.0 pin individual Wake-up / Interrupt enable control

0: Disable 1: Enable

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVDIF	_	TKIF	ADIF	_	IE2	PCIF	TF3
R/W	R		R/W	R/W	_	R/W	R/W	R/W
Reset	_		0	0	_	0	0	0

95h.7 **LVDIF:** Low Voltage Detect interrupt flag

Set by H/W. S/W writes 7Fh to INTFLG to clear this flag.

95h.2 **IE2:** External Interrupt 2 (INT2 pin) edge flag.

Set by H/W when an INT2 pin falling edge is detected, no matter the EX2 is 0 or 1.

It is cleared automatically when the program performs the interrupt service routine.

95h.1 **PCIF:** Port0~Port3 Pin change interrupt flag

Set by H/W when Port0~Port3 pin state change is detected and its interrupt enable bit is set.

S/W can write 0 to clear all pin change interrupt flags (Port0~Port3).

Note: S/W can write 0 to clear a flag in the INTFLG, but writing 1 has no effect.

DS-TM52F4974_E 45 Rev 1.7, 2025/10

SFR 88h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

88h.3 **IE1:** External Interrupt 1 (INT1 pin) edge flag.

Set by H/W when an INT1 pin falling edge is detected, no matter the EX1 is 0 or 1.

It is cleared automatically when the program performs the interrupt service routine.

88h.2 **IT1:** External Interrupt 1 control bit

0: Low level active (level triggered) for INT1 pin

1: Falling edge active (edge triggered) for INT1 pin

88h.1 **IE0:** External Interrupt 0 (INT0 pin) edge flag

Set by H/W when an INT0 pin falling edge is detected, no matter the EX0 is 0 or 1.

It is cleared automatically when the program performs the interrupt service routine.

88h.0 **IT0:** External Interrupt 0 control bit

0: Low level active (level triggered) for INT0 pin

1: Falling edge active (edge triggered) for INT0 pin

SFR A8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IE	EA	_	ET2	ES	ET1	EX1	ET0	EX0
R/W	R/W	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	_	0	0	0	0	0	0

A8h.7 **EA:** Global interrupt enable control.

0: Disable all Interrupts.

1: Each interrupt is enabled or disabled by its individual interrupt control bit

A8h.2 **EX1:** External INT1 pin Interrupt enable and Halt/Stop mode wake up enable

0: Disable INT1 pin Interrupt and Halt/Stop mode wake up

1: Enable INT1 pin Interrupt and Halt/Stop mode wake up, it can wake up CPU from Halt/Stop mode no matter EA is 0 or 1.

A8h.0 **EX0:** External INTO pin Interrupt enable and Halt/Stop mode wake up enable

0: Disable INT0 pin Interrupt and Halt/Stop mode wake up

1: Enable INTO pin Interrupt and Halt/Stop mode wake up, it can wake up CPU from Halt/Stop mode no matter EA is 0 or 1.

SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	ES2	LVDIE	SPI2CE	ADTKIE	EX2	PCIE	TM3IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

A9h.5 **LVDIE:** LVD interrupt enable

0: Disable LVD interrupt

1: Enable LVD interrupt.

A9h.2 **EX2:** External INT2 pin Interrupt enable and Halt/Stop mode wake up enable

0: Disable INT2 pin Interrupt and Halt/Stop mode wake up

1: Enable INT2 pin Interrupt and Halt/Stop mode wake up, it can wake up CPU from Halt/Stop mode no matter EA is 0 or 1.

A9h.1 **PCIE:** Port0~Port3 pin change interrupt enable. This bit does not affect Halt/Stop mode wake up capability.

0: Disable Port0~Port3 pin change interrupt

1: Enable Port0~Port3 pin change interrupt

DS-TM52F4974_E 46 Rev 1.7, 2025/10

SFR E4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LVDCON	LVDM	LVDO	LVDHYS	LVDPD	LVDSEL			
R/W	R/W	R	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0

E4h.7 **LVDM:** Low Voltage Detect function mode

0: $V_{CC} < V_{LVD}$ (LVDIF = 1 while LVDO = 1)

1: $V_{CC} > V_{LVD}$ (LVDIF = 1 while LVDO = 0)

E4h.6 **LVDO:** Low Voltage Detect real time output

E4h.5 **LVDHYS:** LVD Hysteresis Enable

0: LVD Hysteresis disable1: LVD Hysteresis enable

E4h.4 **LVDPD:** Low Voltage Detect function select (Auto disable in Idle/Halt/Stop mode)

0: enable 1: disable

E4h.3~0 **LVDSEL:** Low Voltage Detect select (step=0.14V)

0000: Set LVD at 2.05V

0001: Set LVD at 2.19V

0010: Set LVD at 2.33V

0011: Set LVD at 2.47V

0100: Set LVD at 2.61V

0101: Set LVD at 2.75V

0110: Set LVD at 2.89V

0111: Set LVD at 3.03V

1000: Set LVD at 3.17V

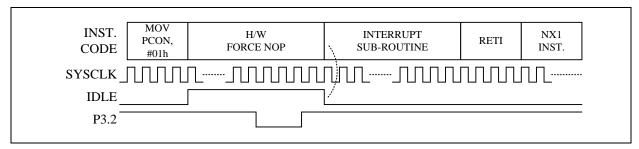
1001: Set LVD at 3.31V

1010: Set LVD at 3.45V 1011: Set LVD at 3.59V

1100: Set LVD at 3.73V

1101: Set LVD at 3.87V

1110: Set LVD at 4.01V


1111: Set LVD at 4.15V

6.4 Idle mode Wake up and Interrupt

Idle mode is waked up by enabled Interrupts, which means individual interrupt enable bit (ex: EX0) and EA bit must be both set to 1 to establish Idle mode wake up capability. All enabled Interrupts change (INT0~INT2, Timers, PWM, ADC, and UARTs) can wake up CPU from Idle mode. Upon Idle wake-up, Interrupt service routine is entered immediately. "The first instruction behind IDL (PCON.0) setting" is executed after interrupt service routine return.

For all pin interrupts to be triggered, each interrupt enable bit (e.g. EX0) and the EA bit must be set to 1 and the pin trigger state must stay long enough (greater than 1 system clock) to be sampled by the system clock. When the EA is not set to 1 or the pin trigger state does not stay long enough, it will not wake up and will not generate an interrupt subroutine.

EA=EX0=1, Idle mode wake-up and Interrupt by P3.2 (INT0)

SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	_	_	_	GF1	GF0	PD	IDL
R/W	R/W	_	_	_	R/W	R/W	R/W	R/W
Reset	0	_	_	_	0	0	0	0

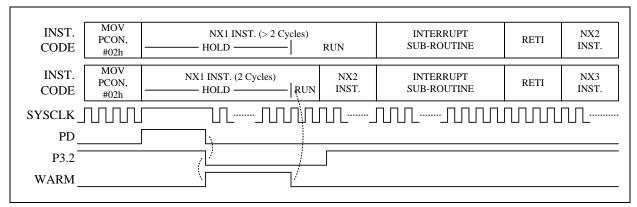
87h.1 **PD:** Power down control bit, set 1 to enter Halt/Stop mode.

87h.0 **IDL:** Idle mode control bit, set 1 to enter Idle mode.

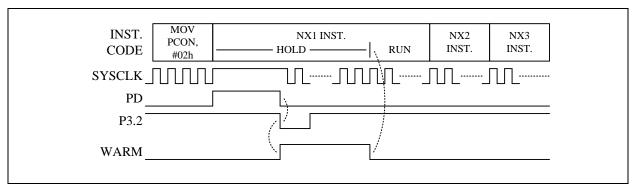
6.5 Halt/Stop mode Wake up and Interrupt

Each interrupt enable bit (e.g. TM3IE, EX0) and the EA bit must be set to 1 to establish the Halt/Stop mode interrupt function. All enabled interrupts (pins, Timer3) can wake up the CPU from Halt/Stop mode. Once Halt/Stop is woken up, if "the first instruction after PD (PCON.1) is set" is a two-cycle instruction, it will execute immediately before the interrupt is serviced, if "the first instruction after PD (PCON.1) is set" is a four-cycle or more long instruction, it will execute after the interrupt is serviced.

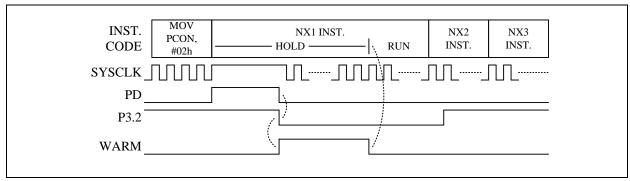
In addition to setting EX0/EX1/EX2, the INT0~2 pin interrupt needs to set EA=1 and the pin trigger state stays long enough (greater than 128 system clocks) to be sampled by the system clock, that is to say, when EA is not set to 1 or if the pin trigger state does not stay long enough, the CPU will only wake up without entering the interrupt subroutine.


In addition to setting P0WKUP/P1WKUP/P2WKUP/P3WKUP, Port0~3 WKUP pin interrupt needs to set EA=1, that is to say, when EA is not set to 1, the CPU will only be woken up and will not enter the interrupt subroutine.

Note: It is recommended to place the NX1/NX2 with NOP Instruction in figures below.


Note: The chip cannot enter Halt/Stop mode if the INTn pin is low and the INTn wake-up function is enabled. (INTn=0 and EXn=1, $n=0\sim2$)

DS-TM52F4974_E 48 Rev 1.7, 2025/10



EA=EX0=1, P3.2 (INT0) is sampled after warm-up, Halt/Stop mode wake-up and Interrupt

EA=EX0=1, Halt/Stop mode wake-up but not Interrupt. P3.2 (INT0) pulse too narrow

EX0= 1, EA=0, P3.2 (INT0) Halt/Stop mode wake-up but not Interrupt

DS-TM52F4974_E 49 Rev 1.7, 2025/10

7. I/O Ports

The Chip has total 26 multi-function I/O pins. All I/O pins follow the standard 8051 "Read-Modify-Write" feature. The instructions that read the SFR rather than the Pin State are the ones that read a port or port bit value, possibly change it, and then rewrite it to the SFR (ex: ANL P1, A; INC P2; CPL P3.0).

7.1 Port0~Port 3

These pins can operate in four different modes as below.

Pin Mode	Port0~Port3 p	in function	Px.n SFR	Pin State	Resistor	Digital
riii iviode	P3.0~P3.2	Others	data	riii State	Pull-up	Input
Mode 0	Open Drain (PSEUDOEN=0)	Open Drain	0	Drive Low	N	N
Wiode 0	Pseudo Open Drain (PSEUDOEN=1)	Open Drain	1	Pull-up	Y	Y
Mode 1	Open Drain (PSEUDOEN=0)	Open Drain	0	Drive Low	N	N
Wiode 1	Pseudo Open Drain (PSEUDOEN=1)	Open Diam	1	Hi-Z	N	Y
Mode 2	CMOS O	hutout	0	Drive Low	N	N
Mode 2	CMOS Output		1	Drive High	N	N
Mode 3	Analog s (digital input buff	· ·	X (don't care)	_	N	N

Port0~Port3 I/O Pin Function Table

If a Port0~ Port3 pin is used for Schmitt-trigger input, S/W must set the I/O pin to Mode0 or Mode1 and set the corresponding Port Data SFR to 1 to disable the pin's output driving circuitry.

When user selects Mode0 or Mode1, the function is Open drain output low, when Port data=0, the function is output low, when port data=1, the port type is Hi-Z, so user can use digital input in this setting. User can choose mode0 or mode1 for in-out type such as I2C SDA pin. The difference of Mode0 and Mode1 is whether have pull-up resistor or not, when port data = 1, Mode0 have an internal pull-up resister but mode1 haven't, user can add external pull-up resistors by yourself when using Mode1 if you need.

When user selects Mode2, the function is CMOS output, user can choose output low or high by port data value. When user selects Mode3, the function is for analog signal, such as ADC pin, the port type is Hi-Z and the digital input Schmitt-trigger is disabled in this mode.

Beside I/O port function, each Port0~Port3 pin has one or more alternative functions, such as LCD, LED, ADC and Touch Key. Most of the functions are activated by setting the individual pin mode control SFR to Mode3. Port1/Port3 pins have standard 8051 auxiliary definition such as INT0/1/2, T0/1/2, or RXD/TXD. These pin functions need to set the pin mode SFR to Mode0 or Mode1 and keep the P1.n/P3.n SFR at 1.

DS-TM52F4974_E 50 Rev 1.7, 2025/10

Pin Name	8051	Wake-up Interrupt	ADC	TK	LCD	LED MX	LED DMX	PWM	others	Mode3
P0.7		Y	AD24	TK19	LCDC07	SEG6		PWM6(1)		AD24
P0.6		Y	AD25	TK20	LCDC06	SEG7		PWM5(1)		AD25
P0.5		Y	AD26	TK21	LCDC05			PWM4(1)		AD26
P0.4		Y	AD27	TK22	LCDC04			PWM3(1)		AD27
P0.3	TXD2(1)	Y	AD20	TK18	LCDC03	COM3	LED3			AD20
P0.2	RXD2(1)	Y	AD21		LCDC02	COM2	LED2		SDA(1)	AD21
P0.1	RXD(1)	Y	AD22		LCDC01	COM1	LED1		$SCL_{(1)}/PSDA_{(1)}$	AD22
P0.0	TXD(1)	Y	AD23		LCDC00	COM0	LED0		PSCL(1)	AD23
P1.7	TXD2	Y	AD11	TK11	LCDC17	SEG2			MISO	AD11
P1.6		Y	AD10	TK10	LCDC16	SEG3		PWM3		AD10
P1.5		Y	AD9	TK9	LCDC15	SEG4		PWM2		AD9
P1.4	TCO	Y	AD8	TK8	LCDC14	SEG5		PWM1		AD8
P1.3		Y	AD7	TK7	LCDC13			PWM0N		AD7
P1.2		Y	AD6	TK6	LCDC12			PWM0P		AD6
P1.1	T2EX	Y	AD5	TK5	LCDC11					AD5
P1.0	T2/T2O	Y	AD4	TK4	LCDC10					AD4
P2.1	XO	Y	AD19	TK17	LCDC21	COM5/SEG9	LED5	PWM0P(1)		AD19
P2.0	XI	Y	AD18	TK16	LCDC20	COM4/SEG8	LED4	PWM0N(1)		AD18
P3.7	XINT2	Y	AD17	TK15	LCDC37	COM6/SEG10	LED6	PWM6	RSTn	AD17
P3.6	RXD2	Y	AD14	TK12	LCDC36	SEG1			SCK	AD14
P3.5	T1/T1O	Y	AD15	TK13	LCDC35	SEG0		PWM4	MOSI	AD15
P3.4	T0/T0O	Y	AD16	TK14	LCDC34	COM7/SEG11	LED7	PWM5		AD16
P3.3	XINT1	Y	AD0	TK0	LCDC33			PWM2(1)		AD0
P3.2	XINT0	Y	AD1	TK1	LCDC32			PWM1(1)	VBGO	AD1
P3.1	TXD	Y	AD2	TK2	LCDC31				SDA/PSDA	AD2
P3.0	RXD	Y	AD3	TK3	LCDC30				SCL/PSCL	AD3

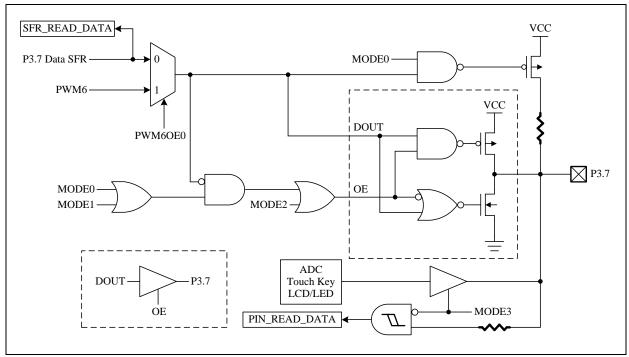
Port0~Port3 multi-function Table

The necessary SFR setting for Port0~ Port3 pin's alternative function is list below.

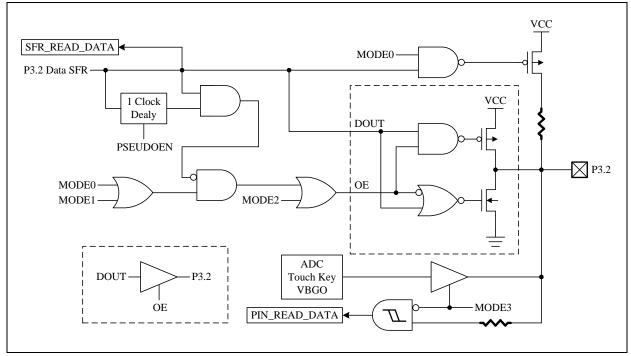
Alternative Function	Mode	Px.n SFR data	Pin State	Other necessary SFR setting
T0, T1, T2, T2EX,	0	1	Input with Pull-up	
INT0, INT1, INT2	1	1	Input	<u>-</u>
DVD DVD4	0	1	UART RX (Input with Pull-up)	DD II (OD
RXD, RXD2	1	1	UART RX (Input)	PINMOD
TXD,TXD2	2	1	UART TX Output (CMOS Push-Pull)	PINMOD
T00 T10 T20	0	X	Clock Open Drain Output with Pull-up	
T0O, T1O, T2O CKO	1	X	Clock Open Drain Output	PINMOD
CKO	2	X	Clock Output (CMOS Push-Pull)	
VBGO	X	X	Bandgap Voltage output	VBGOUT
COM0~COM7*	X	X	LCD Waveform Output	P0LOE
SEG0~SEG11*	Λ	Λ	LED MX Waveform Output	P1LOE
LED0~LED7* (see Note below)	X	X	LED DMX Waveform Output	P2LOE P3LOE LXDCON LXDCON2
TK0~TK22	X	X	Touch Key Channel	TKCHS ATKCH0 ATKCH1 ATKCH2
AD0~AD11 AD14~AD27	3	X	ADC Channel	ADCHSEL
PWM0P/PWM0N	0	X	PWM Open Drain Output with Pull-up	PWMCON
PWM1~PWM6	2	X	PWM Output (CMOS Push-Pull)	PWMOE0 PWMOE1
SPI Master Mode MISO	1	1	SPI Data Input	
SPI Master Mode SCK, MOSI	2	X	SPI Clock/Data Output (CMOS Push-Pull)	SPCON
SPI Slave Mode MISO	2	X	SPI Data Output (CMOS Push-Pull)	SPCON
SPI Slave Mode SCK, MOSI	1	1	SPI Clock/Data Input	
Master I ² C SCL	0	X	I ² C Clock Output (Open Drain Output, Pull-up)	MICON
	2	X	I ² C Clock Output (CMOS Push-Pull)	MICON PINMOD
Master I ² C SDA	0	1	I ² C Data (Pull-up)	THAMOD
XI, XO	0	1	Crystal oscillation	CLKCON

For tables above, a "CMOS Output" pin means it can sink and drive at least 4 mA current. It is not recommended to use such pin as input function.

An "Open Drain" pin means it can sink at least 4 mA current but only drive a small current ($<20 \mu A$). It can be used as input or output function and typically needs an external pull up resistor.


An 8051 standard pin is a "**Pseudo Open Drain**" pin. It can sink at least 4 mA current when output is at low level, and drives at least 4 mA current for $1\sim2$ clock cycle when output transits from low to high, then keeps driving a small current (<20 μ A) to maintain the pin at high level. It can be used as input or output function.

Note: for the necessary SFR setting above, LCD/LED pin has the highest priority. Therefore, if a pin is not used for Segment (ex: pin is I/O, ADC, TK, I^2 C, UART and SPI...), S/W must disable the LCD/LED function.


DS-TM52F4974_E 52 Rev 1.7, 2025/10

The chip also supports I/O High-sink function. It is an option and is turned off by default. For efficient control, we divide the High-sink pins into three groups (Group 0: P0.0~P0.3, P2.0~P2.1, P3.4, P3.7; Group 1: P0.6~P0.7, P1.4~P1.7, P3.5~P3.6; Group 2: P0.4~P0.5, P1.0~P1.3, P3.0~P3.3). It is enabled by setting SFR HSNK0EN, HSNK1EN and HSNK2EN.

P3.7 Pin Structure

P3.2 Pin Structure

DS-TM52F4974_E 53 Rev 1.7, 2025/10

SFR 80h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P0	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

80h.7~0 **P0:** Port0 data

SFR 90h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

90h.7~0 **P1:** Port1 data

SFR A0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

A0h.1~0 **P2.1~P2.0:** P2.1~P2.0 data

SFR B0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

B0h.7~0 **P3:** Port3 data

SFR 91h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P0MODL	P0M	OD3	P0MOD2		P0MOD1		P0MOD0	
R/W	R/	W	R/W		R/W		R/	W
Reset	0	1	0	1	0	1	0	1

91h.7~6 **P0MOD3:** P0.3 pin control

00: Mode0 01: Mode1

10: Mode2

11: Mode3, P0.3 is ADC input

91h.5~4 **P0MOD2:** P0.2 pin control

00: Mode0 01: Mode1

10: Mode2

11: Mode3, P0.2 is ADC input

91h.3~2 **P0MOD1:** P0.1 pin control

00: Mode0 01: Mode1

10: Mode2

11: Mode3, P0.1 is ADC input

91h.1~0 **P0MOD0:** P0.0 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P0.0 is ADC input

DS-TM52F4974_E 54 Rev 1.7, 2025/10

SFR 92h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P0MODH	POM	OD7	P0M	OD6	P0MOD5		P0MOD4	
R/W	R/	W	R/	W	R/	W	R/	W
Reset	0	1	0	1	0	1	0	1

92h.7~6 **P0MOD7:** P0.7 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P0.7 is ADC input

92h.5~4 **P0MOD6:** P0.6 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P0.6 is ADC input

92h.3~2 **P0MOD5:** P0.5 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P0.5 is ADC input

92h.1~0 **P0MOD4:** P0.4 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P0.4 is ADC input

SFR A2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1MODL	P1M	OD3	P1MOD2		P1MOD1		P1MOD0	
R/W	R/	W	R/	W	R/	W	R/	W
Reset	0	1	0	1	0	1	0	1

A2h.7~6 **P1MOD3:** P1.3 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P1.3 is ADC input

A2h.5~4 **P1MOD2:** P1.2 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P1.2 is ADC input

A2h.3~2 P1MOD1: P1.1 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P1.1 is ADC input

A2h.1~0 **P1MOD0:** P1.0 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P1.0 is ADC input

DS-TM52F4974_E 55 Rev 1.7, 2025/10

SFR A3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1MODH	P1M	OD7	P1MOD6		P1M	OD5	P1MOD4	
R/W	R/	W	R/	W	R/	W	R/	W
Reset	0	1	0	1	0	1	0	1

A3h.7~6 **P1MOD7:** P1.7 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P1.7 is ADC input

A3h.5~4 **P1MOD6:** P1.6 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P1.6 is ADC input

A3h.3~2 **P1MOD5:** P1.5 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P1.5 is ADC input

A3h.1~0 **P1MOD4:** P1.4 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P1.4 is ADC input

SFR 93h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2MODL	_	_	_	_	P2MOD1		P2MOD0	
R/W	_	_	_	_	R/	W	R/	W
Reset	_	_	_	_	0	1	0	1

93h.3~2 **P2MOD1:** P2.1 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P2.1 is ADC input

93h.1~0 **P2MOD0:** P2.0 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P2.0 is ADC input

DS-TM52F4974_E 56 Rev 1.7, 2025/10

SFR A4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3MODL	P3M	OD3	P3MOD2		P3MOD1		P3MOD0	
R/W	R/	W	R/	W	R/	W	R/	W
Reset	0	1	0	1	0	1	0	1

A4h.7~6 **P3MOD3:** P3.3 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P3.3 is ADC input

A4h.5~4 **P3MOD2:** P3.2 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P3.2 is ADC input

A4h.3~2 **P3MOD1:** P3.1 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P3.1 is ADC input

A4h.1~0 **P3MOD0:** P3.0 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P3.0 is ADC input

SFR A5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3MODH	P3M	OD7	P3MOD6		P3MOD5		P3MOD4	
R/W	R/	W	R/	W	R/	W	R/	W
Reset	0	1	0	1	0	1	0	1

A5h.7~6 **P3MOD7:** P3.7 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P3.7 is ADC input

A5h.5~4 **P3MOD6:** P3.6 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P3.6 is ADC input

A5h.3~2 **P3MOD5:** P3.5 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P3.5 is ADC input

A5h.1~0 **P3MOD4:** P3.4 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P3.4 is ADC input

DS-TM52F4974_E 57 Rev 1.7, 2025/10

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD	PSEUDOEN	MSI2CPS	UART2PS	UART1PS	TCOE	T2OE	T1OE	T0OE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

A6h.7 **PSEUDOEN:** P3.0~P3.2 pseudo open-drain state

0: Disable

1: Enable

A6h.6 **MSI2CPS:** Master/Slave I²C pin select (SCL/SDA)

0: P3.0/P3.1

1: P0.1/P0.2

A6h.5 **UART2PS:** UART2 Pin Select (TX/RX)

0: P1.7/P3.6

1: P0.3/P0.2

A6h.4 **UART1PS:** UART1 Pin Select (TX/RX)

0: P3.1/P3.0 1: P0.0/P0.1

A6h.3 **TCOE:** System clock signal output (CKO) control

0: Disable "System clock divided by $2\mbox{"}$ output to P1.4 pin

1: Enable "System clock divided by 2" output to P1.4 pin

A6h.2 **T2OE:** Timer2 signal output (T2O) control

0: Disable "Timer2 overflow divided by 2" output to P1.0 pin

1: Enable "Timer2 overflow divided by 2" output to P1.0 pin

A6h.1 **T10E:** Timer1 signal output (T10) control

0: Disable "Timer1 overflow divided by 2" output to P3.5 pin

1: Enable "Timer1 overflow divided by 2" output to P3.5 pin

A6h.0 **T0OE:** Timer0 signal output (T0O) control

0: Disable "Timer0 overflow divided by 64" output to P3.4 pin

1: Enable "Timer0 overflow divided by 64" output to P3.4 pin

SFR B1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
LXDCON	LXDEN		LXDDUTY				LXDBRIT		
R/W	R/W		R/W			R/W			
Reset	0	0	0	0	0	1	1	1	

B1h.7 **LXDEN:** LCD/LED enable control

0: LCD/LED disable
1: LCD/LED enable

SFR B6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMOE0	PWM2OE1	PWM2OE0	PWM10E1	PWM1OE0	PWM0NOE1	PWM0POE1	PWM0NOE0	PWM0POE0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

B6h.7 **PWM2OE1:** PWM2 control

0: PWM2 disable

1: PWM2 enable and signal output to P3.3 pin

B6h.6 **PWM2OE0:** PWM2 control

0: PWM2 disable

1: PWM2 enable and signal output to P1.5 pin

B6h.5 **PWM10E1:** PWM1 control

0: PWM1 disable

1: PWM1 enable and signal output to P3.2 pin

B6h.4 **PWM10E0:** PWM1 control

0: PWM1 disable

1: PWM1 enable and signal output to P1.4 pin

B6h.3 **PWM0NOE1:** PWM0N control

0: PWM0N disable

1: PWM0N enable and signal output to P2.0 pin

B6h.2 **PWM0POE1:** PWM0P control

0: PWM0P disable

1: PWM0P enable and signal output to P2.1 pin

B6h.1 **PWM0NOE0:** PWM0N control

0: PWM0N disable

1: PWM0N enable and signal output to P1.3 pin

B6h.0 **PWM0POE0:** PWM0P control

0: PWM0P disable

1: PWM0P enable and signal output to P1.2 pin

SFR B7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMOE1	PWM6OE1	PWM6OE0	PWM5OE1	PWM5OE0	PWM4OE1	PWM4OE0	PWM3OE1	PWM3OE0
R/W								
Reset	0	0	0	0	0	0	0	0

B7h.7 **PWM6OE1:** PWM6 control

0: PWM6 disable

1: PWM6 enable and signal output to P0.7 pin

B7h.6 **PWM6OE0:** PWM6 control

0: PWM6 disable

1: PWM6 enable and signal output to P3.7 pin

B7h.5 **PWM5OE1:** PWM5 control

0: PWM5 disable

1: PWM5 enable and signal output to P0.6 pin

B7h.4 **PWM5OE0:** PWM5 control

0: PWM5 disable

1: PWM5 enable and signal output to P3.4 pin

B7h.3 **PWM4OE1:** PWM4 control

0: PWM4 disable

1: PWM4 enable and signal output to P0.5 pin

B7h.2 **PWM4OE0:** PWM4 control

0: PWM4 disable

1: PWM4 enable and signal output to P3.5 pin

B7h.1 **PWM3OE1:** PWM3 control

0: PWM3 disable

1: PWM3 enable and signal output to P0.4 pin

B7h.0 **PWM3OE0:** PWM3 control

0: PWM3 disable

1: PWM3 enable and signal output to P1.6 pin

DS-TM52F4974_E 59 Rev 1.7, 2025/10

SFR 86h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P0LOE	P0LOE7	P0L0E6	P0LOE5	P0LOE4	P0LOE3	P0LOE2	P0LOE1	P0LOE0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

86h.7 **P0LOE7:** LCDC07 / LED SEG6 (P0.7) enable control

0: Disable

1: Enable

86h.6 **P0LOE6:** LCDC06 / LED SEG7 (P0.6) enable control

0: Disable

1: Enable

86h.5 **P0LOE5:** LCDC05 (P0.5) enable control

0: Disable

1: Enable

86h.4 **P0LOE4:** LCDC04 (P0.4) enable control

0: Disable

1: Enable

86h.3 **POLOE3:** LCDC03 / LED COM3 / LED3 (P0.3) enable control

0: Disable

1: Enable

86h.2 **P0LOE2:** LCDC02 / LED COM2 / LED2 (P0.2) enable control

0: Disable 1: Enable

86h.1 **POLOE1:** LCDC01 / LED COM1 / LED1 (P0.1) enable control

0: Disable1: Enable

86h.0 **P0LOE0:** LCDC00 / LED COM0 / LED0 (P0.0) enable control

0: Disable 1: Enable

SFR ACh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1LOE	P1LOE7	P1LOE6	P1LOE5	P1LOE4	P1LOE3	P1LOE2	P1LOE1	P1LOE0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

ACh.7 **P1LOE7:** LCDC17 / LED SEG2 (P1.7) enable control

0: Disable

1: Enable

ACh.6 P1LOE6: LCDC16 / LED SEG3 (P1.6) enable control

0: Disable

1: Enable

ACh.5 P1LOE5: LCDC15 / LED SEG4 (P1.5) enable control

0: Disable

1: Enable

ACh.4 **P1LOE4:** LCDC14 / LED SEG5 (P1.4) enable control

0: Disable

1: Enable

ACh.3 **P1LOE3:** LCDC13 (P1.3) enable control

0: Disable

1: Enable

ACh.2 **P1LOE2:** LCDC12 (P1.2) enable control

0: Disable

1: Enable

ACh.1 **P1LOE1:** LCDC11 (P1.1) enable control

0: Disable1: Enable

ACh.0 **P1LOE0:** LCDC10 (P1.0) enable control

0: Disable1: Enable

SFR 8Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2LOE	_	_	_	_	_	_	P2LOE1	P2LOE0
R/W	_	_	_	_	_	_	R/W	R/W
Reset	_	_	_	_	_	_	0	0

8Eh.1 **P2LOE1:** LCDC21 / LED COM5 or SEG9 (P2.1) enable control

0: Disable1: Enable

8Eh.0 **P2LOE0:** LCDC20 / LED COM4 or SEG8 (P2.0) enable control

0: Disable 1: Enable

SFR B3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3LOE	P3LOE7	P3LOE6	P3LOE5	P3LOE4	P3LOE3	P3LOE2	P3LOE1	P3LOE0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

B3h.7 **P3LOE7:** LCDC37 / LED COM6 or SEG10 / LED6 (P3.7) enable control

0: Disable1: Enable

B3h.6 **P3LOE6:** LCDC36 / LED SEG1 (P3.6) enable control

0: Disable1: Enable

B3h.5 **P3LOE5:** LCDC35 / LED SEG0 (P3.5) enable control

0: Disable1: Enable

B3h.4 **P3LOE4:** LCDC34 / LED COM7 or SEG11 / LED7 (P3.4) enable control

0: Disable1: Enable

B3h.3 **P3LOE3:** LCDC33 (P3.3) enable control

0: Disable1: Enable

B3h.2 **P3LOE2:** LCDC32 (P3.2) enable control

0: Disable 1: Enable

B3h.1 **P3LOE1:** LCDC31 (P3.1) enable control

0: Disable1: Enable

B3h.0 **P3LOE0:** LCDC30 (P3.0) enable control

0: Disable1: Enable

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCON	SCKTYPE	FCKTYPE	STPSCK	STPPCK	STPFCK	SELFCK	CLK	PSC
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/	W
Reset	0	0	1	0	0	0	1	1

D8h.7 **SCKTYPE:** Slow clock type. This bit can be changed only in Fast mode (SELFCK=1).

0: SRC

1: SXT, P2.0 and P2.1 are crystal pins

D8h.6 **FCKTYPE:** Fast clock type. This bit can be changed only in Slow mode (SELFCK=0).

0: FRC

1: FXT, P2.0 and P2.1 are crystal pins, oscillator gain is high for FXT

SFR BCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SPCON	SPEN	MSTR	CPOL	СРНА	_	LSBF	SP	CR
R/W	R/W	R/W	R/W	R/W	_	R/W	R/W	
Reset	0	0	0	0	_	0	0	0

BCh.7 **SPEN:** SPI enable

0: SPI disable

1: SPI enable, P1.7, P3.5, P3.6 are SPI functional pins.

SFR C1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SIADR				SA				SIEN
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	1	1	0	0	1	0	0

C1h.0 **SIEN:** Slave I²C enable

0: disable 1: enable

SFR E1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MICON	MIEN	MIACKO	MIIF	MIACKI	MISTART	MISTOP	MI	CR
R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	1	0	0

E1h.7 **MIEN**: Master I²C enable

0: disable 1: enable

SFR EFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX3		HSNK2EN	HSNK1EN	HSNK0EN	WARMTIME	_	FJMPE	FJMPS
R/W		R/W	R/W	R/W	R/W	_	R/W	R/W
Reset	_	0	0	0	0		0	0

EFh.6 **HSNK2EN:** Pin H-sink enable (Group $2 = P0.4 \sim P0.5$, P1.0 $\sim P1.3$, P3.0 $\sim P3.3$)

0: Group 2 H-sink disable1: Group 2 H-sink enable

EFh.5 **HSNK1EN:** Pin H-sink enable (Group $1 = P0.6 \sim P0.7$, P14 $\sim P17$, P3.5 $\sim P3.6$)

0: Group 1 H-sink disable1: Group 1 H-sink enable

EFh.4 **HSNK0EN:** Pin H-sink enable (Group $0 = P0.0 \sim P0.3$, $P2.0 \sim P2.1$, P3.4, P3.7)

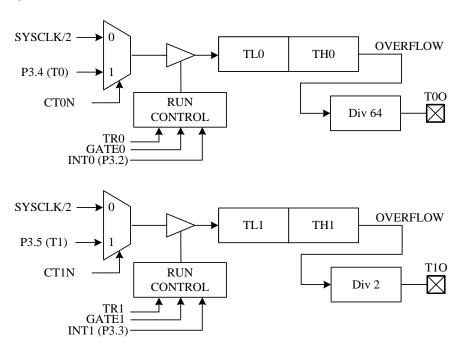
0: Group 0 H-sink disable1: Group 0 H-sink enable

DS-TM52F4974_E 62 Rev 1.7, 2025/10

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WDTE		PWRSAV	VBGOUT	DIV32	IAPTE		MULDIV16
R/W	R/W		R/W	R/W	R/W	R/	W	R/W
Reset	0	0	0	0	0	1	1	0

F7h.4 **VBGOUT:** V_{BG} voltage output to P3.2 0: Disable

0: Disable1: Enable



8. Timers

Timer0, Timer1 and Timer2 are provided as standard 8051 compatible timer/counter. Compare to the traditional 12T 8051, the Chip's Timer0/1/2 use 2 System clock cycle as the time base unit. That is, in timer mode, these timers increase at every "2 System clock" rate; in counter mode, T0/T1/T2 pin input pulse must be wider than 2 System clock to be seen by this device. In addition to the standard 8051 timers function. The T0O pin can output the "Timer0 overflow divided by 64" signal, The T1O pin can output the "Timer1 overflow divided by 2" signal, and the T2O pin can output the "Timer2 overflow divided by 2" signal. Timer3 is provided for a real-time clock count, when its time base is SXT.

8.1 Timer0 / Timer1

TCON and TMOD are used to set the mode of operation and to control the running and interrupt generation of the Timer0/1, with the timer/counter values stored in two pairs of 8-bit registers (TL0, TH0, and TL1, TH1).

Timer0 and Timer1 Structure

SFR 88h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

88h.7 **TF1:** Timer1 overflow flag

Set by H/W when Timer/Counter 1 overflows

Cleared by H/W when CPU vectors into the interrupt service routine.

88h.6 **TR1:** Timer1 run control

0: Timer1 stops

1: Timer1 runs

88h.5 **TF0:** Timer0 overflow flag

Set by H/W when Timer/Counter 0 overflows

Cleared by H/W when CPU vectors into the interrupt service routine.

88h.4 **TR0:** Timer0 run control

0: Timer0 stops1: Timer0 runs

DS-TM52F4974_E 64 Rev 1.7, 2025/10

SFR 89h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TMOD	GATE1	CT1N	TMOD1		GATE0	CT0N	TMO	OD0
R/W	R/W	R/W	R/W		R/W	R/W	R/	W
Reset	0	0	0	0	0	0	0	0

89h.7 **GATE1:** Timer1 gating control bit

0: Timer1 enable when TR1 bit is set

1: Timer1 enable only while the INT1 pin is high and TR1 bit is set

89h.6 **CT1N:** Timer1 Counter/Timer select bit

0: Timer mode, Timer1 data increases at 2 System clock cycle rate

1: Counter mode, Timer1 data increases at T1 pin's negative edge

89h.5~4 **TMOD1:** Timer1 mode select

00: 8-bit timer/counter (TH1) and 5-bit prescaler (TL1)

01: 16-bit timer/counter

10: 8-bit auto-reload timer/counter (TL1). Reloaded from TH1 at overflow.

11: Timer1 stops

89h.3 **GATE0:** Timer0 gating control bit

0: Timer0 enable when TR0 bit is set

1: Timer0 enable only while the INT0 pin is high and TR0 bit is set

89h.2 **CT0N:** Timer0 Counter/Timer select bit

0: Timer mode, Timer0 data increases at 2 System clock cycle rate

1: Counter mode, Timer0 data increases at T0 pin's negative edge

89h.1~0 **TMOD0:** Timer0 mode select

00: 8-bit timer/counter (TH0) and 5-bit prescaler (TL0)

01: 16-bit timer/counter

10: 8-bit auto-reload timer/counter (TL0). Reloaded from TH0 at overflow.

11: TL0 is an 8-bit timer/counter. TH0 is an 8-bit timer/counter using Timer1's TR1 and TF1 bits.

SFR 8Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TL0		TL0								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

8Ah.7~0 **TL0:** Timer0 data low byte

SFR 8Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TL1		TL1								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

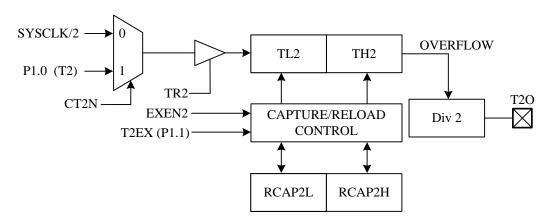
8Bh.7~0 **TL1:** Timer1 data low byte

SFR 8Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TH0		TH0								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

8Ch.7~0 **TH0:** Timer0 data high byte

SFR 8Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TH1		TH1								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

8Dh.7~0 **TH1:** Timer1 data high byte


Note: See also Chapter 6 for more information on Timer0/1 interrupt enable and priority.

Note: See also Chapter 7 for details on TOO, T1O pin output settings.

8.2 Timer2

Timer2 is controlled through the TCON2 register with the low and high bytes of Timer/Counter2 stored in TL2 and TH2 and the low and high bytes of the Timer2 reload/capture registers stored in RCAP2L and RCAP2H.

Timer2 Structure

SFR C8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T2CON	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CT2N	CPRL2N
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

C8h.7 **TF2:** Timer2 overflow flag

Set by H/W when Timer/Counter 2 overflows unless RCLK=1 or TCLK=1. This bit must be cleared by S/W.

C8h.6 **EXF2:** T2EX interrupt pin falling edge flag

Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. This bit must be cleared by S/W.

C8h.5 **RCLK:** UART receive clock control bit

0: Use Timer1 overflow as receive clock for serial port in mode 1 or 3

1: Use Timer2 overflow as receive clock for serial port in mode 1 or 3

C8h.4 TCLK: UART transmit clock control bit

0: Use Timer1 overflow as transmit clock for serial port in mode 1 or 3

1: Use Timer2 overflow as transmit clock for serial port in mode 1 or 3

C8h.3 **EXEN2:** T2EX pin enable

0: T2EX pin disable

1: T2EX pin enable, it cause a capture or reload when a negative transition on T2EX pin is detected if RCLK=TCLK=0

C8h.2 **TR2:** Timer2 run control

0: Timer2 stops

1: Timer2 runs

C8h.1 **CT2N:** Timer2 Counter/Timer select bit

0: Timer mode, Timer2 data increases at 2 System clock cycle rate

1: Counter mode, Timer2 data increases at T2 pin's negative edge

C8h.0 CPRL2N: Timer2 Capture/Reload control bit

0: Reload mode, auto-reload on Timer2 overflows or negative transitions on T2EX pin if EXEN2=1.

1: Capture mode, capture on negative transitions on T2EX pin if EXEN2=1.

If RCLK=1 or TCLK=1, CPRL2N is ignored and timer is forced to auto-reload on Timer2 overflow.

DS-TM52F4974_E 66 Rev 1.7, 2025/10

SFR CAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
RCP2L		RCP2L							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

CAh.7~0 RCP2L: Timer2 reload/capture data low byte

SFR CBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
RCP2H		RCP2H								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

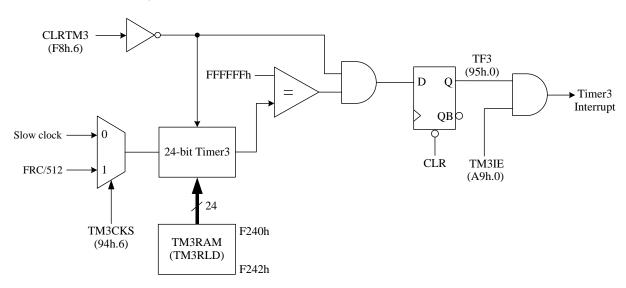
CBh.7~0 RCP2H: Timer2 reload/capture data high byte

SFR CCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TL2		TL2							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

CCh.7~0 **TL2:** Timer2 data low byte

SFR CDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TH2		TH2								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

CDh.7~0 **TH2:** Timer2 data high byte


Note: See also Chapter 6 for more information on Timer2 interrupt enable and priority.

Note: See also Chapter 7 for details on T2O pin output settings.

8.3 Timer3

Timer3 works as a 24-bit time-base counter, which generates interrupts periodically. Besides, Timer3 increases itself periodically and automatically reloads a new "offset value" (TM3RLD) from TM3RAM while it rolls over and generates an interrupt flag (TF3). The TM3RAM is located in the 8051's External Data Memory space, addressing from F240h to F242h. Timer3 can be stopped counting if the CLRTM3 bit is set. The Timer3 clock source is Slow clock (SRC or SXT) or FRC/512. This is ideal for real-time-clock (RTC) functionality when the clock source is SXT.

Timer3 Structure

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	TKBUFS	TM3CKS	WDTPSC		ADCKS		TKOFC	
R/W	R/W	R/W	R/W		R/	W	R/	W
Reset	0	0	0	0	0	0	0	0

94h.6 TM3CKS: Timer3 Clock Source select

0: Slow clock (SXT/SRC)

1: FRC/512

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVDIF	_	TKIF	ADIF	_	IE2	PCIF	TF3
R/W	R	_	R/W	R/W	_	R/W	R/W	R/W
Reset	_	_	0	0	_	0	0	0

95h.0 **TF3:** Timer3 Interrupt Flag

Set by H/W when Timer3 counts to FFFFFFh. Cleared automatically when the program performs the interrupt service routine. S/W can write FEh to INTFLG to clear this bit.

Note: S/W can write 0 to clear a flag in the INTFLG, but writing 1 has no effect.

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	CLRPWM0	CLRPWM1		DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	1	1	_	0

F8h.6 **CLRTM3:** Set 1 to clear and hold Timer3, need S/W clear.

Note: also refer to Chapter 6 for more information about Timer3 Interrupt enable and priority.

8.4 T0O, T1O and T2O Output Control

This device can generate various frequency waveform pin output (in CMOS or Open-Drain format) for Buzzer. The T0O, T1O and T2O waveform is divided by Timer0/Timer1/Timer2 overflow signal. The T0O waveform is Timer0 overflow divided by 64, T1O waveform is Timer1 overflow divided by 2, and T2O waveform is Timer2 overflow divided by 2. User can control their frequency by Timers auto reload speed.

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD	PSEUDOEN	MSI2CPS	UART2PS	UART1PS	TCOE	T2OE	T10E	T0OE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

A6h.2 **T2OE:** Timer2 signal output (T2O) control

0: Disable "Timer2 overflow divided by 2" output to P1.0 pin

1: Enable "Timer2 overflow divided by 2" output to P1.0 pin

A6h.1 **T10E:** Timer1 signal output (T10) control

0: Disable "Timer1 overflow divided by 2" output to P3.5 pin

1: Enable "Timer1 overflow divided by 2" output to P3.5 pin

A6h.0 **T0OE:** Timer0 signal output (T0O) control

0: Disable "Timer0 overflow divided by 64" output to P3.4 pin

1: Enable "Timer0 overflow divided by 64" output to P3.4 pin

9. UARTs

This Chip has two UARTs, UART1 and UART2.

The **UART1** uses SCON and SBUF SFRs. SCON is the control register, SBUF is the data register. Data is written to SBUF for transmission and SBUF is read to obtain received data. The received data and transmitted data registers are completely independent. In the 8051 standard, the calculation of the UART Baud Rate depends on Timer1/Timer2, but the user can also use the UART's independent Timer to define a new Baud Rate by UART1CON.

The **UART2** uses SCON2 and SBUF2 SFRs. SCON2 is the control register, SBUF2 is the data register. Data is written to SBUF2 for transmission and SBUF2 is read to obtain received data. The received data and transmitted data registers are completely independent. The UART2 supports most of the functions of UART, but it does not support Mode0 and Mode2.

F_{SYSCLK} denotes System clock frequency, the UART Baud Rate is calculated as below.

UART1 Baud Rate setting: while SFR **UART1BRS=0** (Baud Rate set as standard 8051)

- Mode 0:
 - Baud Rate = $F_{SYSCLK}/2$
- Mode 1, 3: if using Timer1 auto reload mode Baud Rate = (SMOD + 1) x F_{SYSCLK}/ (32 x 2 x (256 – TH1))
- Mode 1, 3: if using Timer2
 Baud Rate = Timer2 overflow rate/16 = F_{SYSCLK}/ (32 x (65536 RCP2H, RCP2L))
- Mode 2:

Baud Rate = $(SMOD + 1) \times F_{SYSCLK}/64$

UART1 Baud Rate setting: while SFR **UART1BRS=1**

• Mode 0:

Baud Rate=F_{SYSCLK}/2

• Mode 1, 3:

Baud Rate= F_{SYSCLK} /32/UART1BRP

• Mode 2:

Baud Rate= $(SMOD + 1) \times F_{SYSCLK}/64$

UART2 Baud Rate setting:

- Mode 0, 2: Invalid
- Mode 1, 3:

Baud Rate= F_{SYSCLK} /32/UART2BRP

Note: also refer to Chapter 6 for more information about UART Interrupt enable and priority.

Note: also refer to Chapter 8 for more information about how Timer2 controls UART clock.

SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	_	_	_	GF1	GF0	PD	IDL
R/W	R/W	_	_	_	R/W	R/W	R/W	R/W
Reset	0	_	_	_	0	0	0	0

87h.7 **SMOD:** UART1 double Baud Rate control bit

0: Disable UART1 double Baud Rate

1: Enable UART1 double Baud Rate

SFR 98h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCON	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

98h.7~6 **SM0,SM1:** UART1 serial port mode select bit 0,1

00: Mode0: 8 bit shift register, Baud Rate=F_{SYSCLK}/2

01: Mode1: 8 bit UART1, Baud Rate is variable

10: Mode2: 9 bit UART1, Baud Rate=F_{SYSCLK}/32 or /64

11: Mode3: 9 bit UART1, Baud Rate is variable

98h.5 **SM2:** Serial port mode select bit 2

SM2 enables multiprocessor communication over a single serial line and modifies the above as follows. In Modes 2 & 3, if SM2 is set then the received interrupt will not be generated if the received ninth data bit is 0. In Mode 1, the received interrupt will not be generated unless a valid stop bit is received. In Mode 0, SM2 should be 0.

98h.4 **REN:** UART1 reception enable

0: Disable reception

1: Enable reception

98h.3 **TB8:** Transmit Bit 8, the ninth bit to be transmitted in Mode 2 and 3

98h.2 **RB8:** Receive Bit 8, contains the ninth bit that was received in Mode 2 and 3 or the stop bit is Mode 1

if SM2=0

98h.1 **TI:** Transmit interrupt flag

Set by H/W at the end of the eighth bit in Mode 0, or at the beginning of the stop bit in other modes. Must be cleared by S/W.

98h.0 **RI:** Receive interrupt flag

Set by H/W at the end of the eighth bit in Mode 0, or at the sampling point of the stop bit in other modes. Must be cleared by S/W.

SFR 99h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
SBUF	SBUF								
R/W	R/W								
Reset	ı	_	_	ı	ı	ı	_	_	

99h.7~0 **SBUF:** UART1 transmit and receive data. Transmit data is written to this location and receive data is read from this location, but the paths are independent.

SFR DFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
UART1CON	UART1BRS		UART1BRP						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

DFh.7 **UART1BRS:** UART1 Baud Rate source select.

0: 8051 default Baud Rate source select

1: UART1 Baud Rate select as UART1BRP

DFh.6~0 **UART1BRP:** Define UART1 Baud Rate prescaler.

UART1 Baud Rate = $F_{SYSCLK}/32/UART1BRP$

SFR 8Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
UART2CON	_		UART2BRP					
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	0	0	0	0	0	0	0

8Fh.6~0 **UART2BRP:** Define UART2 Baud Rate prescaler.

UART2 Baud Rate = $F_{SYSCLK}/32/UART2BRP$

SFR 9Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCON2	SM	_	_	REN2	TB82	RB82	TI2	RI2
R/W	R/W		_	R/W	R/W	R/W	R/W	R/W
Reset	0	_	_	0	0	0	0	0

9Ah.7 **SM:** UART2 Serial port mode select bit

0: Mode1: 8 bit UART2, Baud Rate is variable 1: Mode3: 9 bit UART2, Baud Rate is variable (UART2 does not support Mode0/Mode2)

9Ah.4 **REN2:** UART2 reception enable

0: Disable reception1: Enable reception

9Ah.3 **TB82:** Transmit Bit 8, the ninth bit to be transmitted in Mode 3

9Ah.2 **RB82:** Receive Bit 8, contains the ninth bit that was received in Mode3

9Ah.1 **TI2:** Transmit interrupt flag

Set by H/W at the beginning of the stop bit in Mode 1 & 3. Must be cleared by S/W.

9Ah.0 **RI2:** Receive interrupt flag

Set by H/W at the sampling point of the stop bit in Mode 1 & 3. Must be cleared by S/W.

SFR 9Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
SBUF2	SBUF2								
R/W	R/W								
Reset	_	_	_	_	_	_	_	_	

9Bh.7~0 **SBUF2:** UART2 transmit and receive data. Transmit data is written to this location and receive data is read from this location, but the paths are independent.

SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	ES2	LVDIE	SPI2CE	ADTKIE	EX2	PCIE	TM3IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

A9h.6 **ES2:** Serial Port (UART2) interrupt enable

0: Disable Serial Port (UART2) interrupt

1: Enable Serial Port (UART2) interrupt

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD	PSEUDOEN	MSI2CPS	UART2PS	UART1PS	TCOE	T2OE	T10E	T00E
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

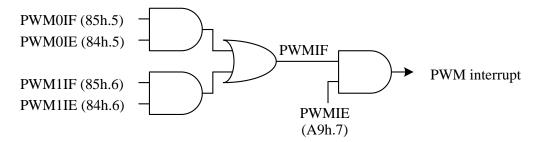
A6h.5 **UART2PS:** UART2 Pin Select (TX/RX)

0: P1.7/P3.6 1: P0.3/P0.2

A6h.4 **UART1PS:** UART1 Pin Select (TX/RX)

0: P3.1/P3.0 1: P0.0/P0.1

DS-TM52F4974_E 72 Rev 1.7, 2025/10

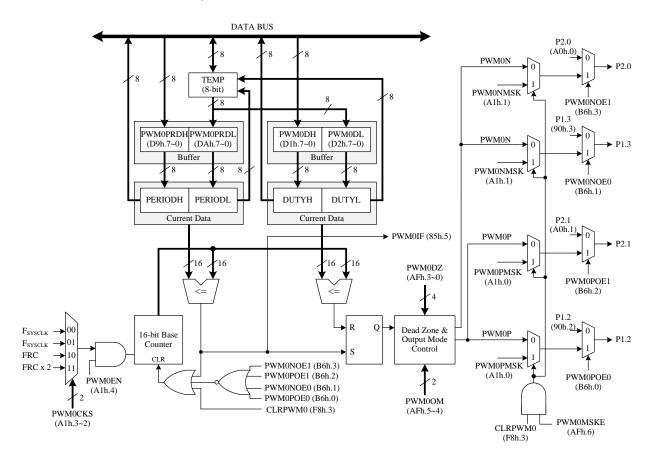


10. PWMs

This Chip has seven 16-bit PWM modules, PWM0 to PWM6. The PWM can generate varies frequency waveform with 65536 duty resolution on the basis of the PWM clock. The PWM clock can select FRC double frequency (FRC x 2), FRC or F_{SYSCLK} as its clock source. Users should pay attention to the setting; the period of PWM must be greater than duty.

The pin mode SFR controls the PWM output waveform format. Mode1 makes the PWM open drain output and Mode2 makes the PWM CMOS push-pull output. (see Chapter 7 for detail)

The 16-bit PWM0PRD, PWM1PRD and PWM0D ~ PWM6D registers all have a low and high byte structure. The high bytes can be directly accessed, but as the low bytes can only be accessed via an internal 8-bit buffer, reading or writing to these register pairs must be carried out in a specific way. The important point to notes is that data transfer to and from the 8-bit buffer and its related low byte only takes place when write or read operation to its corresponding high bytes is executed. Briefly speaking, write low byte first and then high byte; read high byte first and then low byte.


PWM interrupt structure

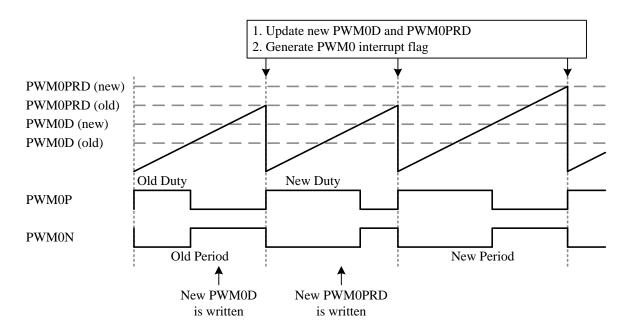
DS-TM52F4974_E 73 Rev 1.7, 2025/10

10.1 PWM0

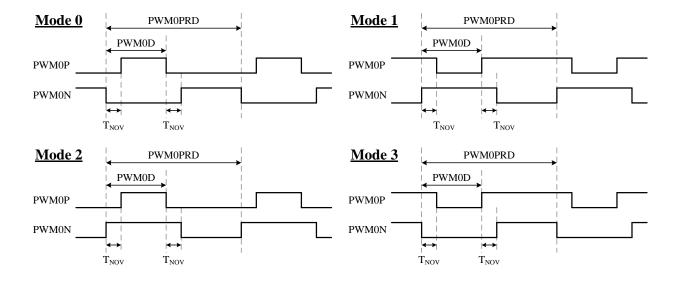
The PWM0POE0 and PWM0POE1 are used to select the output for PWM0P, and the PWM0NOE0 and PWM0NOE1 are used to select the output for PWM0N. These four bits also can be PWM0 control bit. If those four bits are cleared, the PWM0 will be cleared and stopped, otherwise the PWM0 is running. The CLRPWM0 bit has the same function. When CLRPWM0 bit is set, the PWM0 will be cleared and held, otherwise the PWM0 is running. The PWM0 structure is shown as follow.

PWM0 Structure

The PWM0 duty cycle can be changed by writing to PWM0DH and PWM0DL. The PWM0 output signal resets to a low level whenever the 16-bit base counter matches the 16-bit PWM0 duty register {PWM0DH, PWM0DL}. The PWM0 period can be set by writing the period value to the PWM0PRDH and PWM0PRDL registers. After writing the PWM0D or PWM0PRD register, the new values will immediately save to their own buffer. H/W will update these values at the end of current period or while PWM0 is cleared. At the end of current period, H/W will set the PWM0IF bit and generate an interrupt if a PWM0 interrupt is enabled.


The PWM0 has two operation modes, normal mode and half-bridge mode. PWM0 output signal can be output via PWM0P and PWM0N with four different modes. These two outputs are non-overlapped with time interval T_{NOV} . Non-overlapping time interval is also named as dead zone or dead band. T_{NOV} is determined by setting PWM0DZ bits. The value 0~15 of PWM0DZ map onto 0~15, 16 PWM0CLK cycles respectively. If PWM0DZ=0, PWM0 outputs is directly passed to PWM0P and PWM0N so that waveforms of them have the same duty cycle. Note that, if high pulse width or low pulse width of PWM0 output is shorter than T_{NOV} , the real waveforms of these two outputs will different from the expected waveforms. If the PWM0MSKE bit is set, the outputs can be masked to force output fix signal while S/W set the CLRPWM0 bit is set by H/W.

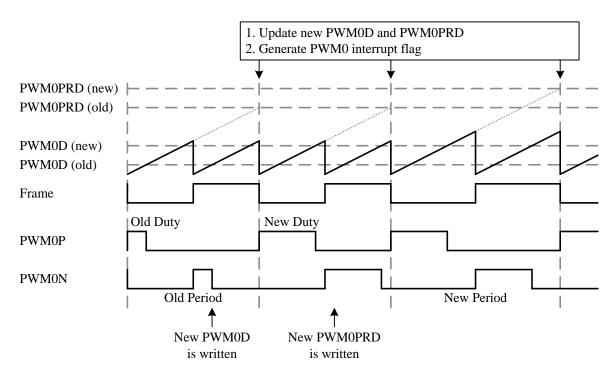
DS-TM52F4974_E 74 Rev 1.7, 2025/10



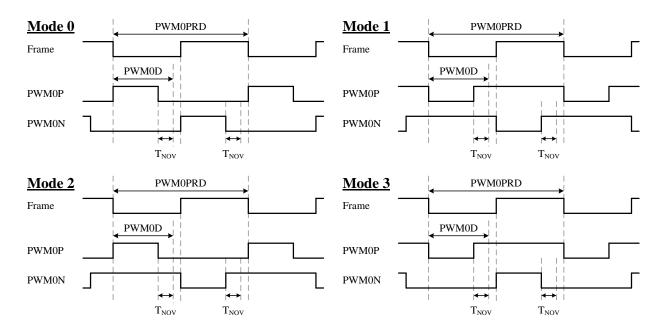
10.1.1 Normal Mode

The normal mode PWM is a simple structure, which switches its output high and low at uniform repeatable intervals. The PWM0D is the output duty cycle, and the output period is PWM0PRD+1. The output waveform of PWM0 is shown below.

PWM0 normal mode output waveform (PWM0OM=0, PWM0DZ=0)


PWM0 normal mode output modes

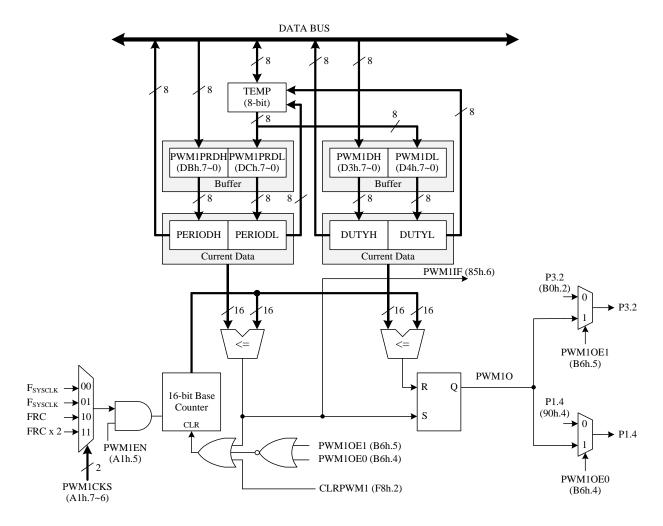
DS-TM52F4974_E 75 Rev 1.7, 2025/10



10.1.2 Half-Bridge Mode

The half-bridge mode PWM is similar to the normal mode but Dead zone is prohibited in half-bridge mode (SFR PWM0DZ must be 0). It has two frames in a period, PWM0P only output in the first frame, PWM0N only output in the second frame. The width of these two frames must be same, so their width is the integer part of PWM0PRD/2. Because each output channel only output in one frame, the maximum duty cycle is same as the width of a frame. If the PWM0D is larger than PWM0PRD/2, H/W will force set the duty cycle to PWM0PRD/2. Following figure shows the output waveform and the output modes.

PWM0 half-bridge mode output waveform (PWM0OM=0, PWM0DZ=0)


PWM0 half-bridge mode output modes

DS-TM52F4974_E 76 Rev 1.7, 2025/10

10.2 PWM1~PWM6

The Chip has six 16-bit PWM modules PWM1~PWM6. PWM1~6 are sharing period, clock source and interrupt (PWM1IF). The following takes PWM1 as an example for description. The PWM can generate varies frequency waveform with 65536 duty resolution on the basis of the PWM clock. The PWM clock can select double frequency (FRC x 2), FRC or F_{SYSCLK} as its clock source.

PWM1~6 Structure

DS-TM52F4974_E 77 Rev 1.7, 2025/10

SFR 84h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE2	_	PWM1IE	PWM0IE	_	_	_	_	_
R/W	_	R/W	R/W	_	_	_	_	_
Reset	_	0	0	_	_	_	_	_

84h.6 **PWM1IE:** PWM1~PWM6 interrupt enable

0: Disable PWM1~PWM6 interrupt

1: Enable PWM1~PWM6 interrupt

84h.5 **PWM0IE:** PWM0 interrupt enable

0: Disable PWM0 interrupt1: Enable PWM0 interrupt

SFR 85h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG2	_	PWM1IF	PWM0IF	_	_			_
R/W	_	R/W	R/W	_	_	_	_	_
Reset	_	0	0	_	_	_	_	_

85h.6 **PWM1IF:** PWM1~PWM6 interrupt flag

Set by H/W at the end of PWM1 period, S/W writes BFh to INTFLG2 to clear this flag.

85h.5 **PWM0IF:** PWM0 interrupt enable

Set by H/W at the end of PWM0 period, S/W writes DFh to INTFLG2 to clear this flag.

SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	ES2	LVDIE	SPI2CE	ADTKIE	EX2	PCIE	TM3IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

A9h.7 **PWMIE:** PWM0/PWM1~PWM6 interrupt enable

0: Disable PWM0/PWM1~PWM6 interrupt

1: Enable PWM0/PWM1~PWM6 interrupt

ĺ	SFR A1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
I	PWMCON	PWM1CKS		PWM1EN	PWM0EN	PWM0CKS		PWM0NMSK	PWM0PMSK
I	R/W	R/W		R/W	R/W	R/	W	R/W	R/W
l	Reset	0	0	0	0	0	0	0	0

A1h.7~6 **PWM1CKS:** PWM1~PWM6 clock source

00: F_{SYSCLK}

01: F_{SYSCLK}

10: FRC

11: FRCx2 (V_{CC}>2.7V)

A1h.5 **PWM1EN:** PWM1~6 enable

0: PWM1~6 disable

1: PWM1~6 enable

A1h.4 **PWM0EN:** PWM0 enable

0: PWM0 disable

1: PWM0 enable

A1h.3~2 **PWM0CKS:** PWM0 clock source

00: F_{SYSCLK}

01: F_{SYSCLK}

10: FRC

11: FRCx2 (V_{CC}>2.7V)

A1h.1 **PWM0NMSK:** PWM0N mask data.

If CLRPWM0=1 and PMW0MSKE=1, PWM0N will output this mask data.

A1h.0 **PWM0PMSK:** PWM0P mask data.

If CLRPWM0=1 and PMW0MSKE=1, PWM0P will output this mask data.

SFR AFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWMCON2	PWM0MOD	PWM0MSKE	PWM	100M	PWM0DZ				
R/W	R/W	R/W	R/	W	R/W				
Reset	0	0	0	0	0	0	0	0	

AFh.7 **PWM0MOD:** PWM0 mode select

0: Normal mode

1: Half-bridge mode

AFh.6 **PWM0MSKE:** PWM0 mask output enable

0: Disable

1: Enable, PWM0P/PWM0N output data by PWM0PMSK/PWM0NMSK while CLRPWM0=1

AFh.5~4 **PWM0OM:** PWM0 output mode select

00: Mode0 01: Mode1 10: Mode2 11: Mode3

AFh.3~0 **PWM0DZ:** PWM0 dead zone (Dead zone is prohibited in half-bridge mode)

0000: 0 x T_{PWMCLK} 0001: 1 x T_{PWMCLK}

1111: 15 x T_{PWMCLK}

SFR B6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMOE0	PWM2OE1	PWM2OE0	PWM10E1	PWM10E0	PWM0NOE1	PWM0POE1	PWM0NOE0	PWM0POE0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

B6h.7 **PWM2OE1:** PWM2 control

0: PWM2 disable

1: PWM2 enable and signal output to P3.3 pin

B6h.6 **PWM2OE0:** PWM2 control

0: PWM2 disable

1: PWM2 enable and signal output to P1.5 pin

B6h.5 **PWM10E1:** PWM1 control

0: PWM1 disable

1: PWM1 enable and signal output to P3.2 pin

B6h.4 **PWM10E0:** PWM1 control

0: PWM1 disable

1: PWM1 enable and signal output to P1.4 pin

B6h.3 **PWM0NOE1:** PWM0N control

0: PWM0N disable

1: PWM0N enable and signal output to P2.0 pin

B6h.2 **PWM0POE1:** PWM0P control

0: PWM0P disable

1: PWM0P enable and signal output to P2.1 pin

B6h.1 **PWM0NOE0:** PWM0N control

0: PWM0N disable

1: PWM0N enable and signal output to P1.3 pin

B6h.0 **PWM0POE0:** PWM0P control

0: PWM0P disable

1: PWM0P enable and signal output to P1.2 pin

SFR B7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMOE1	PWM6OE1	PWM6OE0	PWM5OE1	PWM5OE0	PWM4OE1	PWM4OE0	PWM3OE1	PWM3OE0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

B7h.7 **PWM6OE1:** PWM6 control

0: PWM6 disable

1: PWM6 enable and signal output to P0.7 pin

B7h.6 **PWM6OE0:** PWM6 control

0: PWM6 disable

1: PWM6 enable and signal output to P3.7 pin

B7h.5 **PWM5OE1:** PWM5 control

0: PWM5 disable

1: PWM5 enable and signal output to P0.6 pin

B7h.4 **PWM5OE0:** PWM5 control

0: PWM5 disable

1: PWM5 enable and signal output to P3.4 pin

B7h.3 **PWM4OE1:** PWM4 control

0: PWM4 disable

1: PWM4 enable and signal output to P0.5 pin

B7h.2 **PWM4OE0:** PWM4 control

0: PWM4 disable

1: PWM4 enable and signal output to P3.5 pin

B7h.1 **PWM3OE1:** PWM3 control

0: PWM3 disable

1: PWM3 enable and signal output to P0.4 pin

B7h.0 **PWM3OE0:** PWM3 control

0: PWM3 disable

1: PWM3 enable and signal output to P1.6 pin

SFR D1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM0DH		PWM0DH								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

D1h.7~0 **PWM0DH:** PWM0 duty high byte

write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

SFR D2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM0DL		PWM0DL									
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

D2h.7~0 **PWM0DL:** PWM0 duty low byte

write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

SFR D3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM1DH		PWM1DH									
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

D3h.7~0 **PWM1DH:** PWM1 duty high byte

write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

SFR D4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM1DL		PWM1DL									
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

D4h.7~0 **PWM1DL:** PWM1 duty low byte

write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

SFR D5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM2DH		PWM2DH									
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

D5h.7~0 **PWM2DH:** PWM2 duty high byte

write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

SFR D6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM2DL		PWM2DL							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

D6h.7~0 **PWM2DL:** PWM2 duty low byte

write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

SFR D9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM0PRDH		PWM0PRDH							
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	

D9h.7~0 **PWM0PRDH:** PWM0 period high byte

write sequence: PWMxPRDL then PWMxPRDH read sequence: PWMxPRDH then PWMxPRDL

SFR DAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM0PRDL		PWM0PRDL							
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	

DAh.7~0 **PWM0PRDL:** PWM0 period low byte

write sequence: PWMxPRDL then PWMxPRDH read sequence: PWMxPRDH then PWMxPRDL

SFR DBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM1PRDH		PWM1PRDH							
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	

DBh.7~0 **PWM1PRDH:** PWM1/PWM2/PWM3/PWM4/PWM5/PWM6 period high byte

write sequence: PWMxPRDL then PWMxPRDH read sequence: PWMxPRDH then PWMxPRDL

SFR DCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM1PRDL		PWM1PRDL							
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	

DCh.7~0 **PWM1PRDL:** PWM1/PWM2/PWM3/PWM4/PWM5/PWM6 period low byte

write sequence: PWMxPRDL then PWMxPRDH read sequence: PWMxPRDH then PWMxPRDL

SFR DDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM3DH		PWM3DH							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

DDh.7~0 **PWM3DH:** PWM3 duty high byte

write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

SFR DEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM3DL		PWM3DL							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

DEh.7~0 **PWM3DL:** PWM3 duty low byte

write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

SFR E9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM4DH		PWM4DH							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

E9h.7~0 **PWM4DH:** PWM4 duty high byte

write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

SFR EAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM4DL		PWM4DL								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

EAh.7~0 **PWM4DL:** PWM4 duty low byte

write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

DS-TM52F4974_E 82 Rev 1.7, 2025/10

SFR EBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM5DH		PWM5DH							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

EBh.7~0 **PWM5DH:** PWM5 duty high byte

write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

SFR ECh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM5DL		PWM5DL							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

ECh.7~0 **PWM5DL:** PWM5 duty low byte

write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

SFR EDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM6DH		PWM6DH								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

EDh.7~0 **PWM6DH:** PWM6 duty high byte

write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

SFR EEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM6DL		PWM6DL						
R/W				R/	W			
Reset	0	0	0	0	0	0	0	0

EEh.7~0 **PWM6DL:** PWM6 duty low byte

write sequence: PWMxDL then PWMxDH read sequence: PWMxDH then PWMxDL

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	CLRPWM0	CLRPWM1	_	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	_	R/W
Reset	0	0	0	0	1	1	_	0

F8h.3 **CLRPWM0:** PWM0 clear enable

0: PWM0 is running

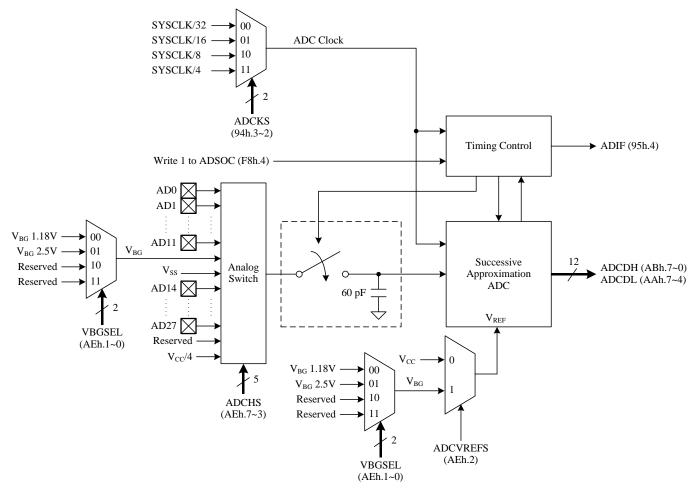
1: PWM0 is cleared and held

F8h.2 **CLRPWM1:** PWM1/PWM2/PWM3/PWM4/PWM5/PWM6 clear enable

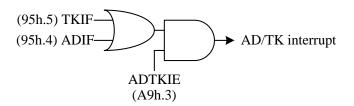
0: PWM1/PWM2/PWM3/PWM4/PWM5/PWM6 is running

1: PWM1/PWM2/PWM3/PWM4/PWM5/PWM6 is cleared and held

DS-TM52F4974_E 83 Rev 1.7, 2025/10



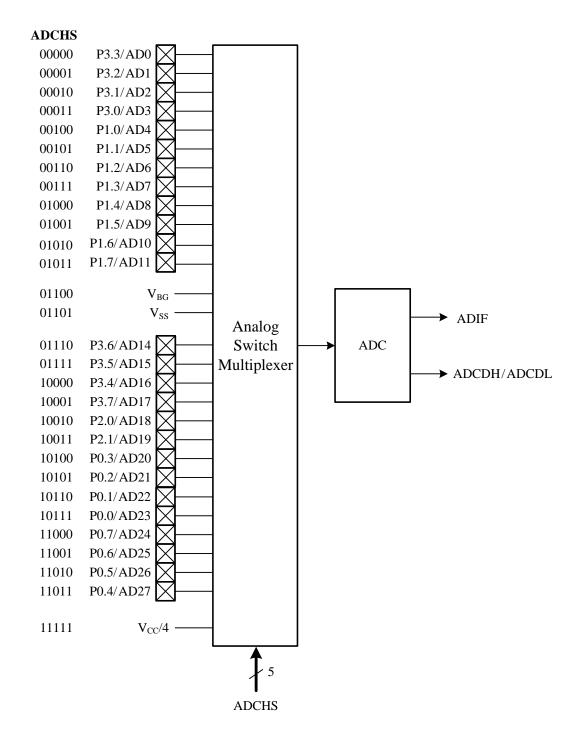
11. ADC


The Chip offers a 12-bit ADC consisting of a 26-channel analog input multiplexer, control register, clock generator, 12-bit successive approximation register, and output data register. Generally, ADC clock frequency is less than 1 MHz, user can refer to Electrical Characteristics Chapter for detail.

To use the ADC, set the ADCKS bits first to choose a proper ADC clock frequency. Then, user launch the ADC conversion by setting the ADSOC bit, and H/W will automatic clear it at the end of the conversion. After the end of the conversion, H/W will set the ADIF bit and generate an interrupt if an ADC interrupt is enabled. The ADIF bit can be cleared by writing 0 to this bit or set ADSOC bit. The analog input level must remain within the range from V_{SS} to V_{CC} .

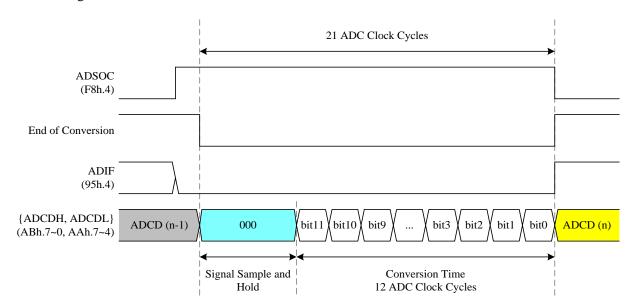
Using the ADCVREFS option, the ADC internal reference voltage source (V_{REF}) can be selected as V_{CC} or V_{BG} .

ADC Structure


ADC Interrupt Structure

DS-TM52F4974_E 84 Rev 1.7, 2025/10

11.1 ADC Channels


The ADC channels are connected to the analog input pins via the analog switch multiplexer. The analog switch multiplexer is controlled by ADCHS register. The Chip offers up to 26 I/O input pins, designated AD0~AD11, AD14~AD21. In addition, there are 2 internal reference voltages (V_{BG} and $V_{CC}/4$). When ADCHS is set to 1100b, the analog input will connect to V_{BG} , and when ADCHS is set to 1101b, the analog input will connect to V_{SS} .

11.2 ADC Conversion Time

The conversion time is the time required for the ADC to convert the voltage. The ADC requires two ADC clock cycles to convert each bit and several clock cycles to sample and hold the input voltage. A total of 21 ADC clock cycles are required to perform the complete conversion. When the conversion time is complete, the ADIF interrupt flag is set by H/W, and the result is loaded into the ADCDH and ADCDL registers of the 12-bit A/D result.

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
OPTION	TKBUFS	TM3CKS	WDTPSC		ADCKS		TKOFC		
R/W	R/W	R/W	R/	R/W		R/W		R/W	
Reset	0	0	0	0	0	0	0	0	

94h.3~2 **ADCKS:** ADC clock rate select

00: F_{SYSCLK}/32 01: F_{SYSCLK}/16 10: F_{SYSCLK}/8 11: F_{SYSCLK}/4

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVDIF	_	TKIF	ADIF	_	IE2	PCIF	TF3
R/W	R	_	R/W	R/W	_	R/W	R/W	R/W
Reset	_	_	0	0	_	0	0	0

95h.4 **ADIF:** ADC interrupt flag

Set by H/W at the end of ADC conversion. S/W writes EFh to INTFLG or sets the ADSOC bit to clear this flag.

Note: S/W can write 0 to clear a flag in the INTFLG, but writing 1 has no effect.

SFR AAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCDL	ADCDL			_	_	_	PWRDEC	
R/W	R			_	_	_	W	
Reset	_	_	_	_	_	_	_	_

AAh.7~4 **ADCDL:** ADC data bit 3~0

DS-TM52F4974_E 86 Rev 1.7, 2025/10

SFR ABh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCDH		ADCDH						
R/W		R						
Reset	_	_	_	_	_	_	_	_

ABh.7~0 ADCDH: ADC data bit 11~4

SFR AEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCHSEL		ADCHS				ADCVREFS	VBC	SSEL
R/W		R/W					R/	W
Reset	1	1	1	0	0	0	0	0

AEh.7~3 ADCHS: ADC channel select

00000: AD0 (P3.3)

00001: AD1 (P3.2)

00010: AD2 (P3.1)

00011: AD3 (P3.0)

00100: AD4 (P1.0)

00101: AD5 (P1.1)

00110: AD6 (P1.2)

00111: AD7 (P1.3)

01000: AD8 (P1.4)

01001: AD9 (P1.5)

01001. AD10 (D1 6

01010: AD10 (P1.6)

01011: AD11 (P1.7)

01100: V_{BG}

01101: V_{SS}

01110: AD14 (P3.6)

01111: AD15 (P3.5)

10000: AD16 (P3.4)

10001: AD17 (P3.7)

10010: AD18 (P2.0)

10011: AD19 (P2.1)

10100: AD20 (P0.3)

10101: AD21 (P0.2) 10110: AD22 (P0.1)

10111: AD23 (P0.0)

11000: AD24 (P0.7)

11001: AD25 (P0.6)

11010: AD26 (P0.5)

11011: AD27 (P0.4)

others: Reserved

11111: V_{CC}/4

AEh.2 **ADCVREFS:** ADC reference voltage select

 $0{:}\;V_{CC}$

 $1: V_{BG}$

AEh.1~0 **VBGSEL:** V_{BG} voltage select. When ADCVREF is selected as V_{BG}, VBGSEL is prohibited from using 1.18V.

00: 1.18V

01: 2.5V (need $V_{CC}>2.8V$)

10: Reserved

11: Reserved

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	CLRPWM0	CLRPWM1	OPOUT	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	1	1	0	0

F8h.4 **ADSOC:** Start ADC conversion

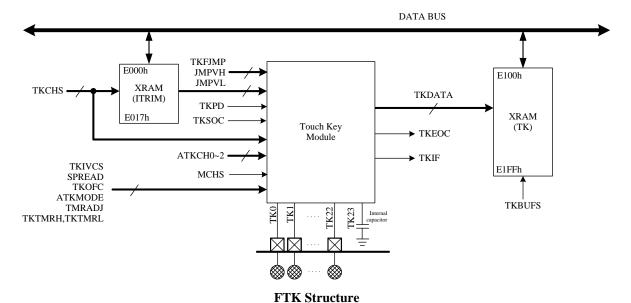
Set the ADSOC bit to start ADC conversion, and the ADSOC bit will be cleared by H/W at the end of conversion. S/W can also write 0 to clear this flag.

Note: See also Chapter 6 for more information on ADC interrupt enable and priority.

Note: Also refer to Chapter 7 for details on ADC pin input settings.

12. Touch Key (FTK)

The Touch Key offers an easy simple and reliable method to implement finger touch detection. During the key scan operation, the device support a 23 channels touch key detection.


To use the Touch Key, user should setup correctly. There are two ways to set I/O as TK channel. Set Pin Mode as Mode3 or set SFR ATKCH0~2 to force I/O as TK channel automatically when TK scanning. If ATKCH0~2 are set, the corresponding I/O pins will be set as TK channels when TK scanning and will no longer be affected by PxMODL and PxMODH.

TKPINSEL	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATKCH0	TK7	TK6	TK5	TK4	TK3	TK2	TK1	TK0
ATKCH1	TK15	TK14	TK13	TK12	TK11	TK10	TK9	TK8
ATKCH2	TKCAP	TK22	TK21	TK20	TK19	TK18	TK17	TK16

Set ATKCH0~2 to choose I/O as TK channel

In the TK Mode, user assigns TKPD=0 to turn on the TK module, then set the TKSOC bit to start touch key conversion, and user need to clear TKSOC manually. TKEOC=0 means conversion is in process. TKEOC=1 means the conversion is finish, and the touch key counting result is stored into the TKRAM. After TKEOC=1, user must wait at least 50 µs for next conversion. Reducing/increasing TKTMR can reduce/increase the TKDATA to accommodate the condition of the system.

The FTK has an internal built-in reference capacitor to simulate the KEY behavior. Set TKCHS=23 and start the scanning can get the TK Data Count of internal reference capacitor (TKCAP). Since the internal capacitor would not be affected by water or mobile phone, it is useful for comparing the environment background noise. Setting the TKFJMP, the frequency of Touch Key clock can be change automatically by H/W controlled while ATKMODE =1 or 2. It may help to improve the ability to resist noise.

SFR ATKCH0~2 are used to specify scan TK channel, and each bit is mapped to TK pin. TK scan will scan from low bit to high bit. If ATKMODE=0, TK can scan up to 24 channels, TK00~TK22 and TKCAP (TK23), each channel is scanned once. If ATKMODE=1, TK can scan up to 24 channels, each channel is scanned twice. If ATKMODE=2, TK can scan up to 16 channels, each channel is scanned 4 times. If ATKMODE=3, TK can scan up to 8 channels, each channel is scanned 8 times. TKCHS is used to specify the first channel for TK to start scanning.

DS-TM52F4974_E 89 Rev 1.7, 2025/10

For example:

Condition ATKMODE=0, scan TK16/TK14/TK8/TK7/TK6/TK2

- ⇒ ATKCH2=0000_0001, ATKCH1=0100_0001, ATKCH0=1100_0100
- ⇒ TKCHS=0x02 (Specify the first scan channel)
- ⇒ TKBUFS=0 (stored TK data to TKRAM's 1st half)

The arrangement of TK data stored in TKRAM is as follows.

_	TKRAM
E100h	TK0 DATAL
E101h	TK0 DATAH
E102h	TK1 DATAL
E103h	TK1 DATAH
E128h	TK20 DATAL
E129h	TK20 DATAH
E12Eh	TK23 DATAL
E12Fh	TK23 DATAH

Condition ATKMODE=1, scan TK16/TK14/TK8/TK7/TK6/TK2

- ⇒ ATKCH2=0000_0001, ATKCH1=0100_0001, ATKCH0=1100_0100
- ⇒ TKCHS=0x02 (Specify the first scan channel)
- ⇒ TKBUFS=0 (stored TK data to TKRAM's 1st half)

The arrangement of TK data stored in TKRAM is as follows.

	TKRAM
E100h	TK2 1 st DATAL
E101h	TK2 1 st DATAH
E102h	TK2 2 nd DATAL
E103h	TK2 2 nd DATAH
E104h	TK6 1 st DATAL
E105h	TK6 1 st DATAH
E106h	TK6 2 nd DATAL
E107h	TK6 2 nd DATAH
	•••
E114h	TK16 1 st DATAL
E115h	TK16 1 st DATAH
E116h	TK16 2 nd DATAL
E117h	TK16 2 nd DATAH

The TK scan result is 16-bit data, which are DATAH 8-bit and DATAL 8-bit. DATAH/L must be read in order to get the correct 16-bit data: first read the low byte (DATAL), then read the high word byte (DATAH).

DS-TM52F4974_E 90 Rev 1.7, 2025/10

Condition ATKMODE=2, scan TK16/TK14/TK8/TK7/TK6/TK2

- ⇒ ATKCH2=0000_0001, ATKCH1=0100_0001, ATKCH0=1100_0100
- ⇒ TKCHS=0x02 (Specify the first scan channel)
- ⇒ TKBUFS=0 (stored TK data to TKRAM's 1st half)

The arrangement of TK data stored in TKRAM is as follows.

	TKRAM
E100h	
E101h	
E102h	
E103h	TK2 2 nd DATAH
E104h	
E105h	
E106h	
E107h	
E108h	
E109h	
E10Ah	TK6 2 nd DATAL
E10Bh	
E10Ch	TK6 3 rd DATAL
E10Dh	
E10Eh	
E10Fh	TK6 4 th DATAH
	•••
E128h	TK16 1 st DATAL
E129h	TK16 1 st DATAH
E12Ah	TK16 2 nd DATAL
E12Bh	TK16 2 nd DATAH
E12Ch	TK16 3 rd DATAL
E12Dh	
E12Eh	TK16 4 th DATAL
E12Fh	TK16 4 th DATAH
	·

The TK scan result is 16-bit data, which are DATAH 8-bit and DATAL 8-bit. DATAH/L must be read in order to get the correct 16-bit data: first read the low byte (DATAL), then read the high word byte (DATAH).

DS-TM52F4974_E 91 Rev 1.7, 2025/10

Condition ATKMODE=3, scan TK16/TK14/TK8/TK7/TK6/TK2

- ⇒ ATKCH2=0000_0001, ATKCH1=0100_0001, ATKCH0=1100_0100
- ⇒ TKCHS=0x02 (Specify the first scan channel)
- ⇒ TKBUFS=1 (stored TK data to TKRAM's 2nd half)

The arrangement of TK data stored in TKRAM is as follows.

	TKRAM
E180h	TK2 1 st DATAL
E181h	TK2 1 st DATAH
E182h	TK2 2 nd DATAL
E183h	TK2 2 nd DATAH
E184h	TK2 3 rd DATAL
E185h	TK2 3 rd DATAH
E186h	TK2 4 th DATAL
E187h	TK2 4 th DATAH
E188h	TK2 5 th DATAL
E189h	TK2 5 th DATAH
E18Ah	TK2 6 th DATAL
E18Bh	TK2 6 th DATAH
E18Ch	TK2 7 th DATAL
E18Dh	TK2 7 th DATAH
E18Eh	TK2 8 th DATAL
E18Fh	TK2 8 th DATAH
E1D0h	TK16.1st DATAL
E1D0h	TK16 1 st DATAL
E1D1h	TK16 1 st DATAH
E1D1h E1D2h	TK16 1 st DATAH TK16 2 nd DATAL
E1D1h E1D2h E1D3h	TK16 1 st DATAH TK16 2 nd DATAL TK16 2 nd DATAH
E1D1h E1D2h	TK16 1 st DATAH TK16 2 nd DATAL TK16 2 nd DATAH
E1D1h E1D2h E1D3h E1D4h	TK16 1 st DATAH TK16 2 nd DATAL TK16 2 nd DATAH TK16 3 rd DATAH TK16 3 rd DATAL TK16 4 rd DATAH
E1D1h E1D2h E1D3h E1D4h E1D5h	TK16 1 st DATAH TK16 2 nd DATAL TK16 2 nd DATAH TK16 3 rd DATAL TK16 3 rd DATAL TK16 4 th DATAL TK16 4 th DATAL
E1D1h E1D2h E1D3h E1D4h E1D5h E1D6h	TK16 1 st DATAH TK16 2 nd DATAL TK16 2 nd DATAH TK16 3 rd DATAL TK16 3 rd DATAL TK16 4 th DATAL TK16 4 th DATAL TK16 5 th DATAH
E1D1h E1D2h E1D3h E1D4h E1D5h E1D6h E1D7h	TK16 1 st DATAH TK16 2 nd DATAL TK16 2 nd DATAH TK16 3 rd DATAL TK16 3 rd DATAL TK16 4 th DATAL TK16 4 th DATAL TK16 5 th DATAL
E1D1h E1D2h E1D3h E1D4h E1D5h E1D6h E1D7h E1D8h	TK16 1 st DATAH TK16 2 nd DATAL TK16 2 nd DATAH TK16 3 rd DATAH TK16 3 rd DATAL TK16 3 rd DATAH TK16 4 th DATAL TK16 4 th DATAL TK16 5 th DATAH TK16 5 th DATAL
E1D1h E1D2h E1D3h E1D4h E1D5h E1D6h E1D7h E1D8h E1D9h	TK16 1st DATAH TK16 2nd DATAL TK16 2nd DATAH TK16 3rd DATAH TK16 3rd DATAH TK16 3rd DATAH TK16 4th DATAH TK16 4th DATAH TK16 5th DATAH TK16 5th DATAH TK16 5th DATAH TK16 6th DATAH
E1D1h E1D2h E1D3h E1D4h E1D5h E1D6h E1D7h E1D8h E1D9h E1DAh	TK16 1st DATAH TK16 2nd DATAL TK16 2nd DATAH TK16 3rd DATAH TK16 3rd DATAH TK16 3rd DATAH TK16 4th DATAH TK16 4th DATAH TK16 5th DATAL TK16 5th DATAH TK16 5th DATAH TK16 5th DATAH TK16 7th DATAL
E1D1h E1D2h E1D3h E1D4h E1D5h E1D6h E1D7h E1D8h E1D9h E1DAh E1DBh	TK16 1st DATAH TK16 2nd DATAL TK16 2nd DATAH TK16 3rd DATAH TK16 3rd DATAH TK16 3rd DATAH TK16 4th DATAL TK16 4th DATAH TK16 5th DATAH TK16 5th DATAH TK16 5th DATAH TK16 5th DATAH TK16 6th DATAH TK16 6th DATAH TK16 6th DATAH TK16 7th DATAH TK16 7th DATAH
E1D1h E1D2h E1D3h E1D4h E1D5h E1D6h E1D7h E1D8h E1D9h E1DAh E1DBh E1DCh	TK16 1st DATAH TK16 2nd DATAL TK16 2nd DATAH TK16 3rd DATAH TK16 3rd DATAH TK16 3rd DATAH TK16 4th DATAH TK16 4th DATAH TK16 5th DATAL TK16 5th DATAH TK16 5th DATAH TK16 5th DATAH TK16 7th DATAL

The TK scan result is 16-bit data, which are DATAH 8-bit and DATAL 8-bit. DATAH/L must be read in order to get the correct 16-bit data: first read the low byte (DATAL), then read the high word byte (DATAH).

DS-TM52F4974_E 92 Rev 1.7, 2025/10

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	TKBUFS	TM3CKS	WDTPSC		ADCKS		TKOFC	
R/W	R/W	R/W	R/	R/W		W	R/	W
Reset	0	0	0	0	0	0	0	0

94h.7 **TKBUFS:** TKRAM Ping-Pong buffer select

0: HW stored TKDATA to TKRAM's 1st half (E100h~E17Fh)

1: HW stored TKDATA to TKRAM's 2nd half (E180h~E1FFh)

94h.1~0 **TKOFC:** TK ICLD capacitor select

00: the smallest 11: the biggest

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVDIF	_	TKIF	ADIF	_	IE2	PCIF	TF3
R/W	R	_	R/W	R/W	_	R/W	R/W	R/W
Reset	_	_	0	0	_	0	0	0

95h.5 **TKIF:** Touch Key Interrupt Flag

Set by H/W at the end of Touch Key conversion if F_{SYSCLK} is fast enough. S/W writes DFh to INTFLG or sets the TKSOC bit to clear this flag.

SFR A7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKCHS	_	_	_			TKCHS		
R/W	_	_	_			R/W		
Reset	_	_	_	1	1	1	1	1

A7h.4~0 **TKCHS:** Touch Key channel select

00000: TK0 (P3.3)

00001: TK1 (P3.2)

00010: TK2 (P3.1)

00011: TK3 (P3.0)

00100: TK4 (P1.0)

00101: TK5 (P1.1)

00110: TK6 (P1.2)

00111: TK7 (P1.3)

01000: TK8 (P1.4)

01001: TK9 (P1.5)

01010: TK10 (P1.6)

01011: TK11 (P1.7) 01100: TK12 (P3.6)

01101: TK13 (P3.5)

01110: TK14 (P3.4)

01111: TK15 (P3.7)

10000: TK16 (P2.0)

10001: TK17 (P2.1)

10010: TK18 (P0.3)

10011: TK19 (P0.7)

10100: TK20 (P0.6)

10101: TK21 (P0.5)

10110: TK22 (P0.4)

10111: TK reference capacitor

others: Reserved

SFR ADh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKCON	TKPD	TKEOC	TMRADJ	TKIVCS	SPREAD	MCHS	ATKN	MODE
R/W	R/W	R	R/W	R/W	R/W	R/W	R/	W
Reset	1	1	0	1	0	0	0	0

ADh.7 **TKPD:** Touch Key power down (Auto disable in Idle/Halt/Stop mode when Touch Key end of conversion)

0: Touch Key enable

1: Touch Key disable

ADh.6 **TKEOC:** Touch Key end of conversion flag, TKEOC may have 3 us delay after TKSOC=1, so F/W must wait enough time before polling this Flag.

0: Indicates conversion is in progress

1: Indicates conversion is finished

ADh.5 TMRADJ: Touch Key scan length auto-adjustment selection

0: TK scan length define by TKTMR[11:0]

1: TK scan length auto-adjustment

ADh.4 **TKIVCS:** Touch Key internal voltage control select

0: V_{CHG}=2.8V; V_{INT}=1.4V 1: V_{CHG}=3.6V; V_{INT}=1.8V

ADh.3 **SPREAD:** Touch Key spread spectrum

0: Disable 1: Enable

ADh.2 MCHS: Touch Key scan channel select

0: select ATK Scan channel1: select Bundle Scan channel

ADh.1~0 ATKMODE: Touch Key scan mode

00: TK scan method, each channel scan 1 time, max 23 TK channels + TK reference key

01: TK scan method, each channel scan 2 times, max 23 TK channels + TK reference key

10: TK scan method, each channel scan 4 times, max 16 TK channels 11: TK scan method, each channel scan 8 times, max 8 TK channels

Note: also refer to Chapter 6 for more information about Touch Key Interrupt enable and priority.

SFR B4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKTMRL		TKTMRL						
R/W		R/W						
Reset	1	1	1	1	1	1	1	1

B4h.7~0 **TKTMRL:** Touch Key scan length bit 7~0 adjustment

00: shortest FF: longest

SFR B5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKCON2	TKFJMP		JMPVH			TKT	MRH	
R/W	R/W		R/W			R/	W	
Reset	0	0	0	0	0	0	0	0

B5h.7 **TKFJMP:** Internal Touch Key clock frequency auto adjust option

0: Disable

1: Enable (Available in ATKMODE=1 or 2)

B5h.6~5 **JMPVH:** Touch Key clock frequency MSB 3bit (Coarse tune) select, only available in TKFJMP=0 [JMPVH, JMPVL]=000_000=frequency slowest

[JMPVH, JMPVL]=111_111=frequency fastest

B5h.3~0 **TKTMRH:** Touch Key scan length 11~8 adjustment

0000: shortest 1111: longest

C5h.7

TK7 scan enable: 0: disable

SFR D7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKCON3	_	_	_	_	_	JMPVL		
R/W	_	_	_	_	_	R/W		
Reset	_	_	_	_	_	0	0	0

D7h.2~0 **JMPVL:** Touch Key clock frequency LSB 3bit (Fine tune) select, only available in TKFJMP=0 [JMPVH, JMPVL]=000_000=frequency slowest [JMPVH, JMPVL]=111_111=frequency fastest

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	CLRPWM0	CLRPWM1	_	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	1	1	_	0

F8h.5 **TKSOC:** Touch Key Start of Conversion
Set 1 to start Touch Key conversion, and S/W need to write 0 to clear this flag.

SFR C5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATKCH0		ATKCH0						
R/W		R/W						
Reset	0	0	0	0	0	0	0	0

(if MCHS=0, Select ATK Scan channel; if MCHS=1, Select Bundle Scan channel)

C5h.6 TK6 scan enable: 0: disable 1: enable
(if MCHS=0, Select ATK Scan channel; if MCHS=1, Select Bundle Scan channel)

C5h.5 TK5 scan enable: 0: disable 1: enable
(if MCHS=0, Select ATK Scan channel; if MCHS=1, Select Bundle Scan channel)

C5h.4 TK4 scan enable: 0: disable 1: enable
(if MCHS=0, Select ATK Scan channel; if MCHS=1, Select Bundle Scan channel)

C5h.3 TK3 scan enable: 0: disable 1: enable

1: enable

TK3 scan enable: 0: disable 1: enable (if MCHS=0, Select ATK Scan channel; if MCHS=1, Select Bundle Scan channel)

C5h.2 TK2 scan enable: 0: disable 1: enable (if MCHS=0, Select ATK Scan channel; if MCHS=1, Select Bundle Scan channel)

C5h.1 TK1 scan enable: 0: disable 1: enable (if MCHS=0, Select ATK Scan channel; if MCHS=1, Select Bundle Scan channel)

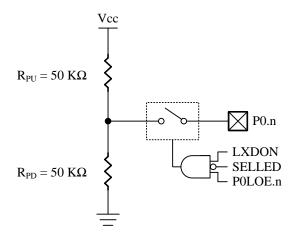
C5h.0 TK0 scan enable: 0: disable 1: enable (if MCHS=0, Select ATK Scan channel; if MCHS=1, Select Bundle Scan channel)

DS-TM52F4974_E 95 Rev 1.7, 2025/10

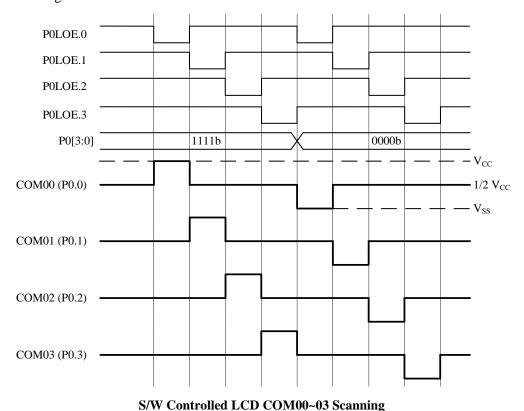
SFR C6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATKCH1		ATKCH1						
R/W		R/W						
Reset	0	0	0	0	0	0	0	0

Reset	U	U	U	U	Ü	U	U	U
C6h.7	TK15 scan e	nable: 0: disa	able 1: ena	ble				
	(if MCHS=0	, Select ATK	Scan channe	el; if MCHS=	=1, Select Bu	ındle Scan ch	nannel)	
C6h.6	TK14 scan e	nable: 0: disa	able 1: ena	ble				
	(if MCHS=0	, Select ATK	Scan channe	el; if MCHS=	=1, Select Bu	ındle Scan ch	nannel)	
C6h.5	TK13 scan e	nable: 0: disa	able 1: ena	ble				
	(if MCHS=0	, Select ATK	Scan channe	el; if MCHS=	=1, Select Bu	ındle Scan ch	nannel)	
C6h.4	TK12 scan e	nable: 0: disa	able 1: ena	ble				
	(if MCHS=0	, Select ATK	Scan channe	el; if MCHS=	=1, Select Bu	ındle Scan ch	nannel)	
C6h.3	TK11 scan e	nable: 0: disa	able 1: ena	ble				
	(if MCHS=0	, Select ATK	Scan channe	el; if MCHS=	=1, Select Bu	ındle Scan ch	nannel)	
C6h.2	TK10 scan e	nable: 0: disa	able 1: ena	ble				
	(if MCHS=0	, Select ATK	Scan channe	el; if MCHS=	=1, Select Bu	ındle Scan ch	nannel)	
C6h.1	TK9 scan en	able: 0: disa	able 1: ena	ble				
	(if MCHS=0	, Select ATK	Scan channe	el; if MCHS=	=1, Select Bu	ındle Scan ch	nannel)	
C6h.0	TK8 scan en	able: 0: disa	able 1: ena	ble				
	(if MCHS=0	, Select ATK	Scan channe	el; if MCHS	=1, Select Bu	ındle Scan ch	nannel)	

SFR C7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
ATKCH2		ATKCH2										
R/W		R/W										
Reset	0	0	0	0	0	0	0	0				

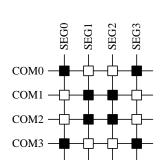

IX/ VV				IV/	**			
Reset	0	0	0	0	0	0	0	
C7h.7	TKCAP (TK	(23) internal 1	reference cap	acitor channe	el scan enable	e: 0: disable	1: enable	
	(if MCHS=0	, Select ATK	Scan channe	el; if MCHS	=1, Select Bu	ındle Scan ch	annel)	
C7h.6	TK22 scan e	nable: 0: disa	ble 1: ena	ble				
	(if MCHS=0	, Select ATK	Scan channe	el; if MCHS	=1, Select Bu	ındle Scan ch	annel)	
C7h.5	TK21 scan e	nable: 0: disa	ble 1: ena	ble				
	(if MCHS=0	, Select ATK	Scan channe	el; if MCHS	=1, Select Bu	ındle Scan ch	annel)	
C7h.4	TK20 scan e	nable: 0: disa	ble 1: ena	ble				
	(if MCHS=0	, Select ATK	Scan channe	el; if MCHS	=1, Select Bu	ındle Scan ch	annel)	
C7h.3	TK19 scan e	nable: 0: disa	ble 1: ena	ble				
	(if MCHS=0	, Select ATK	Scan channe	el; if MCHS	=1, Select Bu	ındle Scan ch	annel)	
C7h.2	TK18 scan e	nable: 0: disa	ble 1: ena	ble				
	(if MCHS=0	, Select ATK	Scan channe	el; if MCHS	=1, Select Bu	ındle Scan ch	nannel)	
C7h.1	TK17 scan e	nable: 0: disa	ble 1: ena	ble				
	(if MCHS=0	, Select ATK	Scan channe	el; if MCHS	=1, Select Bu	ındle Scan ch	annel)	
C7h.0	TK16 scan e	nable: 0: disa	ble 1: ena	ble				
	(if MCHS=0	, Select ATK	Scan channe	el; if MCHS	=1, Select Bu	ındle Scan ch	annel)	

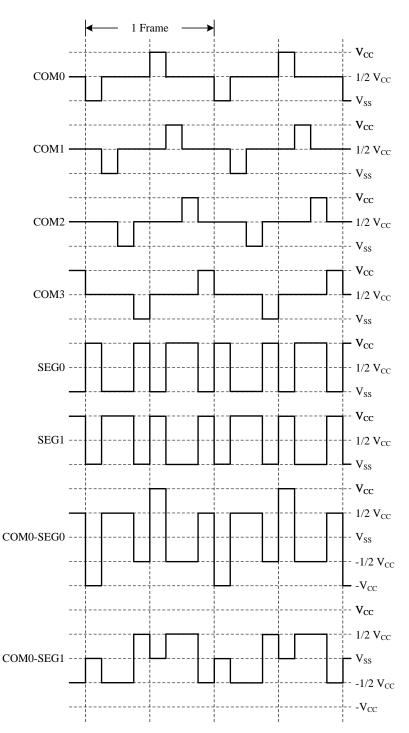
DS-TM52F4974_E 96 Rev 1.7, 2025/10


13. S/W Controller LCD Driver

The chip supports an S/W controlled method to driving LCD. All of the IO pins can be the Common pins. User can flexibly adjust the Common pins and Segment pins. It is capable of driving the LCD panel with 169 dots (Max.) by 13 Commons (COM) and 13 Segments (SEG). The P0.0~P0.7 are used for Common pins COM00~COM07. The P1.0~P1.7 are used for Common pins COM10~COM17. The P2.0~P2.1 are used for Common pins COM20~COM21. The P3.0~P3.7 are used for Common pins COM30~COM37. Common pins are capable of driving 1/2 bias by setting the corresponding registers LXDON, SELLED, P0LOE, P1LOE, P2LOE or P3LOE. Refer to the following figures.

LCD COM00~07 Circuit


The frequency of any repeating waveform output on the COM pin can be used to represent the LCD frame rate. The figure below shows an LCD frame.



DS-TM52F4974_E 97 Rev 1.7, 2025/10

1/4 Duty, 1/2 Bias Output Waveform

SFR B1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LXDCON	LXDON	LEDDUTY			LEDBRITM		LEDBRIT	
R/W	R/W		R/W			R/W		
Reset	0	0	0	0	0	1	1	1

B1h.7 **LXDON:** LCD/LED enable

0: LCD/LED disable
1: LCD/LED enable

SFR B2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LXDCON2		LEDPSC		SELLED	_		LEDN	MODE
R/W	_	R/W		R/W	_	_	R/	W
Reset	_	0	0	0	_	_	0	0

B2h.4 **SELLED:** LCD/LED function select

0: LCD 1: LED

SFR 86h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P0LOE	P0LOE7	P0L0E6	P0LOE5	P0LOE4	P0LOE3	P0LOE2	P0LOE1	P0LOE0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

86h.7 **P0LOE7:** LCDC07 / LED SEG6 (P0.7) enable control

0: Disable 1: Enable

86h.6 **P0LOE6:** LCDC06 / LED SEG7 (P0.6) enable control

0: Disable1: Enable

86h.5 **P0LOE5:** LCDC05 (P0.5) enable control

0: Disable 1: Enable

86h.4 **P0LOE4:** LCDC04 (P0.4) enable control

0: Disable1: Enable

86h.3 **P0LOE3:** LCDC03 / LED COM3 / LED3 (P0.3) enable control

0: Disable 1: Enable

86h.2 **POLOE2:** LCDC02 / LED COM2 / LED2 (P0.2) enable control

0: Disable 1: Enable

86h.1 **P0LOE1:** LCDC01 / LED COM1 / LED1 (P0.1) enable control

0: Disable1: Enable

86h.0 **P0LOE0:** LCDC00 / LED COM0 / LED0 (P0.0) enable control

0: Disable 1: Enable

SFR ACh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1LOE	P1LOE7	P1LOE6	P1LOE5	P1LOE4	P1LOE3	P1LOE2	P1LOE1	P1LOE0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

ACh.7 **P1LOE7:** LCDC17 or LED SEG2 (P1.7) enable control

0: Disable

1: Enable

ACh.6 P1LOE6: LCDC16 or LED SEG3 (P1.6) enable control

0: Disable

1: Enable

ACh.5 **P1LOE5:** LCDC15 or LED SEG4 (P1.5) enable control

0: Disable

1: Enable

ACh.4 P1LOE4: LCDC14 or LED SEG5 (P1.4) enable control

0: Disable

1: Enable

ACh.3 P1LOE3: LCDC13 (P1.3) enable control

0: Disable

1: Enable

ACh.2 **P1LOE2:** LCDC12 (P1.2) enable control

0: Disable

1: Enable

ACh.1 **P1LOE1:** LCDC11 (P1.1) enable control

0: Disable

1: Enable

ACh.0 **P1LOE0:** LCDC10 (P1.0) enable control

0: Disable

1: Enable

SFR 8Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2LOE	_	_	_	_	_	_	P2LOE1	P2LOE0
R/W	_	_	_	_	_	_	R/W	R/W
Reset	_	_	_	_	_	_	0	0

8Eh.1 **P2LOE1:** LCDC21 or LED COM5/SEG9 or LED5 (P2.1) enable control

0: Disable

1: Enable

8Eh.0 **P2LOE0:** LCDC20 or LED COM4/SEG8 or LED4 (P2.0) enable control

0: Disable

1: Enable

DS-TM52F4974_E 100 Rev 1.7, 2025/10

SFR B3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3LOE	P3LOE7	P3LOE6	P3LOE5	P3LOE4	P3LOE3	P3LOE2	P3LOE1	P3LOE0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

B3h.7 **P3LOE7:** LCDC37 or LED COM6/SEG10 or LED6 (P3.7) enable control

0: Disable

1: Enable

B3h.6 **P3LOE6:** LCDC36 or LED SEG1 (P3.6) enable control

0: Disable

1: Enable

B3h.5 **P3LOE5:** LCDC35 or LED SEG0 (P3.5) enable control

0: Disable

1: Enable

B3h.4 **P3LOE4:** LCDC34 or LED COM7/SEG11 or LED7 (P3.4) enable control

0: Disable

1: Enable

B3h.3 **P3LOE3:** LCDC33 (P3.3) enable control

0: Disable

1: Enable

B3h.2 **P3LOE2:** LCDC32 (P3.2) enable control

0: Disable

1: Enable

B3h.1 **P3LOE1:** LCDC31 (P3.1) enable control

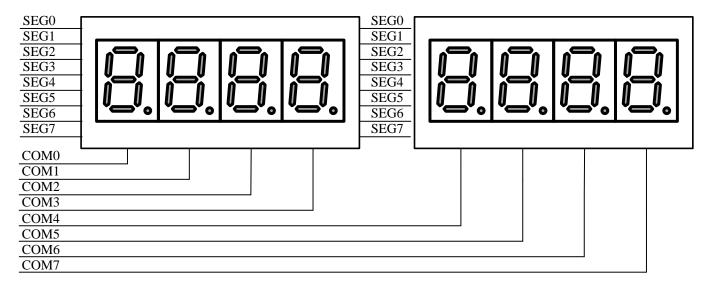
0: Disable

1: Enable

B3h.0 **P3LOE0:** LCDC30 (P3.0) enable control

0: Disable

1: Enable



14. LED Controller/Driver

The module can be configured with two drive modes: LED matrix mode and LED dot matrix mode. By register configuration, it only supports one mode of operation at the same time.

14.1 LED Matrix (MX) Mode

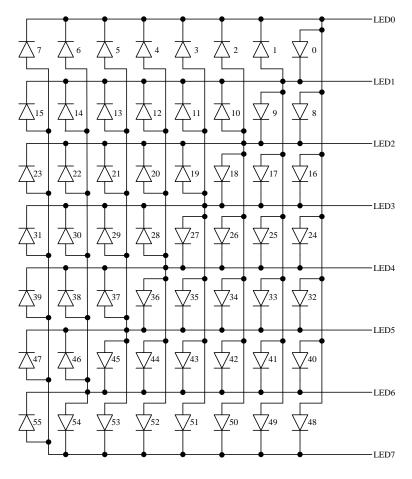
The Chip supports an LED controller and driver at matrix mode. If LEDMODE=00b, LXDON=SELLED=1. The LED matrix mode will enable. It provides 8 Segment pins and 8 Common pins to drive an LED module with 64 pixels or 12 Segment pins and 4 Common pins to drive an LED module with 48 pixels. The COM pins have a high sink current. The brightness of the LED can be set by LEDBRIT. When it is set to 111b, it is the highest brightness. In addition, LEDBRITM is used to set the brightness and uniformity bit. When LEDBRITM=0, better display uniformity can be obtained. When LEDBRITM=1, better display brightness can be obtained.

The display configuration in XRAM corresponds to the lighting status of the corresponding address. (1 means lighting, 0 means not lighting).

Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	COM
C800h	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0	COM0
C801h	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0	COM1
C802h	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0	COM2
C803h	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0	COM3
C804h	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0	COM4
C805h	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0	COM5
C806h	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0	COM6
C807h	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	SEG0	COM7
C808h					SEG11	SEG10	SEG9	SEG8	COM0
C809h					SEG11	SEG10	SEG9	SEG8	COM1
C80Ah					SEG11	SEG10	SEG9	SEG8	COM2
C80Bh					SEG11	SEG10	SEG9	SEG8	COM3
C80Ch					SEG11	SEG10	SEG9		COM4
C80Dh					SEG11	SEG10			COM5
C80Eh					SEG11				COM6
C80Fh									COM7

LED matrix drive mode corresponding display configuration table

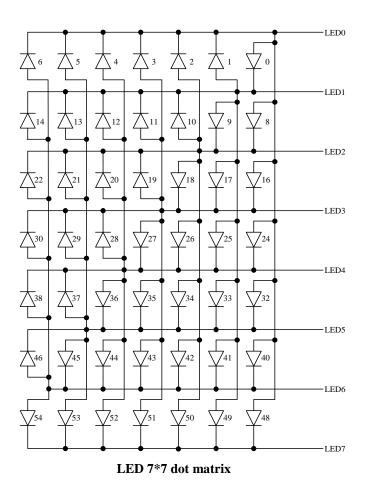
DS-TM52F4974_E 102 Rev 1.7, 2025/10

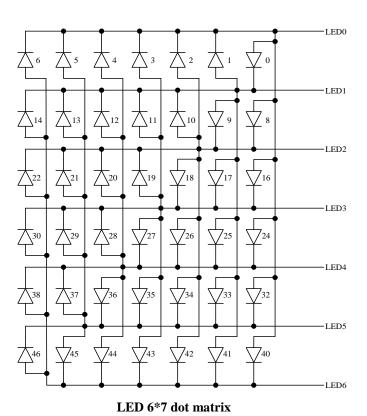


14.2 LED Dot Matrix (DMX) Mode

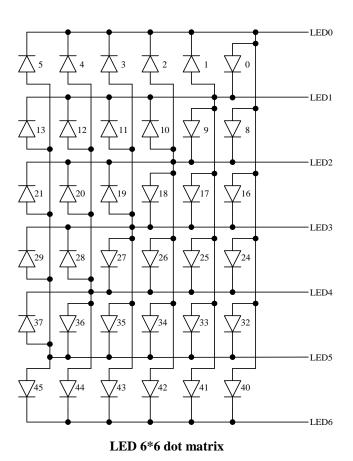
If LEDMODE=10b, LXDON=SELLED=1. The LED dot matrix mode will enable. The LED dot matrix is a universal 7*8 dot matrix. Corresponding to LED0~LED7 ports, up to 7x8=56 LED dots can be configured to drive, the corresponding position of the LED is marked in the 7*8 dot matrix in the figure below Address, the display configuration in XRAM corresponds to the lighting status of the corresponding address (1 means lighting, 0 means not lighting). Support up to 56 lights LED drive. Using LXDDUTY to choose dot matrix 4*4, 5*5, 6*6, 6*7, 7*7 and 7*8, the corresponding LED address remains unchanged. The brightness of the LED can be set by LEDBRIT. When it is set to 111b, it is the highest brightness. In addition, LEDBRITM is used to set the brightness and uniformity bit. When LEDBRITM=0, better display uniformity can be obtained. When LEDBRITM= 1, better display brightness can be obtained.

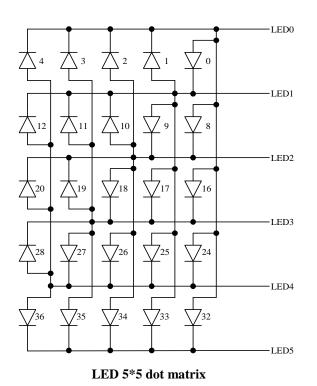
Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
C800h	7	6	5	4	3	2	1	0
C801h	15	14	13	12	11	10	9	8
C802h	23	22	21	20	19	18	17	16
C803h	31	30	29	28	27	26	25	24
C804h	39	38	37	36	35	34	33	32
C805h	47	46	45	44	43	42	41	40
C806h	55	54	53	52	51	50	49	48

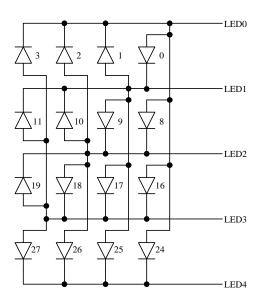

LED dot matrix drive mode corresponding display configuration table



LED 7*8 dot matrix


DS-TM52F4974_E 103 Rev 1.7, 2025/10





LED 4*4 dot matrix

SFR B1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LXDCON	LXDON	LEDDUTY			LEDBRITM	LEDBRIT		
R/W	R/W		R/W				R/W	
Reset	0	0	0	0	0	1	1	1

B1h.7 **LXDON:** LCD/LED enable

0: LCD/LED disable

1: LCD/LED enable

B1h.6~4 **LEDDUTY:** LED duty select

LED select: Matrix mode (if SELLED=1, LEDMODE=00b)

000: 1/2 Duty, COM 0~1 001: 1/3 Duty, COM 0~2 010: 1/4 Duty, COM 0~3 011: 1/5 Duty, COM 0~4 100: 1/6 Duty, COM 0~5 101: 1/7 Duty, COM 0~6

110: 1/8 Duty, COM 0~7 111: 1/8 Duty, COM 0~7

LED select: Dot Matrix mode (if SELLED=1, LEDMODE=10b)

000: 4x4, LED 0~4 001: 5x5, LED 0~5 010: 6x6, LED 0~6 011: 6x7, LED 0~6

100: 7x7, LED 0~7 101: 7x8, LED 0~7

110: Reserved111: Reserved

B1h.3 **LEDBRITM:** LED Brightness Mode

0: Uniform brightness mode

1: Brightness enhancement mode

B1h.2~0 **LEDBRIT:** LED Brightness control

000: Level 0 (Darkest)

...

111: Level 7 (Brightest)

SFR B2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LXDCON2	_	LEDPSC		SELLED	_	_	LEDM	1ODE
R/W	_	R/W		R/W	_	_	R/	W
Reset	_	0	0	0	_	_	0	0

B2h.6~5 **LEDPSC:** LED clock prescaler select

00: LED clock is FRC divided by 64 01: LED clock is FRC divided by 32

10: LED clock is FRC divided by 1611: LED clock is FRC divided by 8

B2h.4 **SELLED:** LCD/LED function select

0: LCD 1: LED

B2h.1~0 **LEDMODE:** LED Mode select

00: Matrix scan mode

01: Reserved

10: Dot Matrix scan mode

11: Reserved

SFR 86h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
POLOE	P0LOE7	P0LOE6	P0LOE5	P0LOE4	P0LOE3	P0LOE2	P0LOE1	P0LOE0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

86h.7 **P0LOE7:** LCDC07 / LED SEG6 (P0.7) enable control

0: Disable 1: Enable

86h.6 **P0LOE6:** LCDC06 / LED SEG7 (P0.6) enable control

0: Disable1: Enable

86h.5 **P0LOE5:** LCDC05 (P0.5) enable control

0: Disable 1: Enable

86h.4 **P0LOE4:** LCDC04 (P0.4) enable control

0: Disable1: Enable

86h.3 **P0LOE3:** LCDC03 / LED COM3 / LED3 (P0.3) enable control

0: Disable 1: Enable

86h.2 **P0LOE2:** LCDC02 / LED COM2 / LED2 (P0.2) enable control

0: Disable 1: Enable

86h.1 **P0LOE1:** LCDC01 / LED COM1 / LED1 (P0.1) enable control

0: Disable1: Enable

86h.0 **P0LOE0:** LCDC00 / LED COM0 / LED0 (P0.0) enable control

0: Disable 1: Enable

SFR ACh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1LOE	P1LOE7	P1LOE6	P1LOE5	P1LOE4	P1LOE3	P1LOE2	P1LOE1	P1LOE0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

ACh.7 **P1LOE7:** LCDC17 or LED SEG2 (P1.7) enable control

0: Disable

1: Enable

ACh.6 P1LOE6: LCDC16 or LED SEG3 (P1.6) enable control

0: Disable

1: Enable

ACh.5 **P1LOE5:** LCDC15 or LED SEG4 (P1.5) enable control

0: Disable

1: Enable

ACh.4 P1LOE4: LCDC14 or LED SEG5 (P1.4) enable control

0: Disable

1: Enable

ACh.3 P1LOE3: LCDC13 (P1.3) enable control

0: Disable

1: Enable

ACh.2 **P1LOE2:** LCDC12 (P1.2) enable control

0: Disable

1: Enable

ACh.1 **P1LOE1:** LCDC11 (P1.1) enable control

0: Disable

1: Enable

ACh.0 **P1LOE0:** LCDC10 (P1.0) enable control

0: Disable

1: Enable

SFR 8Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2LOE	_	_	_	_	_	_	P2LOE1	P2LOE0
R/W	_	_	_	_	_	_	R/W	R/W
Reset	_	_	_	_	_	_	0	0

8Eh.1 **P2LOE1:** LCDC21 or LED COM5/SEG9 or LED5 (P2.1) enable control

0: Disable

1: Enable

8Eh.0 **P2LOE0:** LCDC20 or LED COM4/SEG8 or LED4 (P2.0) enable control

0: Disable

1: Enable

DS-TM52F4974_E 109 Rev 1.7, 2025/10

SFR B3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3LOE	P3LOE7	P3LOE6	P3LOE5	P3LOE4	P3LOE3	P3LOE2	P3LOE1	P3LOE0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

B3h.7 **P3LOE7:** LCDC37 or LED COM6/SEG10 or LED6 (P3.7) enable control

0: Disable

1: Enable

B3h.6 **P3LOE6:** LCDC36 or LED SEG1 (P3.6) enable control

0: Disable

1: Enable

B3h.5 **P3LOE5:** LCDC35 or LED SEG0 (P3.5) enable control

0: Disable

1: Enable

B3h.4 **P3LOE4:** LCDC34 or LED COM7/SEG11 or LED7 (P3.4) enable control

0: Disable

1: Enable

B3h.3 **P3LOE3:** LCDC33 (P3.3) enable control

0: Disable

1: Enable

B3h.2 **P3LOE2:** LCDC32 (P3.2) enable control

0: Disable

1: Enable

B3h.1 **P3LOE1:** LCDC31 (P3.1) enable control

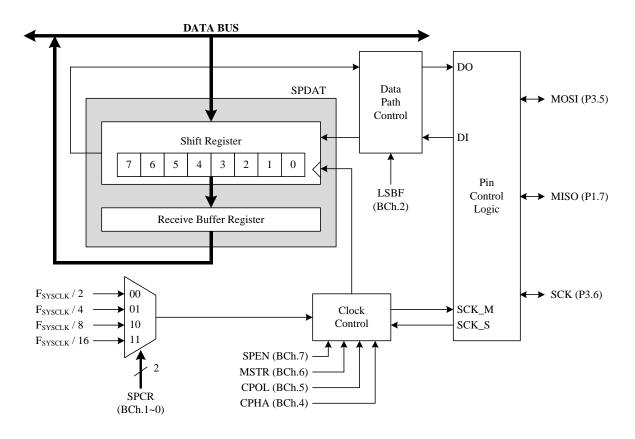
0: Disable

1: Enable

B3h.0 **P3LOE0:** LCDC30 (P3.0) enable control

0: Disable

1: Enable



15. Serial Peripheral Interface (SPI)

The Serial Peripheral Interface (SPI) module is capable of full-duplex, synchronous, serial communication between the MCU and peripheral devices. The peripheral devices can be other MCUs, A/D converter, sensors, or flash memory, etc. The SPI runs at a clock rate up to the system clock divided by two. Firmware can read the status flags, or the operation can be interrupt driven. Following figure shows the SPI system block diagram.

The features of the SPI module include:

- Master or Slave mode operation
- 3-wire mode operation
- Full-duplex operation
- Programmable transmit bit rate
- Single buffer receive
- Serial clock phase and polarity options
- MSB-first or LSB-first shifting selectable

SPI Function Pin	P1/P3 Mode	P1.n/P3.n SFR data
Master Mode, MISO	Mode1	1
Master Mode, SCK, MOSI	Mode2	X
Slave Mode, MISO	Mode2	X
Slave Mode, SCK, MOSI	Mode1	1

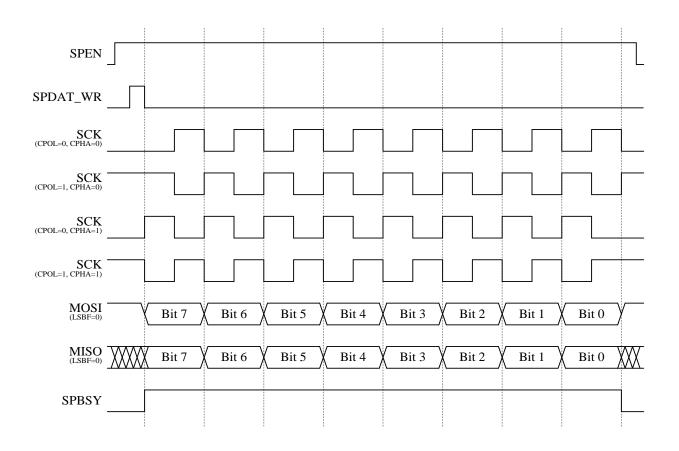
Pin Mode Setting for SPI

The three signals used by SPI are described below. The MOSI (P3.5) signal is an output from a Master Device and an input to Slave Devices. The signal is an output when SPI is operating in Master mode and an input when SPI is operating in Slave mode. The MISO (P1.7) signal is an output from a Slave Device and an input to a Master Device. The signal is an input when SPI is operating in Master mode and an output when SPI is operating in Slave mode. Data is transferred most-significant bit (MSB) or least-significant bit (LSB) first by setting the LSBF bit. The SCK (P3.6) signal is an output from a Master Device and an input to Slave Devices. It is used to synchronize the data on the MOSI and MISO lines of Master and Slave. SPI generates the signal with four programmable clock rates in Master mode.

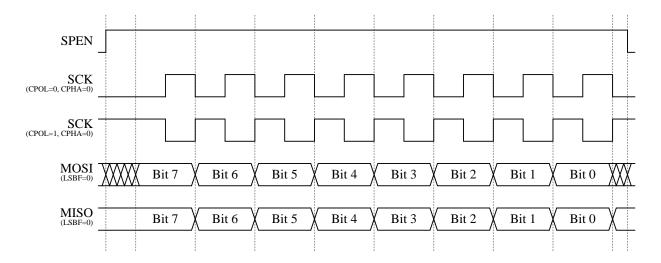
Master Mode

The SPI operates in Master mode by setting the MSTR bit in the SPCON. To start transmit, writing a data to the SPDAT. If SPBSY=0, the data will be transferred to the shift register and starts shift out on the MOSI line. The data of the Slave shift in from the MISO line at the same time. When the SPIF bit becomes set at the end of transfer, the receive data is written to receiver buffer and the RCVBF bit in the SPSTA is set. To prevent an overrun condition, software must read the SPDAT before next byte enters the shift register. The SPBSY bit will be set when writing a data to SPDAT to start transmit, and be cleared at the end of the eighth SCK period in Master mode.

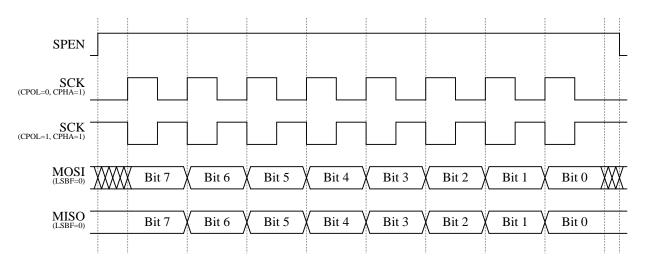
Slave Mode


The SPI operates in Slave mode by clearing the MSTR bit in the SPCON. The transmission will start when the SPEN bit in the SPCON is set. The data from a Master will shift into the shift register through the MOSI line, and shift out from the shift register on the MISO line. When a byte enters the shift register, the data will be transferred to receiver buffer if RCVBF=0. If RCVBF=1, the newer received data will not be transferred to receiver buffer and the RCVOVF bit is set. After a byte enters the shift register, the SPIF and RCVBF bits are set. To prevent an overrun condition, software must read the SPDAT or write 0 to RCVBF before next byte enters the shift register. **The maximum SCK frequency allowed in Slave mode is F**_{SYSCLK}/4.

Serial Clock


The SPI has four clock types by setting the CPOL and CPHA bits in the SPCON register. The CPOL bit defines the level of the SCK in SPI idle state. The level of the SCK in idle state is low when CPOL=0, and is high when CPOL=1. The CPHA bit defines the edges used to sample and shift data. The SPI sample data on the first edge of SCK period and shift data on the second edge of SCK period when CPHA=0. The SPI sample data on the second edge of SCK period and shift data on first edge of SCK period when CPHA=1. Figures below show the detail timing in Master and Slave modes. Both Master and Slave devices must be configured to use the same clock type before the SPEN bit is set. The SPCR controls the Master mode serial clock frequency. This register is ignored when operating in Slave mode. The SPI clock can select System clock divided by 2, 4, 8, or 16 in Master mode.

DS-TM52F4974_E 112 Rev 1.7, 2025/10


Master Mode Timing

Slave Mode Timing (CPHA=0)

DS-TM52F4974_E 113 Rev 1.7, 2025/10

Slave Mode Timing (CPHA=1)

In both Master and Slave modes, the SPIF interrupt flag is set by H/W at the end of a data transfer. If write data to SPDAT when SPBSY=1, the WCOL interrupt flag will be set by H/W. When this occurs, the data write to SPDAT will be ignored, and shift register will not be written.

SFR BCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SPCON	SPEN	MSTR	CPOL	СРНА	_	LSBF	SP	CR
R/W	R/W	R/W	R/W	R/W		R/W	R/	W
Reset	0	0	0	0	_	0	0	0

BCh.7 **SPEN:** SPI enable

0: SPI disable

1: SPI enable

BCh.6 **MSTR:** Master mode enable

0: Slave mode

1: Master mode

BCh.5 **CPOL:** SPI clock polarity

0: SCK is low in idle state

1: SCK is high in idle state

BCh.4 **CPHA:** SPI clock phase

0: Data sample on first edge of SCK period

1: Data sample on second edge of SCK period

BCh.2 **LSBF:** LSB first

0: MSB first

1: LSB first

BCh.1~0 **SPCR:** SPI clock rate

00: F_{SYSCLK}/2

01: F_{SYSCLK}/4

10: F_{SYSCLK}/8

11: F_{SYSCLK}/16

SFR BDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SPSTA	SPIF	WCOL	_	RCVOVF	RCVBF	SPBSY	_	_
R/W	R/W	R/W	_	R/W	R/W	R	_	_
Reset	0	0	_	0	0	0	_	_

BDh.7 **SPIF:** SPI interrupt flag

This is set by H/W at the end of a data transfer. Cleared by H/W when an interrupt is vectored into. Writing 0 to this bit will clear this flag.

BDh.6 WCOL: Write collision interrupt flag

Set by H/W if write data to SPDAT when SPBSY is set. Write 0 to this bit or rewrite data to SPDAT when SPBSY is cleared will clear this flag.

BDh.4 **RCVOVF:** Received buffer overrun flag

Set by H/W at the end of a data transfer and RCVBF is set. Write 0 to this bit or read SPDAT register will clear this flag.

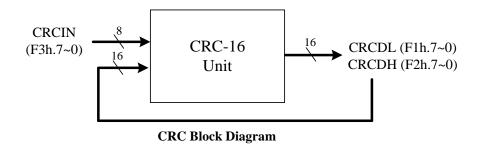
BDh.3 **RCVBF:** Receive buffer full flag

Set by H/W at the end of a data transfer. Write 0 to this bit or read SPDAT register will clear this flag.

BDh.2 **SPBSY:** SPI busy flag

Set by H/W when a SPI transfer is in progress.

SFR BEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
SPDAT		SPDAT							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	


BEh.7~0 SPDAT: SPI transmit and receive data

The SPDAT register is used to transmit and receive data. Writing data to SPDAT place the data into shift register and start a transfer when in master mode. Reading SPDAT returns the contents of the receive buffer.

16. Cyclic Redundancy Check (CRC)

The chip supports an integrated 16-bit Cyclic Redundancy Check function. The Cyclic Redundancy Check (CRC) calculation unit is an error detection technique test algorithm and uses to verify data transmission or storage data correctness. The CRC calculation takes a 8-bit data stream or a block of data as input and generates a 16-bit output remainder. The data stream is calculated by the same generator polynomial.

The CRC generator provides the 16-bit CRC result calculation based on the CRC-16-IBM polynomial. In this CRC generator, there are only one polynomial available for the numeric values calculation. It can't support the 16-bit CRC calculations based on any other polynomials. Each write operation to the CRCIN register creates a combination of the previous CRC value stored in the CRCDH and CRCDL registers. It will take one MCU instruction cycle to calculate.

CRC-16-IBM (Modbus) Polynomial representation: $X^{16} + X^{15} + X^2 + 1$

SFR F1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CRCDL		CRCDL						
R/W		R/W						
Reset	1	1	1	1	1	1	1	1

F1h.7~0 **CRCDL:** 16-bit CRC checksum data bit 7~0

SFR F2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CRCDH		CRCDH						
R/W		R/W						
Reset	1	1	1	1	1	1	1	1

F2h.7~0 **CRCDL:** 16-bit CRC checksum data bit 15~8

SFR F3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
CRCIN		CRCIN							
W		W							
Reset	_	_	_	_	_	_	_	_	

F3h.7~0 **CRCIN:** CRC input data register

DS-TM52F4974_E 116 Rev 1.7, 2025/10

17. Multiplier and Divider

The chip provide multiplier and divider have the following functions. The 8 bit operation is fully compatible with industry standard 8051.

- •8 bits \times 8 bits = 16 bit (standard 8051)
- •8 bits \div 8 bits = 8 bits, 8 bits remainder (standard 8051)
- •16 bits \times 16 bits = 32 bit
- •16 bits \div 16 bits = 16 bits, 16 bits remainder
- •32 bits \div 16 bits = 32 bits, 16 bits remainder

No matter 8bit / 16bit / 32bit operation, it's easy to execute by MUL AB and DIV AB instruction. There is extra SFR EXA/EXA2/EXA3/EXB for 16bit / 32bit multiply and divide operation.

For 8 bit multiplier/divider operation, be sure SFR bit muldiv16=0 and div32=0.

For 16 bit multiplier operation, multiplicand, multiplier and product as follows. 16 bit multiplier takes 16 System clock cycles to execute.

Condition	S	SFR bit muldiv16=1 and div32=0							
Multiplication	Byte3	Byte2	Byte1	Byte0					
Multiplicand	-	-	EXA	A					
Multiplier	-	-	EXB	В					
Product	EXB	В	A	EXA					
OV	Product (EX	(B or B) !=0	-	-					

For 16 bit divider operation, dividend, divisor, quotient, remainder read as follows. 16 bit divider takes 16 System clock cycles to execute.

Condition	S	SFR bit muldiv16=1 and div32=0							
Division	Byte3	Byte2	Byte1	Byte0					
Dividend	1	-	EXA	A					
Divisor	-	-	EXB	В					
Quotient	-	-	A	EXA					
Remainder	-	-	В	EXB					
OV		Divisor EXB = $B = 0$							

For 32 bits \div 16 bits operation, dividend, divisor, quotient, remainder read as follows. 32 bit divider takes 32 System clock cycles to execute.

Condition	S	SFR bit muldiv16=1 and div32=1								
Division	Byte3	Byte2	Byte1	Byte0						
Dividend	EXA3	EXA2	EXA	A						
Divisor	1	1	EXB	В						
Quotient	A	EXA	EXA2	EXA3						
Remainder	-	-	В	EXB						
OV		Divisor EXB=B =0								

DS-TM52F4974_E 117 Rev 1.7, 2025/10

SFR CEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
EXA2		EXA2							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

CEh.7~0 **EXA2:** Expansion accumulator 2

SFR CFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EXA3				EX	A3			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

CFh.7~0 **EXA3:** Expansion accumulator 3

SFR E6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EXA				EΣ	ΚA			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

E6h.7~0 **EXA:** Expansion accumulator

SFR E7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EXB				ЕΣ	KΒ			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

E7h.7~0 **EXB:** Expansion B register

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WD	TE	PWRSAV	VBGOUT	DIV32	IAF	PTE	MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/	W	R/W
Reset	0	0	0	0	0	1	1	0

F7h.3 **DIV32:** (only active when MULDVI16=1)

0: instruction DIV as 16/16 bit division operation

1: instruction DIV as 32/16 bit division operation

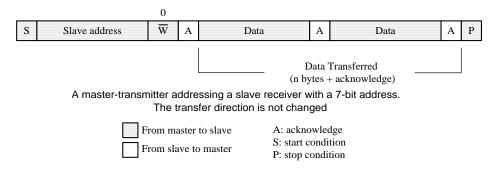
F7h.0 **MULDIV16:**

0: instruction MUL/DIV as 8*8, 8/8 operation

1: instruction MUL/DIV as 16*16, 16/16 or 32/16 operation

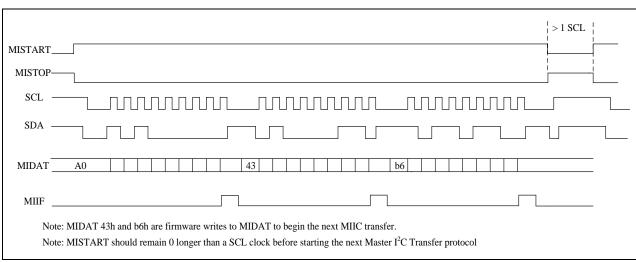
	ARITHMETIC									
Mnemonic	Description	byte	cycle	opcode						
MUL AB	Multiply A by B	1	8/16	A4						
DIV AB	Divide A by B	1	8/16/32	84						

DS-TM52F4974_E 118 Rev 1.7, 2025/10



18. Master I2C Interface

Master I'C interface transmit mode:


At the beginning write slave address and direction bit to MIDAT and set MISTART. After the START condition (MISTART), the 7 bits slave address and one bit direction bit are sent. When MIIF convert to 1, address and direction bit transmission was complete. After sending the address and direction bit, user should clear MIIF and write MIDAT to start first data transmission. When MIIF convert to 1, data transfer to slave was complete. User can write MIDAT again to transfer next data to slave. Set MISTOP to finish transmit mode.

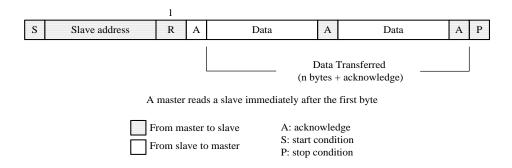
MISTART must remain at 1 for the next transfer. After the final data transmit/receive, set MISTOP to finish transmit/receive protocol. MISTART should remain 0 longer than a SCL clock before starting the next Master I²C protocol. SCL clock can be adjusted via MICR.

Master I2C Transmit flow:

- (1) Write slave address and direction bit to MIDAT
- (2) Clear MISTOP and set MISTART to start I²C transmission
- (3) Wait until MIIF convert to 1 (interrupt will be issued according to the user's request) and Clear MIIF
- (4) Write data to MIDAT to start next transfer (MISTART must remain at 1)
- (5) Wait until MIIF convert to 1 (interrupt will be issued according to the user's request) and Clear MIIF, Loop $(4) \sim (5)$ for next transfer.
- (6) Clear MISTART and set MISTOP to stop the I2C transfer

Master Transmit Timing

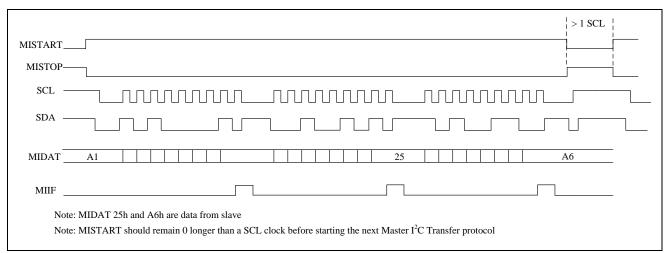
Note: MISTART should remain 0 longer than a SCL period before starting the next Master I²C protocol.


DS-TM52F4974_E 119 Rev 1.7, 2025/10

Master I'C interface Receive mode:

At the beginning write slave address and direction bit to MIDAT and set MISTART. After the START condition (MISTART), the 7 bits slave address and one bit direction bit are sent. When MIIF convert to 1, address and direction bit transmission was complete. After sending the address and direction bit, user should clear MIIF and read MIDAT to start first receive data (The first reading of MIDAT does not represent the data returned by the slave). When MIIF convert to 1, data receive from slave was complete. User can read MIDAT to get data from slave, and start next receive. Set MISTOP to finish receive mode.

MISTART must remain at 1 for the next transfer. After final data transmit/receive, set MISTOP to finish transmit/receive protocol. MISTART should remain 0 longer than a SCL clock before starting the next Master I²C protocol. SCL clock can be adjusted via MICR.



Master I²C Receive flow:

- (1) Write slave address and direction bit to MIDAT
- (2) Clear MISTOP and set MISTART to start I²C transmission
- (3) Wait until MIIF convert to 1 (interrupt will be issued according to the user's request)
- (4) Clear MIIF
- (5) Read data from MIDAT to start first receive data (The first reading of MIDAT does not represent the data returned by the slave)
- (6) Wait until MIIF convert to 1
- (7) Clear MIIF
- (8) Read slave data from MIDAT and receive next data
- (9) Loop (6) \sim (8)
- (10) Set MISTOP to stop the I²C transfer

DS-TM52F4974_E 120 Rev 1.7, 2025/10

Master Receive Timing

I ² C Function Pin	PINMODxx	Px.n SFR data	Pin State
I ² C Master SCI Mode0		X	I ² C Clock Output (Open Drain Output, Pull-up)
I ² C Master SCL Mode2		X	I ² C Clock Output (CMOS Push-Pull)
I ² C Master SDA	Mode0	1	I ² C DATA (Pull-up)

Pin Mode Setting for Master I²C

SFR E1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MICON	MIEN	MIACKO	MIIF	MIACKI	MISTART	MISTOP	MI	CR
R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	1	0	0

E1h.7 **MIEN**: Master I^2C enable

0: disable 1: enable

E1h.6 **MIACKO**: When Master I²C receive data, send acknowledge to I²C Bus

0: ACK to slave device

1: NACK to slave device

E1h.5 **MIIF**: Master I²C Interrupt flag

0: write 0 to clear it

1: Master I²C transfer one byte complete

E1h.4 MIACKI: When Master I²C transfer, acknowledgement form I²C bus (read only)

0: ACK received

1: NACK received

E1h.3 **MISTART**: Master I²C Start bit

1: start I²C bus transfer

E1h.2 **MISTOP**: Master I²C Stop bit

1: send STOP signal to stop I²C bus

E1h.1~0 MICR: Master I²C (SCL) clock frequency selection

00: F_{SYSCLK}/4 (ex. If F_{SYSCLK}=16MHz, I²C clock is 4 MHz)

01: $F_{SYSCLK}/16$ (ex. If $F_{SYSCLK}=16MHz$, I^2C clock is 1 MHz)

10: $F_{SYSCLK}/64$ (ex. If $F_{SYSCLK}=16MHz$, I^2C clock is 250 KHz)

11: F_{SYSCLK}/256 (ex. If F_{SYSCLK}=16MHz, I²C clock is 62.5 KHz)

DS-TM52F4974_E 121 Rev 1.7, 2025/10

SFR E2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
MIDAT		MIDAT							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

E2h.7~0 **MIDAT**: Master I²C data shift register

(W):After Start and before Stop condition, write this register will resume transmission to I^2C bus (R): After Start and before Stop condition, read this register will resume receiving from I^2C bus

SFR C2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SICON	MIIE	TXDIE	RCD2IE	RCD1IE	_	TXDF	RCD2F	RCD1F
R/W	R/W	R/W	R/W	R/W	_	R/W	R/W	R/W
Reset	0	0	0	0	_	1	0	0

C2h.7 **MIIE:** I²C Master interrupt enable

0: disable 1: enable

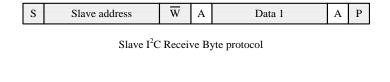
SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	ES2	LVDIE	SPI2CE	ADTKIE	EX2	PCIE	TM3IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

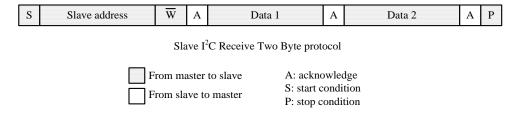
A9h.4 **SPI2CE:** SPI/I*C interrupt enable

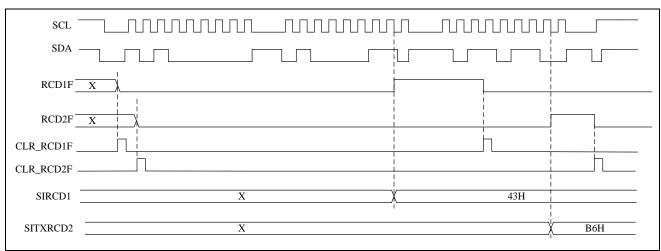
0: Disable SPI/I℃ interrupt1: Enable SPI/I℃ interrupt

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD	PSEUDOEN	MSI2CPS	UART2PS	UART1PS	TCOE	T2OE	T10E	T00E
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

A6h.4 **MSI2CPS:** Master/Slave I²C pin select

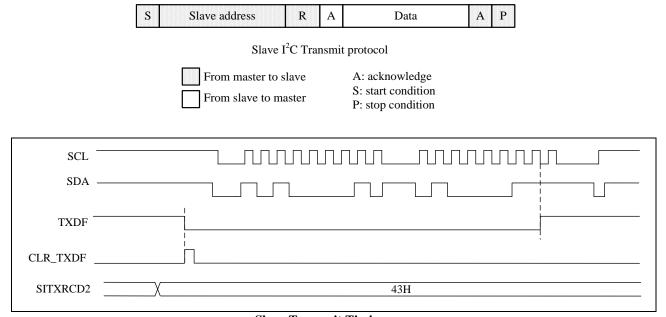

0: SCL/SDA = P3.0/P3.1 1: SCL/SDA = P0.1/P0.2


DS-TM52F4974_E 122 Rev 1.7, 2025/10



19. Slave I2C Interface

The chip provides Slave I℃ interface receive protocol as following. Slave I℃ module allow to receive one or two byte data each time after start condition. Before receiving DATA1, be aware that RCD1F must be 0. After DATA1 reception is completed, RCD1F will be converted to 1 and an interrupt will be issued according to the user's request. User can use firmware to clear RCD1F before receiving next DATA1 again. User can write RCD1F to 0 to clear RCD1F. DATA2 and RCD2F operate in the same way as DATA1 and RCD1. After DATA1 or DATA2 reception is completed, the Master side should restart the transfer protocol to transmit the next DATA1 and DATA2.



Slave Receive Timing

DS-TM52F4974_E 123 Rev 1.7, 2025/10

The chip provides Slave I²C interface transmission protocol as following. Slave I²C module allow to transmit one byte data each time after start condition. Before data transmitting, be aware that TXDF must be 0. After data transmission is completed, TXDF will be converted to 1 and an interrupt will be issued according to the user's request. User can use firmware to clear TXDF before transmitting next data again. User can write TXDF to 0 to clear TXDF. After each transmission is completed, the host should restart the transmission protocol to transmit the next data.

Slave Transmit Timing

I ² C Function Pin	PINMODxx	Px.n SFR data	Pin State
I ² C Slave SCL	Mode1	1	I ² C Clock Input (Hi-Z)
I ² C Master/Slave SDA	Mode0	1	I ² C DATA (Pull-up)

Pin Mode Setting for Slave I2C

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD	PSEUDOEN	MSI2CPS	UART2PS	UART1PS	TCOE	T2OE	T10E	T00E
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

A6h.4 **MSI2CPS:** Master/Slave I²C pin select

0: SCL/SDA = P3.0/P3.1 1: SCL/SDA = P0.1/P0.2

SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	ES2	LVDIE	SPI2CE	ADTKIE	EX2	PCIE	TM3IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

A9h.4 **SPI2CE:** SPI/I²C interrupt enable

0: Disable SPI/I C interrupt1: Enable SPI/I C interrupt

DS-TM52F4974_E 124 Rev 1.7, 2025/10

SFR C1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
SIADR		SA								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	1	1	0	0	1	0	0		

C1h.7~1 SA: Slave I C address assigned

C1h.0 **SIEN:** Slave I²C enable

0: disable 1: enable

SFR C2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SICON	MIIE	TXDIE	RCD2IE	RCD1IE	_	TXDF	RCD2F	RCD1F
R/W	R/W	R/W	R/W	R/W	_	R/W	R/W	R/W
Reset	0	0	0	0	_	1	0	0

C2h.6 **TXDIE:** Slave I²C transmission completed interrupt enable

0: disable 1: enable

C2h.5 **RCD2IE:** Slave I*C DATA2 (SITXRCD2) reception completed interrupt enable

0: disable 1: enable

C2h.4 **RCD1IE:** Slave I*C DATA1 (SIRCD1) reception completed interrupt enable

0: disable 1: enable

C2h.2 **TXDF:** Slave I C transmission completed interrupt flag

0: write 0 to clear it

1: Set by H/W when Slave I C transmission complete

C2h.1 RCD2F: Slave I*C DATA2 (SITXRCD2) reception completed interrupt flag

0: write 0 to clear it

1: Set by H/W when Slave I C DATA2 (SITXRCD2) reception complete

C2h.0 **RCD1F:** Slave I*C DATA1 (SIRCD1) reception completed interrupt flag

0: write 0 to clear it

1: Set by H/W when Slave I C DATA1 (SIRCD1) reception complete

SFR C3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
SIRCD1		SIRCD1									
R/W	R	R	R	R	R	R	R	R			
Reset	-	ı	-	-	_	_	_	_			

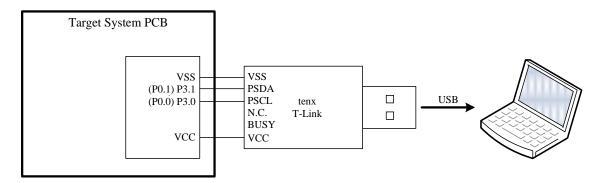
C3h.7~0 **SIRCD1:** Slave I*C data receive register1 (DATA1)

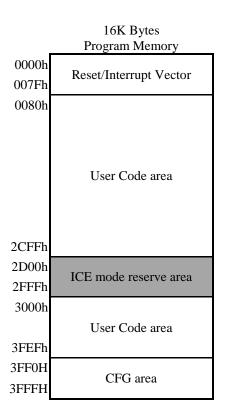
SFR C4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
SITXRCD2		SITXRCD2									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	_	_	_	_	_	_	_	_			

C4h.7~0 **SITXRCD2:** Slave I*C transmit and receive data register

(R): Slave I℃ data receive register2 (DATA2)

(W): Slave I°C data transmission register (TXD)


DS-TM52F4974_E 125 Rev 1.7, 2025/10



20. In Circuit Emulation (ICE) Mode

This device can support the In Circuit Emulation Mode. To use the ICE Mode, user just needs to connect P3.0 and P3.1 pin to the tenx proprietary EV Module. The benefit is that user can emulate the whole system without changing the on board target device. But there are some limits for the ICE mode as below.


- 1. The device must be un-protect.
- 2. The device's P3.0 and P3.1 pins must work in input Mode (P3MOD0 = 0/1 and P3MOD1=0/1).
- 3. The Program Memory's addressing space 2D00h~2FFFh and 0033h~003Ah are occupied by tenx EV module. So user Program cannot access these spaces.
- 4. The T-Link communication pin's function cannot be emulated.
- 5. The P3.0 and P3.1 pin's can be replaced by P0.0 and P0.1. (Only emulation can be replaced, mass production writer only supports P3.0/P3.1)
- 6. The VDD level is controlled by T-Link module.

ICE tool settings introduction

No.	Item	Description
01	PROT	Enable: Flash code is protect, Writer cannot access the ROM code
	1101	Disable: Flash code is not protect, Writer can access the ROM code (default)
02	XRSTE	Enable: P3.7 is external reset pin
02	ARSIE	Disable: P3.7 is normal I/O pin (default)
03	HVS	Reserved
03	пуз	Reserved
04	ICE Mode	Reserved
04	ICE Mode	Reserved
05	On Chin CDC16	Enable: On chip CRC-16 function enable
03	On Chip CRC16	Disable: On chip CRC-16 function disable (default)

DS-TM52F4974_E 127 Rev 1.7, 2025/10

SFR & CFGW MAP

Adr	RST	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
80h	1111-1111	P0	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
81h	0000-0111	SP			•	S	P	•	•	
82h	0000-0000	DPL				D	PL			
83h	0000-0000	DPH				Dl	PH			
84h	x00x-xxxx	INTE2	_	PWM1IE	PWM0IE	_	_	_	_	_
85h	x00x-xxxx	INTFLG2	_	PWM1IF	PWM0IF	_	_	_	_	_
86h	0000-0000	P0LOE0	P0LOE7	P0LOE6	P0LOE5	P0LOE4	P0LOE3	P0LOE2	P0LOE1	P0LOE0
87h	0xxx-0000	PCON	SMOD	_	_	_	GF1	GF0	PD	IDL
88h	0000-0000	TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
89h	0000-0000	TMOD	GATE1	CT1N	TM	OD1	GATE0	CT0N	TM	OD0
8Ah	0000-0000	TLO				T	L0			
8Bh	0000-0000	TL1				T	L1			
8Ch	0000-0000	TH0				T	H0			
8Dh	0000-0000	TH1				Tl	H1			
8Eh	xxxx-xx00	P2LOE	I	1	_	_	_	_	P2LOE1	P2LOE0
8Fh	x000-0000	UART2CON	-				UART2BRP			
90h	1111-1111	P1	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
91h	0101-0101	P0MODL	P0M	IOD3	P0M	OD2	P0M	OD1	P0M	OD0
92h	0101-0101	P0MODH	P0M	IOD7	P0M	OD6	P0M	OD5	P0M	OD4
93h	xxxx-0101	P2MODL	– – P2MC					MOD1 P2MOI		OD0
94h	0000-0000	OPTION	TKBUFS	TKBUFS TM3CKS WDTPSC				CKS	TKO	OFC
95h	0x00-x000	INTFLG	LVDIF – TKIF ADI				_	IE2	PCIF	TF3
96h	0000-0000	P1WKUP				P1W	'KUP			
97h	xxxx-xx00	SWCMD				SWRST / IAF	PALL / WDTO)		
98h	0000-0000	SCON	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
99h	xxxx-xxxx	SBUF			1	SB	UF	1	•	
9Ah	0000-0000	SCON2	SM	_	_	REN2	TB82	RB82	TI2	RI2
9Bh	xxxx-xxxx	SBUF2				SB	UF2			
9Ch	0000-0000	P0WKUP		1	1	POW	KUP	1	•	
9Dh	xxxx-xx00	P2WKUP	_	_	_	_	_	_	P2W	KUP
9Eh	0000-0000	P3WKUP		T	T	P3W	KUP	Γ	1	
	1111-1111	P2	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
		PWMCON		1CKS		PWM0EN		0CKS	PWM0NMSK	
		P1MODL		IOD3		OD2		OD1		OD0
		P1MODH		IOD7		OD6		OD5		OD4
		P3MODL		IOD3		OD2		OD1		OD0
	0101-0101	P3MODH		OD7		OD6		OD5		OD4
	0000-0000		PSEUDOEN	MSI2CPS	UART2PS	UART1PS	TCOE	T2OE	T1OE	T0OE
	xxx1-1111	TKCHS	_	_	_		T	TKCHS	T	
	0x00-0000	IE	EA	_	ET2	ES	ET1	EX1	ET0	EX0
	0000-0000		PWMIE	ES2	LVDIE	SPI2CIE	ADTKIE	EX2	PCIE	TM3IE
	xxxx-xxxx	ADCDL		AD	CDL		_	_	_	PWRDEC
	xxxx-xxxx	ADCDH			T		CDH	Π	T	
	0000-0000		P1LOE7	P1LOE6	P1LOE5	P1LOE4	P1LOE3	P1LOE2	P1LOE1	P1LOE0
	1101-0000		TKPD	TKEOC						
		ADCHSEL			ADCHS		1	ADCVREFS		SEL
AFh	0000-0000	PWMCON2	PWM0MOD	PWM0MSKE	PWM	I0OM	PWM0DZ			

Adr	RST	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
B0h	1111-1111	Р3	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0
B1h	0000-0111	LXDCON	LXDON		LEDDUTY	I	LEDBRITM		LEDBRIT	I
B2h	x000-xx00	LXDCON2	_	LED	PSC	SELLED	_	_	LEDN	MODE
B3h	0000-0000	P3LOE	P3LOE7	P3LOE6	P3LOE5	P3LOE4	P3LOE3	P3LOE2	P3LOE1	P3LOE0
B4h	1111-1111	TKTMRL			l .	TKT	MRL			
B5h	0000-0000	TKCON2	TKFJMP		JMPVH			TKT	MRH	
B6h	0000-0000	PWMOE0	PWM2OE1	PWM2OE0	PWM10E1	PWM1OE0	PWM0NOE1	PWM0POE1	PWM0NOE0	PWM0POE0
B7h	0000-0000	PWMOE1	PWM6OE1	PWM6OE0	PWM5OE1	PWM5OE0	PWM4OE1	PWM4OE0	PWM3OE1	PWM3OE0
B8h	xx00-0000	IP	-	1	PT2	PS	PT1	PX1	PT0	PX0
B9h	xx00-0000	IPH	-	ı	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
BAh	0000-0000	IP1	PPWM	PS2	PLVD	PSPI2C	PADTKI	PX2	PPC	PT3
BBh	0000-0000	IP1H	PPWMH	PS2H	PLVDH	PSPI2CH	PADTKIH	PX2H	PPCH	РТ3Н
BCh	0000-x000	SPCON	SPEN	MSTR	CPOL	СРНА	_	LSBF	SP	CR
BDh	00x0-00xx	SPSTA	SPIF	WCOL	_	RCVOVF	RCVBF	SPBSY	_	_
BEh	0000-0000	SPDAT				SPI	DAT			
C1h	0000-0000	SIADR				SA				SIEN
C2h	0000-x000	SICON	MIIE	TXDIE	RCD2IE	RCD1IE	_	TXDF	RCD2F	RCD1F
C3h	xxxx-xxxx	SIRCD1		SIRCD1						
C4h	xxxx-xxxx	SITXRCD2				SITX	RCD2			
C5h	0000-0000	ATKCH0		ATKCH0						
C6h	0000-0000	ATKCH1		ATKCH1						
	0000-0000			ATKCH2						
C8h	0000-0000	T2CON	TF2	TF2 EXF2 RCLK TCLK EXEN2 TR2 CT2N CPRL2N						
C9h	0000-xxxx	IAPCON		IAPCON / IAPWE / EEPWE / INFOWE / IAPTO						
	0000-0000	RCP2L					P2L			
	0000-0000						P2H			
	0000-0000	TL2					L2			
	0000-0000	TH2					H2			
	0000-0000						XA2			
	0000-0000				T		XA3		<u> </u>	I -
	0000-0000	PSW	CY	AC	F0	RS1	RS0	OV	F1	P
		PWM0DH					MODH			
		PWM0DL					MODL MIDIL			
		PWM1DH					MIDH MIDH			
		PWM1DL					M1DL			
		PWM2DH					12DH			
		PWM2DL			1	PWN	12DL		IMDVII	
		TKCON3 CLKCON	- CCVTVDE	- ECUTYDE	CTDCCV	CTDDCV	CTDECK	CEL ECV	JMPVL	IPSC
		PWM0PRDH	SCKTYPE	FCKTYPE	STPSCK	STPPCK	STPFCK	SELFCK	CLN	PSC
		PWM0PRDL	PWM0PRDH PWM0PRDL							
		PWM1PRDH	PWM1PRDH							
		PWM1PRDL	PWM1PRDL							
		PWM3DH					13DH			
		PWM3DL					13DH 13DL			
			UART1BRS			L MAIN	UART1BRP			
	0000-0000		ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0
	0000-0000 000x-0100		MIEN	MIACKO	MIIF	MIACKI	MISTART	MISTOP		CR
	0000-0100		IVIIIIN	MIACKO	IVIIII.		DAT	MIDIOF	IVII	CIN
1211	0000-0000	MIIDAI				IVIII	<i>)</i> /// 1			

Adr	RST	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
E3h	xx00-0000	LVRCON	-	-	PORPD	LVRPD		LVR	SEL		
E4h	0000-0000	LVDCON	LVDM	LVDO	LVDHYS	LVDPD LVDSEL					
E5h	0000-0000	EFTCON	EFT2CS	EFT1CS	EF	Γ1S	EFTSLOW	_	EFTWOUT	CKHLDE	
E6h	0000-0000	EXA				EX	ΧA				
E7h	0000-0000	EXB				EX	XB				
E9h	0000-0000	PWM4DH				PWM	14DH				
EAh	0000-0000	PWM4DL				PWN	/I4DL				
EBh	0000-0000	PWM5DH				PWM	15DH				
ECh	0000-0000	PWM5DL				PWN	15DL				
EDh	0000-0000	PWM6DH				PWM	16DH				
EEh	0000-0000	PWM6DL				PWN	16DL				
EFh	x000-0x00	AUX3	_	HSNK2EN	HSNK1EN	HSNK0EN	WARMTIME	1	FJMPE	FJMPS	
F0h	0000-0000	В	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0	
F1h	1111-1111	CRCDL				CRO	CDL				
F2h	1111-1111	CRCDH				CRO	CDH				
F3h	0000-0000	CRCIN				CR	CIN				
F5h	xxxx-xxxx	CFGBG	_	– – BGTRIM							
F6h	xxxx-xxxx	CFGWL	1		FRCF						
F7h	0000-0110	AUX2	WI	OTE	PWRSAV	AV VBGOUT DIV32 IAPTE MULI				MULDIV16	
F8h	0000-11x0	AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	CLRPWM0	CLRPWM1		DPSEL	

Flash Address	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
3FFBh	CFGBG	-	-	_			BGTRIM		
3FFDh	CFGWL	ı	FRCF						
3FFFh	CFGWH	PROT	XRSTE	PORSEL	HVS	_	_	ı	-

SFR & CFGW DESCRIPTION

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
80h	P0	7~0	P0	R/W	FFh	Port0 data
81h	SP	7~0	SP	R/W	07h	Stack Point
82h	DPL	7~0	DPL	R/W	00h	Data Point low byte
83h	DPH	7~0	DPH	R/W	00h	Data Point high byte
84h		6	PWM1IE	R/W	0	PWM1~PWM6 interrupt enable 0: Disable PWM1~PWM6 interrupt 1: Enable PWM1~PWM6 interrupt
0411	INTEZ	5	PWM0IE	R/W	0	PWM0 interrupt enable 0: Disable PWM0 interrupt 1: Enable PWM0 interrupt
85h	INTFLG2	6	PWM1IF	R/W	0	PWM1~PWM6 interrupt flag Set by H/W at the end of PWM1 period, S/W writes BFh to INTFLG2 to clear this flag.
0511	II(II E G Z	5	PWM0IF	R/W	0	PWM0 interrupt enable Set by H/W at the end of PWM0 period, S/W writes DFh to INTFLG2 to clear this flag.
		7	P0LOE7	R/W	0	LCDC07 / LED SEG6 (P0.7) enable control 0: Disable 1: Enable
		6	P0LOE6	R/W	0	LCDC06 / LED SEG7 (P0.6) enable control 0: Disable 1: Enable
	_	5	P0LOE5	R/W	0	LCDC05 (P0.5) enable control 0: Disable 1: Enable
86h		4	P0LOE4	R/W	0	LCDC04 (P0.4) enable control 0: Disable 1: Enable
8011	P0LOE	3	P0LOE3	R/W	0	LCDC03 / LED COM3 / LED3 (P0.3) enable control 0: Disable 1: Enable
		2	P0LOE2	R/W	0	LCDC02 / LED COM2 / LED2 (P0.2) enable control 0: Disable 1: Enable
		1	P0LOE1	R/W	0	LCDC01 / LED COM1 / LED1 (P0.1) enable control 0: Disable 1: Enable
		0	P0LOE0	R/W	0	LCDC00 / LED COM0 / LED0 (P0.0) enable control 0: Disable 1: Enable
		7	SMOD	R/W	0	Set 1 to enable UART1 double Baud Rate
		3	GF1	R/W	0	General purpose flag bit
87h	PCON	2	GF0	R/W	0	General purpose flag bit
		1	PD	R/W	0	Power down control bit, set 1 to enter Halt/Stop mode
		0	IDL	R/W	0	Idle control bit, set 1 to enter Idle mode
		7	TF1	R/W	0	Timer1 overflow flag Set by H/W when Timer/Counter 1 overflows. Cleared by H/W when CPU vectors into the interrupt service routine.
		6	TR1	R/W	0	Timer1 run control. 1: timer runs; 0: timer stops
88h	TCON	5	TF0	R/W	0	Timer0 overflow flag Set by H/W when Timer/Counter 0 overflows. Cleared by H/W when CPU vectors into the interrupt service routine.
		4	TR0	R/W	0	Timer0 run control. 1:timer runs; 0:timer stops
		3	IE1	R/W	0	External Interrupt 1 (INT1 pin) edge flag Set by H/W when an INT1 pin falling edge is detected. Cleared by H/W when CPU vectors into the interrupt service routine.

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		_	TTD:	D /III	0	External Interrupt 1 control bit
		2	IT1	R/W	0	O: Low level active (level triggered) for INT1 pin Falling edge active (edge triggered) for INT1 pin
		1	IE0	R/W	0	External Interrupt 0 (INT0 pin) edge flag Set by H/W when an INT0 pin falling edge is detected. Cleared by H/W when CPU vectors into the interrupt service routine.
		0	IT0	R/W	0	External Interrupt 0 control bit 0: Low level active (level triggered) for INT0 pin 1: Falling edge active (edge triggered) for INT0 pin
		7	GATE1	R/W	0	Timer1 gating control bit 0: Timer1 enable when TR1 bit is set 1: Timer1 enable only while the INT1 pin is high and TR1 bit is set
		6	CT1N	R/W	0	Timer1 Counter/Timer select bit 0: Timer mode, Timer1 data increases at 2 System clock cycle rate 1: Counter mode, Timer1 data increases at T1 pin's negative edge
		5~4	TMOD1	R/W	00	Timer1 mode select 00: 8-bit timer/counter (TH1) and 5-bit prescaler (TL1) 01: 16-bit timer/counter 10: 8-bit auto-reload timer/counter (TL1). Reloaded from TH1 at overflow. 11: Timer1 stops
89h	TMOD	3	GATE0	R/W	0	Timer0 gating control bit 0: Timer0 enable when TR0 bit is set 1: Timer0 enable only while the INT0 pin is high and TR0 bit is set
		2	CT0N	R/W	0	Timer0 Counter/Timer select bit 0: Timer mode, Timer0 data increases at 2 System clock cycle rate 1: Counter mode, Timer0 data increases at T0 pin's negative edge
		1~0	TMOD0	R/W	00	Timer0 mode select 00: 8-bit timer/counter (TH0) and 5-bit prescaler (TL0) 01: 16-bit timer/counter 10: 8-bit auto-reload timer/counter (TL0). Reloaded from TH0 at overflow. 11: TL0 is an 8-bit timer/counter. TH0 is an 8-bit timer/counter using Timer1's TR1 and TF1 bits.
8Ah	TL0	7~0	TL0	R/W	00h	Timer0 data low byte
8Bh	TL1	7~0	TL1	R/W	00h	Timer1 data low byte
8Ch	ТНО	7~0	TH0	R/W	00h	Timer0 data high byte
8Dh	TH1	7~0	TH1	R/W	00h	Timer1 data high byte
8Eh	P2LOE	1	P2LOE1	R/W	0	LCDC21 / LED COM5 or SEG9 (P2.1) enable control 0: Disable 1: Enable
OLII	1 2EGE	0	P2LOE0	R/W	0	LCDC20 / LED COM4 or SEG8 (P2.0) enable control 0: Disable 1: Enable
8Fh	UART2CON	6~0	UART2BRP	R/W	00h	Define UART2 Baud Rate prescaler UART2 Baud Rate = F _{SYSCLK} /32/UART2BRP
90h	P1	7~0	P1	R/W	FFh	Port1 data
		7~6	P0MOD3	R/W	01	P0.3 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P0.3 is ADC input
91h	P0MODL	5~4	P0MOD2	R/W	01	P0.2 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P0.2 is ADC input
7111	TOMODE	3~2	P0MOD1	R/W	01	P0.1 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P0.1 is ADC input
		1~0	P0MOD0	R/W	01	P0.0 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P0.0 is ADC input

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
						P0.7 Pin Control
		7~6	P0MOD7	R/W	01	00: Mode0; 01: Mode1; 10: Mode2
						11: Mode3, P0.7 is ADC input
		5~4	P0MOD6	R/W	01	P0.6 Pin Control 00: Mode0; 01: Mode1; 10: Mode2
		5~4	TOMODO	IX/ VV	01	11: Mode3, P0.6 is ADC input
92h	P0MODH					P0.5 Pin Control
		3~2	P0MOD5	R/W	01	00: Mode0; 01: Mode1; 10: Mode2
						11: Mode3, P0.5 is ADC input
		1~0	P0MOD4	R/W	01	P0.4 Pin Control 00: Mode0; 01: Mode1; 10: Mode2
		1 0	TOMOD	10 11	01	11: Mode3, P0.4 is ADC input
						P2.1 Pin Control
		3~2	P2MOD1	R/W	01	00: Mode0; 01: Mode1; 10: Mode2
93h	P2MODL					11: Mode3, P2.1 is ADC input P2.0 Pin Control
		1~0	P2MOD0	R/W	01	00: Mode0; 01: Mode1; 10: Mode2
		1 0	121020	10 11	01	11: Mode3, P2.0 is ADC input
						TKRAM Ping-Pong buffer select
		7	TKBUFS	R/W	0	0: HW stored TKDATA to TKRAM's 1st half (E100h~E17Fh)
						1: HW stored TKDATA to TKRAM's 2nd half (E180h~E1FFh) Timer3 clock source select.
		6	TM3CKS	R/W	0	0: Slow clock (SXT/SRC)
						1: FRC/512
		5~4 WDTPS				Watchdog Timer prescaler time select
			WDTPSC	R/W	00	00: 400ms WDT overflow rate 01: 200ms WDT overflow rate
94h		3~4	WDIPSC	K/W	00	10: 100ms WDT overflow rate
7-11						11: 50ms WDT overflow rate
						ADC clock rate select
		3~2	, D. CIVG	D 411	0.0	00: F _{SYSCLK} /32
			ADCKS	R/W	00	01: F _{SYSCLK} /16 10: F _{SYSCLK} /8
						11: F _{SYSCLK} /4
						Touch Key ICLD capacitor select.
		1~0	TKOFC	R/W	00	00: the smallest
						11: the biggest
		7	LVDIF	R/W	0	LVD interrupt flag Set by H/W when V _{CC} less than the LVD voltage. S/W writes 7Fh to
		,	LVDII	10 11	U	INTFLG to clear this flag.
						Touch Key interrupt flag
		5	TKIF	R/W	0	Set by H/W at the end of TK conversion. S/W writes DFh to
						INTFLG or sets the TKSOC bit to clear this flag.
		4	ADIF	R/W	0	ADC interrupt flag Set by H/W at the end of ADC conversion. S/W writes EFh to
			. 112.11			INTFLG or sets the ADSOC bit to clear this flag.
						External Interrupt 2 (INT2 pin) edge flag
			100	D /557	_	Set by H/W when a falling edge is detected on the INT2 pin, no
95h	INTFLG	2	IE2	R/W	0	matter the EX2 is 0 or 1. It is cleared automatically when the program performs the interrupt service routine. S/W can write FBh
	1 PCIF			to INTFLG to clear this bit.		
						Port0~3 pin change Interrupt flag
						Set by H/W when a Port0~3 pin state change is detected and its
		1	PCIF	R/W	0	interrupt enable bit is set (P0WKUP/P1WKUP/P2WKUP/P3WKUP).
						PCIE does not affect this flag's setting. It is cleared automatically when the program performs the interrupt service routine. S/W can
						write FDh to INTFLG to clear this bit.
						Timer3 interrupt flag.
		0	TF3	R/W	0	Set by H/W when Timer3 counts to FFFFFFh. It is cleared
				''		automatically when the program performs the interrupt service
						routine. S/W can write FEh to INTFLG to clear this bit.

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
96h	P1WKUP	7~0	P1WKUP	R/W	00h	P1.7~P1.0 pin individual Wake-up/Interrupt enable control 0: Disable; 1: Enable.
		7~0	SWRST	W		Write 56h to generate S/W Reset
		7~0	IAPALL	W		Write 65h to set IAPALL flag. Write other value to clear IAPALL flag.
97h	SWCMD	1	WDTO	R	0	Watchdog Time-Out flag
,,,,	5 // 61/12					Flag indicates Flash can be written by IAP or not
		0	IAPALL	R	0	0: Flash IAP only can write IAP-free area.
		7	CMO	D/W	0	1: Flash IAP can write IAP-all area. UART1 Serial port mode select bit 0, 1 (SM0, SM1) =
		7	SM0	R/W	U	00: Mode0: 8 bit shift register, Baud Rate=F _{SYSCLK} /2
			CM1	D/W	0	01: Mode1: 8 bit UART1, Baud Rate is variable
		6	SM1	R/W	0	10: Mode2: 9 bit UART1, Baud Rate=F _{SYSCLK} /32 or /64
						11: Mode3: 9 bit UART1, Baud Rate is variable Serial port mode select bit 2
						SM2 enables multiprocessor communication over a single serial line
		5	SM2	R/W	0	and modifies the above as follows. In Modes 2 & 3, if SM2 is set
			51112	10 11	O	then the received interrupt will not be generated if the received ninth
0.01	ggovi					data bit is 0. In Mode 1, the received interrupt will not be generated unless a valid stop bit is received. In Mode 0, SM2 should be 0.
98h	SCON	4	REN	R/W	0	Set 1 to enable UART1 Reception
		3	TB8	R/W	0	Transmitter bit 8, ninth bit to transmit in Modes 2 and 3
		2	RB8	R/W	0	Receive Bit 8, contains the ninth bit that was received in Mode 2 and
			KDo	IX/ VV	U	3 or the stop bit is Mode 1 if SM2=0
		1	TI	R/W	0	Transmit Interrupt flag Set by H/W at the end of the eighth bit in Mode 0, or at the
			11	IX/ VV	U	beginning of the stop bit in other modes. Must be cleared by S/W
						Receive Interrupt flag
		0	RI	R/W	0	Set by H/W at the end of the eighth bit in Mode 0, or at the sampling
						point of the stop bit in other modes. Must be cleared by S/W. UART1 transmit and receive data. Transmit data is written to this
99h	SBUF	7~0	SBUF	R/W	_	location and receive data is read from this location, but the paths are
						independent.
		7	CM	D/W	0	UART2 Serial port mode select bit
		7	SM	R/W	0	0: Mode1: 8 bit UART2, Baud Rate is variable 1: Mode3: 9 bit UART2, Baud Rate is variable
						UART2 reception enable
		4	REN2	R/W	0	0: Disable reception
		2	TD92	D/W	0	1: Enable reception
9Ah	SCON2	3	TB82 RB82	R/W R/W	0	Transmit Bit 8, the ninth bit to be transmitted in Mode3 Receive Bit 8, contains the ninth bit that was received in Mode3
			KD62	K/W	U	Transmit interrupt flag
		1	TI2	R/W	0	Set by H/W at the beginning of the stop bit in Mode 1 & 3. Must be
						cleared by S/W.
		0	DIA	D/W	0	Receive interrupt flag
		0	RI2	R/W	0	Set by H/W at the sampling point of the stop bit in Mode 1 & 3. Must be cleared by S/W.
						UART2 transmit and receive data. Transmit data is written to this
9Bh	SBUF2	7~0	SBUF	R/W	_	location and receive data is read from this location, but the paths are
		\vdash				independent. P0.7~P0.0 pin individual Wake-up/Interrupt enable control
9Ch	P0WKUP	7~0	P0WKUP	R/W	00h	0: Disable;
						1: Enable.
0.07	DAMETIE	<i>5</i> 0	DAMIZITE	D/W	001	P2.1~P2.0 pin individual Wake-up/Interrupt enable control
9Dh	P2WKUP	5~0	P2WKUP	R/W	00h	0: Disable; 1: Enable.
						P3.7~P3.0 pin individual Wake-up/Interrupt enable control
9Eh	P3WKUP	7~0	P3WKUP	R/W	00h	0: Disable;
						1: Enable.

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
A0h	P2	7~2	P2.7~P2.2	R/W	3Fh	P2.7~P2.2 have no pin out, so these bits are used as general purpose register
Aun	F2	1~0	P2.1~P2.0	R/W	11	P2.1~P2.0 data
		7~6	PWM1CKS	R/W	00	PWM1 clock source 00: F _{SYSCLK} 01: F _{SYSCLK} 10: FRC 11: FRCx2 (V _{CC} >2.7V)
		5	PWM1EN	R/W	0	PWM1~6 enable control 0: PWM1~6 Disable 1: PWM1~6 Enable
Alh	PWMCON	4	PWM0EN	R/W	0	PWM0 enable control 0: PWM0 Disable 1: PWM0 Enable
		3~2	PWM0CKS	R/W	00	PWM0 clock source 00: F _{SYSCLK} 01: F _{SYSCLK} 10: FRC 11: FRCx2 (V _{CC} >2.7V)
		1	PWM0NMSK	R/W	0	PWM0N mask data. If CLRPWM0=1 and PMW0MSKE=1, PWM0N will output this mask data.
		0	PWM0PMSK	R/W	0	PWM0P mask data. If CLRPWM0=1 and PMW0MSKE=1, PWM0P will output this mask data.
		7~6	P1MOD3	R/W	01	P1.3 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P1.3 is ADC input
A2h	P1MODL	5~4	P1MOD2	R/W	01	P1.2 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P1.2 is ADC input
71211	TIMODE	3~2	P1MOD1	R/W	01	P1.1 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P1.1 is ADC input
		1~0	P1MOD0	R/W	01	P1.0 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P1.0 is ADC input
		7~6	P1MOD7	R/W	01	P1.7 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P1.7 is ADC input
A3h	P1MODH	5~4	P1MOD6	R/W	01	P1.6 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P1.6 is ADC input
ASII	PIMODH	3~2	P1MOD5	R/W	01	P1.5 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P1.5 is ADC input
		1~0	P1MOD4	R/W	01	P1.4 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P1.4 is ADC input
		7~6	P3MOD3	R/W	01	P3.3 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P3.3 is ADC input
A4h	P3MODL	5~4	P3MOD2	R/W	01	P3.2 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P3.2 is ADC input
A4II	r SMODE	3~2	P3MOD1	R/W	01	P3.1 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P3.1 is ADC input
		1~0	P3MOD0	R/W	01	P3.0 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P3.0 is ADC input

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		7~6	P3MOD7	R/W	01	P3.7 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P3.7 is ADC input
A5h	P3MODH	5~4	P3MOD6	R/W	01	P3.6 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P3.6 is ADC input
AJII	1 SWIODII	3~2	P3MOD5	R/W	01	P3.5 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P3.5 is ADC input
		1~0	P3MOD4	R/W	01	P3.4 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P3.4 is ADC input
		7	PSEUDOEN	R/W	0	P3.2~P3.0 pseudo open-drain control 0: Disable 1: Enable
		6	MSI2CPS	R/W	0	Master/Slave I ² C pin select (SCL/SDA) 0: P3.0/P3.1 1: P0.1/P0.2
		5	UART2PS	R/W	0	UART2 Pin select (TX/RX) 0: P1.7/P3.6 1: P0.3/P0.2
A CL	PINMOD 3	4	UART1PS	R/W	0	UART1 Pin select (TX/RX) 0: P3.1/P3.0 1: P0.0/P0.1
A6h		3	TCOE	R/W	0	System clock signal output (CKO) control 0: Disable "System clock divided by 2" output to P1.4 pin 1: Enable "System clock divided by 2" output to P1.4 pin
		2	T2OE	R/W	0	Timer2 signal output (T2O) control 0: Disable "Timer2 overflow divided by 2" output to P1.0 pin 1: Enable "Timer2 overflow divided by 2" output to P1.0 pin
		1	T1OE	R/W	0	Timer1 signal output (T1O) control 0: Disable "Timer1 overflow divided by 2" output to P3.5 pin 1: Enable "Timer1 overflow divided by 2" output to P3.5 pin
		0	T0OE	R/W	0	Timer0 signal output (T0O) control 0: Disable "Timer0 overflow divided by 64" output to P3.4 pin 1: Enable "Timer0 overflow divided by 64" output to P3.4 pin
A7h	TKCHS	4~0	TKCHS	R/W	1Fh	Touch Key channel select 00000: TK0 (P3.3) 00001: TK1 (P3.2) 00010: TK2 (P3.1) 00011: TK3 (P3.0) 00100: TK4 (P1.0) 00101: TK5 (P1.1) 00110: TK6 (P1.2) 00111: TK7 (P1.3) 01000: TK8 (P1.4) 01001: TK9 (P1.5) 01010: TK10 (P1.6) 01011: TK11 (P1.7) 01100: TK12 (P3.6) 01101: TK13 (P3.5) 01110: TK14 (P3.4) 01111: TK15 (P3.7) 10000: TK16 (P2.0) 10001: TK17 (P2.1) 10010: TK18 (P0.3) 10011: TK19 (P0.7) 10100: TK20 (P0.6) 10101: TK21 (P0.5) 10110: TK22 (P0.4) 10111: TK reference capacitor others: Reserved

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
						Global interrupt enable control.
		7	EA	R/W	0	0: Disable all Interrupts. 1: Each interrupt is enabled or disabled by its own interrupt control bit.
		5	ET2	R/W	0	Set 1 to enable Timer2 interrupt
		4	ES	R/W	0	Set 1 to enable Serial Port (UART1) Interrupt
A8h	IE	3	ET1	R/W	0	Set 1 to enable Timer1 Interrupt
		2	EX1	R/W	0	Set 1 to enable external INT1 pin Interrupt & Halt/Stop mode wake up capability
		1	ET0	R/W	0	Set 1 to enable Timer0 Interrupt
		0	EX0	R/W	0	Set 1 to enable external INT0 pin Interrupt & Halt/Stop mode wake up capability
		7	PWMIE	R/W	0	Set 1 to enable PWM0/PWM1~PWM6 interrupt
		6	ES2	R/W	0	Set 1 to enable Serial Port (UART2) Interrupt
		5	LVDIE	R/W	0	Set 1 to enable LVD interrupt
		4	SPI2CE	R/W	0	Set 1 to enable SPI/I ² C interrupt
A9h	INTE1	3	ADTKIE	R/W	0	Set 1 to enable ADC/TK Interrupt
		2	EX2	R/W	0	Set 1 to enable external INT2 pin Interrupt & Halt/Stop mode wake
		1	PCIE	R/W	0	up capability Set 1 to enable Port0/Port1/Port2/Port3 Pin Change Interrupt
		0	TM3IE	R/W	0	Set 1 to enable Timer3 Interrupt
		7~4	ADCDL	R	_	ADC data bit 3~0
AAh	ADCDL	0	PWRDEC	W	0	ROM parameter settings for high temperature writing.
ABh	ADCDH	7~0	ADCDH	R	_	ADC data bit 11~4
Zibii	ADCDII	7	P1LOE7	R/W	0	LCDC17 / LED SEG2 (P1.7) enable control 0: Disable 1: Enable
		6	P1LOE6	R/W	0	LCDC16 / LED SEG3 (P1.6) enable control 0: Disable 1: Enable
		5	P1LOE5	R/W	0	LCDC15 / LED SEG4 (P1.5) enable control 0: Disable 1: Enable
ACh	P1LOE	4	P1LOE4	R/W	0	LCDC14 / LED SEG5 (P1.4) enable control 0: Disable 1: Enable
ACII	PILOE	3	P1LOE3	R/W	0	LCDC13 (P1.3) enable control 0: Disable 1: Enable
		2	P1LOE2	R/W	0	LCDC12 (P1.2) enable control 0: Disable 1: Enable
		1	P1LOE1	R/W	0	LCDC11 (P1.1) enable control 0: Disable 1: Enable
		0	P1LOE0	R/W	0	LCDC10 (P1.0) enable control 0: Disable 1: Enable
		7	TKPD	R/W	1	Touch Key power down (Auto disable in Idle/Halt/Stop mode when Touch Key end of conversion) 0: Touch Key enable 1: Touch Key disable
ADh	ADh TKCON	6	TKEOC	R	1	Touch Key end of conversion flag, TKEOC may have 3 us delay after TKSOC=1, so F/W must wait enough time before polling this Flag. 0: Indicates conversion is in progress 1: Indicates conversion is finished
		5	TMRADJ	R/W	0	Touch Key scan length auto-adjustment selection 0: TK scan length define by TKTMR[11:0] 1: TK scan length auto-adjustment

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		4	TKIVCS	R/W	1	Touch Key internal voltage control select 0: V _{CHG} =2.8V; V _{INT} =1.4V 1: V _{CHG} =3.6V; V _{INT} =1.8V
		3	SPREAD	R/W	0	Touch Key spread spectrum 0: Disable 1: Enable
		2	MCHS	R/W	0	Scan channel select 0: select channel as ATK Scan 1: select channel as Bundle Scan
		1~0	ATKMODE	R/W	00	Touch Key scan mode 00: each channel scan 1 time, max 23 TK channels + TK reference key 01: each channel scan 2 times, max 23 TK channels + TK reference key 10: each channel scan 4 times, max 16 TK channels 11: each channel scan 8 times, max 8 TK channels
AEh	ADCHSEL	7~3	ADCVREFS VBGSEL	R/W R/W	1Ch 0	ADC channel select. 00000: AD0 (P3.3) 00001: AD1 (P3.2) 00010: AD2 (P3.1) 00011: AD3 (P3.0) 00100: AD4 (P1.0) 00101: AD5 (P1.1) 00110: AD6 (P1.2) 00111: AD7 (P1.3) 01000: AD8 (P1.4) 01001: AD9 (P1.5) 01010: AD10 (P1.6) 01011: AD11 (P1.7) 01100: V _{BG} 01101: V _{SS} 01110: AD14 (P3.6) 01111: AD15 (P3.5) 10000: AD16 (P3.4) 10001: AD17 (P3.7) 10010: AD18 (P2.0) 10011: AD19 (P2.1) 10100: AD20 (P0.3) 10101: AD22 (P0.1) 10111: AD23 (P0.0) 11000: AD24 (P0.7) 11001: AD25 (P0.6) 11010: AD26 (P0.5) 11011: AD7 (P0.4) others: Reserved 11111: V _{CC} /4 ADC reference voltage 0: V _{CC} 1: V _{BG} V _{BG} voltage select, When ADCVREF is selected as V _{BG} ; VBGSEL is prohibited from using 1.18V. 00: 1.18V 01: 2.5V (need V _{CC} >2.8V) 10: Reserved

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
	-					PWM0 mode select
		7	PWM0MOD	R/W	0	0: Normal mode
						1: Half-bridge mode
						PWM0 mask output enable
		6	PWM0MSKE	R/W	0	0: Disable
						1: Enable, PWM0P/PWM0N output data by PWM0PMSK/PWM0NMSK while CLRPWM0=1
						PWM0 output mode select
AFh	PWMCON2					00: Mode0
		5~4	PWM0OM	R/W	00	01: Mode1
						10: Mode2
						11: Mode3
						PWM0 dead zone (Dead zone is prohibited in half-bridge mode) 0000: 0 x T _{PWMCLK}
		3~0	PWM0DZ	R/W	0000	0001: 1 x T _{PWMCLK}
		5 0	1 WHODE	10 11	0000	JOSTI A TPWMCLK
						1111: 15 x T _{PWMCLK}
B0h	Р3	7~0	P3	R/W	FFh	Port3 data
						LCD/LED enable
		7	LXDON	R/W	0	0: LCD/LED disable
						1: LCD/LED enable
						LED duty select LED select: Matrix mode (SELLED=1, LEDMODE=00b)
						000: 1/2 Duty, COM0~COM1
						001: 1/3 Duty, COM0~COM2
				R/W		010: 1/4 Duty, COM0~COM3
						011: 1/5 Duty, COM0~COM4
					000	100: 1/6 Duty, COM0~COM5
						101: 1/7 Duty, COM0~COM6
		6~4	LEDDUTY			110: 1/8 Duty, COM0~COM7 111: 1/8 Duty, COM0~COM7
		0~4	LLDBCTT			LED select: Dot Matrix mode (SELLED=1, LEDMODE=10b)
B1h	LXDCON					000: 4x4, LED0~LED4
						001: 5x5, LED0~LED5
						010: 6x6, LED0~LED6
						011: 6x7, LED0~LED6
						100: 7x7, LED0~LED7 101: 7x8, LED0~LED7
						110: Reserved
						111: Reserved
						LED Brightness Mode
		3	LEDBRITM	R/W	0	0: Uniform brightness mode
						1: Brightness enhancement mode
						LCD/LED Brightness control 000: Level 0 (Darkest)
		2~0	LEDBRIT	R/W	111	
						111: Level 7 (Brightest)
						LED clock prescaler select
			I EDDS S	D /***	0.0	00: LED clock is FRC divided by 64
		6~5	LEDPSC	R/W	00	01: LED clock is FRC divided by 32
						10: LED clock is FRC divided by 16 11: LED clock is FRC divided by 8
						LCD/LED function select
B2h	LXDCON2	4	SELLED	R/W	0	0: LCD
						1: LED
						LED Mode select
		1 0	-0 LEDMODE	R/W		00: Matrix scan mode
		1~0			00	01: Reserved 10: Dot Matrix scan mode
						10: Dot Matrix scan mode 11: Reserved
						11. RUSUIVEU

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
					_	LCDC37 / LED COM6 or SEG10 / LED6 (P3.7) enable control
		7	P3LOE7	R/W	0	0: Disable
						1: Enable LCDC36 / LED SEG1 (P3.6) enable control
		6	P3LOE6	R/W	0	0: Disable
						1: Enable
		_	DAY 0.77			LCDC35 / LED SEG0 (P3.5) enable control
		5	P3LOE5	R/W	0	0: Disable 1: Enable
						LCDC34 / LED COM7 or SEG11 / LED7 (P3.4) enable control
		4	P3LOE4	R/W	0	0: Disable
B3h	P3LOE					1: Enable
		3	P3LOE3	R/W	0	LCDC33 (P3.3) enable control 0: Disable
		3	1 SLOES	IX/ VV	0	1: Enable
						LCDC32 (P3.2) enable control
		2	P3LOE2	R/W	0	0: Disable
						1: Enable LCDC31 (P3.1) enable control
		1	P3LOE1	R/W	0	0: Disable
						1: Enable
			D21 0E0	D ///		LCDC30 (P3.0) enable control
		0	P3LOE0	R/W	0	0: Disable 1: Enable
						Touch Key scan length bit 7~0 adjustment
B4h	TKTMRL	7~0	TKTMRL	R/W	FFh	00: shortest
						FF: longest
		7	TKFJMP	R/W	0	Internal Touch Key clock frequency auto adjust option 0: Disable
		,	IKIJNII	IX/ VV	U	1: Enable (Available in ATKMODE=1 or 2)
						Touch Key clock frequency MSB 3bit (Coarse tune) select, only
B5h	TKCON2	6 1	IMPI/II D	R/W	000	available in TKFJMP=0
DOII	1 KCON2	6~4	JMPVH	K/W	000	[JMPVH, JMPVL]=000_000=frequency slowest
						[JMPVH, JMPVL]=111_111=frequency fastest
		2 0	TIZTMDII	D/W	0000	Touch Key scan length 11~8 adjustment. 0000: shortest
		3~0	TKTMRH	R/W	0000	1111: longest
						PWM2 output control
		7	PWM2OE1	R/W	0	0: Disable
						1: PWM2 enable and output to P3.3
		6	PWM2OE0	R/W	0	PWM2 output control 0: Disable
			1 WWIZOLO	10/ 11		1: PWM2 enable and output to P1.5
						PWM1 output control
		5	PWM10E1	R/W	0	0: Disable
						1: PWM1 enable and output to P3.2 PWM1 output control
		4	PWM1OE0	R/W	0	0: Disable
B6h	PWMOE0					1: PWM1 enable and output to P1.4
	1 //112020	2	2 DWMONOEL BA	R/W	0	PWM0N output control 0: Disable
		3 PWM0NOE1	IX/ VV	0	1: PWM0N enable and output to P2.0	
						PWM0P output control
		2	PWM0POE1	R/W	0	0: Disable
						1: PWM0P enable and output to P2.1 PWM0N output control
		1	PWM0NOE0	R/W	0	0: Disable
						1: PWM0N enable and output to P1.3
			DUMACROES	D /557		PWM0P output control
		0	PWM0POE0	R/W	0	0: Disable 1: PWM0P enable and output to P1.2
						1.1 WIVIOI CHADIC AND OUTPUT TO 1.2

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		7	DWAGOE	D /557	0	PWM6 output control
		7	PWM6OE1	R/W	0	0: Disable 1: PWM6 enable and output to P0.7
						PWM6 output control
		6	PWM6OE0	R/W	0	0: Disable
						1: PWM6 enable and output to P3.7
		5	PWM5OE1	R/W	0	PWM5 output control 0: Disable
		5	I WWISOLI	10 11	O	1: PWM5 enable and output to P0.6
						PWM5 output control
		4	PWM5OE0	R/W	0	0: Disable 1: PWM5 enable and output to P3.4
B7h	PWMOE1					PWM4 output control
		3	PWM4OE1	R/W	0	0: Disable
						1: PWM4 enable and output to P0.5
		2	PWM4OE0	R/W	0	PWM4 output control 0: Disable
		2	1 WWHOLO	10/ 11	U	1: PWM4 enable and output to P3.5
						PWM3 output control
		1	PWM3OE1	R/W	0	0: Disable
						1: PWM3 enable and output to P0.4 PWM3 output control
		0	PWM3OE0	R/W	0	0: Disable
						1: PWM3 enable and output to P1.6
		5	PT2	R/W	0	Timer2 Interrupt Priority Low bit
		4	PS	R/W	0	Serial Port (UART1) Interrupt Priority Low bit
B8h	IP	3	PT1	R/W	0	Timer1 Interrupt Priority Low bit
		2	PX1	R/W	0	External INT1 Pin Interrupt Priority Low bit
		1	PT0	R/W	0	Timer0 Interrupt Priority Low bit
		0	PX0	R/W	0	External INTO Pin Interrupt Priority Low bit
		5	PT2H	R/W	0	Timer2 Interrupt Priority High bit
		4	PSH	R/W	0	Serial Port (UART1) Interrupt Priority High bit
B9h	IPH	3	PT1H	R/W	0	Timer1 Interrupt Priority High bit
		2	PX1H	R/W	0	External INT1 Pin Interrupt Priority High bit
		1	PT0H	R/W		Timer0 Interrupt Priority High bit
		7	PX0H PPWM	R/W R/W	0	External INTO Pin Interrupt Priority High bit
			PPWM PS2	R/W	0	PWM0/PWM1 Interrupt Priority Low bit Serial Port (UART2) Interrupt Priority Low bit
		5	PLVD	R/W	0	LVD Interrupt Priority Low bit
		4	PSPI2C	R/W	0	SPI/I ² C Interrupt Priority Low bit
BAh	IP1	3	PADTKI	R/W	0	ADC/TK Interrupt Priority Low bit
		2	PX2	R/W	0	External INT2 Pin Interrupt Priority Low bit
		1	PPC	R/W	0	Port0~Port3 pin change Interrupt Priority Low bit
		0	PT3	R/W	0	Timer3 Interrupt Priority Low bit
		7	PPWMH	R/W	0	PWM0/PWM1 Interrupt Priority High bit
		6	PS2H	R/W	0	Serial Port (UART2) Interrupt Priority High bit
		5	PLVDH	R/W	0	LVD Interrupt Priority High bit
	_	4	PI2CH	R/W	0	SPI/I ² C Interrupt Priority High bit
BBh	IP1H	3	PADTKIH	R/W	0	ADC/TK Interrupt Priority High bit
		2	PX2H	R/W	0	External INT2 Pin Interrupt Priority High bit
		1	PPCH	R/W	0	Port0~Port3 Interrupt Priority High bit
		0	PT3H	R/W	0	Timer3 Interrupt Priority High bit

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
	SPCON	7	SPEN	R/W	0	SPI enable 0: SPI disable 1: SPI enable
		6	MSTR	R/W	0	Master mode enable 0: Slave mode 1: Master mode
		5	CPOL	R/W	0	SPI clock polarity 0: SCK is low in idle state 1: SCK is high in idle state
BCh		4	СРНА	R/W	0	SPI clock phase 0: Data sample on first edge of SCK period 1: Data sample on second edge of SCK period
		2	LSBF	R/W	0	LSB first 0: MSB first 1: LSB first
		1~0	SPCR	R/W	00	SPI clock rate 00: F _{SYSCLK} /2 01: F _{SYSCLK} /4 10: F _{SYSCLK} /8 11: F _{SYSCLK} /16
	SPSTA	7	SPIF	R/W	0	SPI interrupt flag This is set by H/W at the end of a data transfer. Cleared by H/W when an interrupt is vectored into. Writing 0 to this bit will clear this flag.
		6	WCOL	R/W	0	Write collision interrupt flag Set by H/W if write data to SPDAT when SPBSY is set. Write 0 to this bit or rewrite data to SPDAT when SPBSY is cleared will clear this flag.
BDh		4	RCVOVF	R/W	0	Received buffer overrun flag Set by H/W at the end of a data transfer and RCVBF is set. Write 0 to this bit or read SPDAT register will clear this flag.
		3	RCVBF	R/W	0	Receive buffer full flag Set by H/W at the end of a data transfer. Write 0 to this bit or read SPDAT register will clear this flag.
		2	SPBSY	R	0	SPI busy flag Set by H/W when a SPI transfer is in progress.
BEh	SPDAT	7~0	SPDAT	R/W	00h	SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writing data to SPDAT place the data into shift register and start a transfer when in master mode. Reading SPDAT returns the contents of the receive buffer.
		7~1	SA	R/W	64h	Slave I'C address assigned
C1h	SIADR	0	SIEN	R/W	0	Slave I ² C enable 0: disable 1: enable
	SICON	7	MIIE	R/W	0	I ² C Master interrupt enable 0: disable 1: enable
C2h		6	TXDIE	R/W	0	Slave I℃ transmission completed interrupt enable 0: disable 1: enable
		5	RCD2IE	R/W	0	Slave I ← DATA2(SITXRCD2) reception completed interrupt enable 0: disable 1: enable
		4	RCD1IE	R/W	0	Slave I℃ DATA1(SIRCD1) reception completed interrupt enable 0: disable 1: enable
		2	TXDF	R/W	1	Slave I°C transmission completed interrupt flag 0: write 0 to clear it 1: Set by H/W when Slave I°C transmission complete
		1	RCD2F	R/W	0	Slave I°C DATA2 (SITXRCD2) reception completed interrupt flag 0: write 0 to clear it 1: Set by H/W when Slave I°C DATA2 (SITXRCD2) reception complete

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
			D 6D 4E			Slave I C DATA1 (SIRCD1) reception completed interrupt flag
		0	RCD1F	R/W	0	0: write 0 to clear it 1: Set by H/W when Slave I C DATA1 (SIRCD1) reception complete
C3h	SIRCD1	7~0	SIRCD1	R		Slave I'C data receive register1 (DATA1)
					=	Slave I'C transmit and receive data register
C4h	SITXRCD2	7~0	SITXRCD2	R/W		Read: Slave I°C data receive register2 (DATA2)
	АТКСН0		АТКСН0	R/W	00h	Write: Slave I℃ data transmission register (TXD) TK7~TK0 channel scan enable:
C5h		7~0				0: disable
CJII						1: enable
						(if MCHS=0, Select ATK Scan; if MCHS=1, Select Bundle Scan) TK15~TK8 channel scan enable:
C6h	ATKCH1	7~0	ATKCH1	R/W	00h	0: disable
Con						1: enable
						(if MCHS=0, Select ATK Scan; if MCHS=1, Select Bundle Scan) TK23 (TKCAP) ~TK16 channel scan enable:
C7h	ATKCH2	7.0	ATKCH2	R/W	00h	0: disable
C/II		7~0				1: enable
						(if MCHS=0, Select ATK Scan ; if MCHS=1, Select Bundle Scan) Timer2 overflow flag
		7	TF2	R/W	0	Set by H/W when Timer/Counter 2 overflows unless RCLK=1 or
				<u> </u>		TCLK=1. This bit must be cleared by S/W.
		6	EXF2	R/W	0	T2EX interrupt pin falling edge flag Set when a capture or a reload is caused by a negative transition on
	T2CON					T2EX pin if EXEN2=1. This bit must be cleared by S/W.
		5	RCLK	R/W	0	UART receive clock control bit
						0: Use Timer1 overflow as receive clock for serial port in mode 1 or 3 1: Use Timer2 overflow as receive clock for serial port in mode 1 or 3
		4	TCLK	R/W	0	UART transmit clock control bit
						0: Use Timer1 overflow as transmit clock for serial port in mode 1 or 3
		3		R/W	0	1: Use Timer2 overflow as transmit clock for serial port in mode 1 or 3 T2EX pin enable
			EXEN2			0: T2EX pin disable
C8h			EAENZ			1: T2EX pin enable, it cause a capture or reload when a negative
						transition on T2EX pin is detected if RCLK=TCLK=0 Timer2 run control
		2	TR2	R/W	0	0:timer stops
						1:timer runs Timer2 Counter/Timer select bit
		1	CT2N	R/W	0	0: Timer mode, Timer 2 data increases at 2 System clock cycle rate
						1: Counter mode, Timer2 data increases at T2 pin's negative edge
		0	CPRL2N	R/W	0	Timer2 Capture/Reload control bit 0: Reload mode, auto-reload on Timer2 overflows or negative
						transitions on T2EX pin if EXEN2=1.
						1: Capture mode, capture on negative transitions on T2EX pin if
						EXEN2=1. If RCLK=1 or TCLK=1, CPRL2N is ignored and timer is forced
						to auto-reload on Timer2 overflow.
	IAPCON	7~0	IAPCON	W	_	Write 47h or 74h to set IAPWE flag; Write 47h can write 1 byte at
C9h						once, write 74h can write 2 bytes at once. Write other value to clear IAPWE flag. It is recommended to clear it immediately after IAP write.
						Write A1h to set INFOWE flag; write other value to clear INFOWE
						flag. It is recommended to clear it immediately after IAP write. Write E2h to set EEPWE flag; write other value to clear EEPWE
						flag. It is recommended to clear it immediately after EEPROM write.
		7	LADWE	R	0	Flag indicates Flash memory can be written by IAP or not
		7	IAPWE			0: IAP Write disable 1: IAP Write enable
					0	Time-Out flag of IAP write/EEPROM write/INFO write.
		6	IAPTO	R		Set by H/W when IAP or EEPROM or INFO write Time-out occurs.
			11110	ı		Cleared this flag by H/W when IAPWE=0 or EEPWE=0 or INFOWE=0.
	l	1		l		11 U 11 L-V.

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
						Flag indicates EEPROM memory can be written or not
		5	EEPWE	R	0	0: EEPROM Write disable
						1: EEPROM Write enable Flag indicates INFO memory can be written or not
		4	INFOWE	R	0	0: INFO IAP Write disable
						1: INFO IAP Write enable
CAh	RCP2L	7~0	RCP2L	R/W	00h	Timer2 reload/capture data low byte
CBh	RCP2H	7~0	RCP2H	R/W	00h	Timer2 reload/capture data high byte
CCh	TL2	7~0	TL2	R/W	00h	Timer2 data low byte
CDh	TH2	7~0	TH2	R/W	00h	Timer2 data high byte
CEh CFh	EXA2 EXA3	7~0 7~0	EXA2 EXA3	R/W R/W	00h 00h	Expansion accumulator 2
CFN	EAAS	7~0	CY	R/W	000	Expansion accumulator 3 ALU carry flag
		6	AC	R/W	0	ALU auxiliary carry flag
	PSW	5	F0	R/W	0	General purpose user-definable flag
		4	RS1	R/W	0	Register Bank Select bit 1
D0h		3	RS0	R/W	0	Register Bank Select bit 0
		2	OV	R/W	0	ALU overflow flag
		1	F1	R/W	0	General purpose user-definable flag
		0	P	R/W	0	Parity flag
		7~0	PWM0DH	R/W	00h	PWM0 duty high byte
D1h	PWM0DH					write sequence: PWM0DL then PWM0DH
						read sequence: PWM0DH then PWM0DL PWM0 duty low byte
D2h	PWM0DL	7~0	PWM0DL	R/W	00h	write sequence: PWM0DL then PWM0DH
						read sequence: PWM0DH then PWM0DL
D3h	PWM1DH	7~0	PWM1DH	R/W	00h	PWM1 duty high byte
DSII	PWMIDH	/~0	PWMIDH	K/W	OOH	write sequence: PWM1DL then PWM1DH read sequence: PWM1DH then PWM1DL
						PWM1 duty low byte
D4h	PWM1DL	7~0	PWM1DL	R/W	00h	write sequence: PWM1DL then PWM1DH
						read sequence: PWM1DH then PWM1DL PWM2 duty high byte
D5h	PWM2DH	7~0	PWM2DH	R/W	00h	write sequence: PWM2DL then PWM2DH
						read sequence: PWM2DH then PWM2DL
D6h	PWM2DL	7~0	PWM2DL	R/W	00h	PWM2 duty low byte write sequence: PWM2DL then PWM2DH
Don	1 WWIZDE	, 0	I WINEDE	10 ,,	oon	read sequence: PWM2DH then PWM2DL
						Touch Key clock frequency LSB 3bit (Fine tune) select, only
D7h	TKCON3	2~0	JMPVL	R/W	000	available in TKFJMP=0 [JMPVH, JMPVL]=000_000=frequency slowest
						[JMPVH, JMPVL]=111_111=frequency fastest
	CLKCON	7 5	SCKTYPE	R/W	0	Slow clock Type. This bit can be changed only in Fast mode
						(SELFCK=1)
						0: SRC 1: SXT, P2.0 and P2.1 are crystal pins
		\vdash	6 FCKTYPE	R/W	0	Fast clock type. This bit can be changed only in Slow mode
		6				(SELFCK=0).
			·			0: FRC
D8h		5	STPSCK	R/W	1	1: FXT, P2.0 and P2.1 are crystal pins, oscillator gain is high for FXT Set 1 to stop SRC clock in PDOWN mode
						Set 1 to stop UART/Timer0/1/2 clock in Idle mode for current
		4	STPPCK	R/W	0	reducing.
		3	STPFCK	R/W	0	Set 1 to stop Fast clock for power saving in Slow/Idle mode. This bit
				R/W	<u> </u>	can be changed only in Slow mode. System clock select. This bit can be changed only when STPFCK=0.
		2 SEI	SELFCK		0	0: Slow clock
						1: Fast clock

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description			
		1~0	CLKPSC	R/W	11	System clock prescaler. Effective after 16 clock cycles (Max.) delay. 00: System clock is Fast/Slow clock divided by 16 01: System clock is Fast/Slow clock divided by 4 10: System clock is Fast/Slow clock divided by 2 11: System clock is Fast/Slow clock divided by 1			
D9h	PWM0PRDH	7~0	PWM0PRDH	R/W	FFh	PWM0 period high byte write sequence: PWM0PRDL then PWM0PRDH read sequence: PWM0PRDH then PWM0PRDL			
DAh	PWM0PRDL	7~0	PWM0PRDL	R/W	FFh	PWM0 period low byte write sequence: PWM0PRDL then PWM0PRDH read sequence: PWM0PRDH then PWM0PRDL			
DBh	PWM1PRDH	7~0	PWM1PRDH	R/W	FFh	PWM1/PWM2/PWM3/PWM4/PWM5/PWM6 period high byte write sequence: PWM1PRDL then PWM1PRDH read sequence: PWM1PRDH then PWM1PRDL			
DCh	PWM1PRDL	7~0	PWM1PRDL	R/W	FFh	PWM1/PWM2/PWM3/PWM4/PWM5/PWM6 period low byte write sequence: PWM1PRDL then PWM1PRDH read sequence: PWM1PRDH then PWM1PRDL			
DDh	PWM3DH	7~0	PWM3DH	R/W	00h	PWM3 duty high byte write sequence: PWM3DL then PWM3DH read sequence: PWM3DH then PWM3DL			
DEh	PWM3DL	7~0	PWM3DL	R/W	00h	PWM3 duty low byte write sequence: PWM3DL then PWM3DH read sequence: PWM3DH then PWM3DL			
DFh	OFh UARTICON 7 UARTIBRS		R/W	0	UART1 Baud Rate source select 0: 8051 default Baud Rate source select 1: UART1 Baud Rate select as UART1BRP				
		6~0	UART1BRP	R/W	00h	Define UART1 Baud Rate prescaler UART1 Baud Rate = F _{SYSCLK} /32/UART1BRP			
E0h	ACC	7~0	ACC	R/W	00h	Accumulator			
		7	MIEN	R/W	0	Master I ² C enable 0: disable 1: enable			
		6	MIACKO	R/W	0	When Master I ² C receive data, send acknowledge to I ² C bus 0: ACK to slave device 1: NACK to slave device			
		5	MIIF	R/W	0	Master I ² C Interrupt flag 0: write 0 to clear it 1: Master I ² C transfer one byte complete			
E1h	MICON	4	MIACKI	R	-	When Master I ² C transfer, acknowledgement form I ² C bus (read only) 0: ACK received 1: NACK received			
		3	MISTART	R/W	0	Master I ² C Start bit 1: start I ² C bus transfer			
	2 N		MISTOP	R/W	1	Master I ² C Stop bit 1: send STOP signal to stop I ² C bus			
			MICR	R/W	00	$\label{eq:master I} \begin{array}{ll} \text{Master I}^2\text{C (SCL) clock frequency selection} \\ \text{00: } F_{\text{SYSCLK}}/4 & \text{(ex. If } F_{\text{SYSCLK}} = 16\text{MHz, I}^2\text{C clock is } 4\text{M Hz)} \\ \text{01: } F_{\text{SYSCLK}}/16 & \text{(ex. If } F_{\text{SYSCLK}} = 16\text{MHz, I}^2\text{C clock is } 1\text{M Hz)} \\ \text{10: } F_{\text{SYSCLK}}/64 & \text{(ex. If } F_{\text{SYSCLK}} = 16\text{MHz, I}^2\text{C clock is } 250\text{K Hz)} \\ \text{11: } F_{\text{SYSCLK}}/256 & \text{(ex. If } F_{\text{SYSCLK}} = 16\text{MHz, I}^2\text{C clock is } 62.5\text{K Hz)} \\ \end{array}$			
E2h	MIDAT	7~0	MIDAT	R/W	00h	Master I ² C data shift register (W): After Start and before Stop condition, write this register will resume transmission to I ² C bus (R): After Start and before Stop condition, read this register will resume receiving from I ² C bus			

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		5	PORPD	R/W	0	POR power down 0: POR enable 1: POR disable
		4	LVRPD	R/W	0	LVR power down 0: LVR enable 1: LVR disable
E3h	LVRCON	3~0	LVRSEL	R/W	0000	Low Voltage Reset (LVR) select. (step=0.14V) 0000: Set LVR at 2.05V 0001: Set LVR at 2.19V 0010: Set LVR at 2.33V 0011: Set LVR at 2.47V 0100: Set LVR at 2.61V 0101: Set LVR at 2.75V 0110: Set LVR at 2.75V 0110: Set LVR at 3.03V 1000: Set LVR at 3.17V 1001: Set LVR at 3.31V 1010: Set LVR at 3.31V 1010: Set LVR at 3.45V 1011: Set LVR at 3.59V 1100: Set LVR at 3.73V 1101: Set LVR at 3.87V 1110: Set LVR at 4.01V 1111: Set LVR at 4.15V
		7	LVDM	R/W	0	Low Voltage Detect interrupt enable 0: LVDIF =1 and LVDO =1 while $V_{CC} < V_{LVD}$ 1: LVDIF =1 and LVDO =0 while $V_{CC} > V_{LVD}$
		6	LVDO	R	0	Low Voltage Detect output
		5	LVDHYS	R/W	0	LVD Hysteresis Enable 0: LVD Hysteresis disable 1: LVD Hysteresis enable
		4	LVDPD	R/W	0	LVD power down 0: LVD enable 1: LVD disable
E4h			LVDSEL	R/W	0000	Low Voltage Detect (LVD) select. (step=0.14V) 0000: Set LVD at 2.05V 0001: Set LVD at 2.19V 0010: Set LVD at 2.33V 0011: Set LVD at 2.47V 0100: Set LVD at 2.61V 0101: Set LVD at 2.75V 0110: Set LVD at 2.89V 0111: Set LVD at 3.03V 1000: Set LVD at 3.17V 1001: Set LVD at 3.31V 1010: Set LVD at 3.45V 1011: Set LVD at 3.59V 1100: Set LVD at 3.73V 1101: Set LVD at 3.87V 1110: Set LVD at 4.01V 1111: Set LVD at 4.15V

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		7	EFT2CS	R/W	0	EFT2 Detector enable 0: Disable EFT2 1: Enable EFT2
		6	EFT1CS	R/W	0	EFT1 Detector enable 0: Disable EFT1 1: Enable EFT1
	5~4 EFT1S R/W 00 EFT1 Detector sens				EFT1 Detector sensitivity adjustment	
E5h	EFTCON	3	EFTSLOW	R/W	0	Force System clock to Slow clock while EFT detected 0: Disable 1: Enable
			EFTWOUT	R/W	0	EFTWAIT output to pin 0: P3.6 = normal I/O 1: P3.6 = EFTWAIT
		0	CKHLDE	R/W	0	clock hold enable 0: Disable 1: Enable
E6h	EXA	7~0	EXA	R/W	00h	Expansion accumulator
E7h	EXB	7~0	EXB	R/W	00h	Expansion B register
E9h	PWM4DH	7~0	PWM4DH	R/W	00h	PWM4 duty high byte write sequence: PWM4DL then PWM4DH read sequence: PWM4DH then PWM4DL
EAh	PWM4DL	7~0	PWM4DL	R/W	00h	PWM4 duty low byte write sequence: PWM4DL then PWM4DH read sequence: PWM4DH then PWM4DL
EBh	PWM5DH	7~0	PWM5DH	R/W	00h	PWM5 duty high byte write sequence: PWM5DL then PWM5DH read sequence: PWM5DH then PWM5DL
ECh	PWM5DL	7~0	PWM5DL	R/W	00h	PWM5 duty low byte write sequence: PWM5DL then PWM5DH read sequence: PWM5DH then PWM5DL
EDh	PWM6DH	7~0	PWM6DH	R/W	00h	PWM6 duty high byte write sequence: PWM6DL then PWM6DH read sequence: PWM6DH then PWM6DL
EEh	PWM6DL	7~0	PWM6DL	R/W	00h	PWM6 duty low byte write sequence: PWM6DL then PWM6DH read sequence: PWM6DH then PWM6DL
		6	HSNK2EN	R/W	0	Pin high sink enable (Group 2 = P04, P05, P10~P13, P30~P33) 0: Group 2 high sink disable 1: Group 2 high sink enable
		5	HSNK1EN	R/W	0	Pin high sink enable (Group 1 = P06, P07, P14~P17, P35, P36) 0: Group 1 high sink disable 1: Group 1 high sink enable
EFh	AUV2	4	HSNK0EN	R/W	0	Pin high sink enable (Group 0 = P00~P03, P20, P21, P34, P37) 0: Group 0 high sink disable 1: Group 0 high sink enable
Ern	Fh AUX3 3		WARMTIME	R/W	0	Warm-up time for wake-up from Halt/Stop mode 0: 128 Clock 1: 64 Clock
			FJMPE	R/W	0	FRC frequency auto-change enable 0: FRC frequency define by CFGWL 1: FRC frequency auto-change enable
		0	FJMPS	R/W	0	FRC frequency auto-change selection 0: ±1% frequency change 1: ±2% frequency change
F0h	В	7~0	В	R/W	00h	B register
F1h	CRCDL	7~0	CRCDL	R/W	FFh	16-bit CRC data bit 7~0
F2h	CRCDH	7~0	CRCDH	R/W	FFh	16-bit CRC data bit 15~8
F3h	CRCIN	7~0	CRCIN	W	_	CRC input data
F5h	CFGBG	4~0	BGTRIM	R/W	_	VBG trimming value

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
F6h	CFGWL	6~0	FRCF	R/W	-	FRC frequency adjustment 00h: lowest frequency 7Fh: highest frequency
		7~6	WDTE	R/W	_	Watchdog Timer Reset control 0x: WDT disable 10: WDT enable in Fast/Slow mode, disable in Idle/Halt/Stop mode 11: WDT always enable
	5		PWRSAV	R/W	-	Set 1 to reduce the chip's power consumption at Idle/Halt/Stop Mode.
	7h AUX2 3		VBGOUT	R/W	0	Bandgap voltage output control 0: P3.2 as normal I/O 1: Bandgap voltage output to P3.2 pin
F7h			DIV32	R/W	0	only active when MULDVI16 =1 0: instruction DIV as 16/16 bit division operation 1: instruction DIV as 32/16 bit division operation
			IAPTE	R/W	11	IAP write/EEPROM write/INFO write watchdog timer enable 00: Disable 01: wait 3ms trigger watchdog time-out flag 10: wait 6ms trigger watchdog time-out flag 11: wait 25ms trigger watchdog time-out flag
	0 MULDIV1		MULDIV16	R/W	0	0: instruction MUL/DIV as 8*8, 8/8 operation 1: instruction MUL/DIV as 16*16, 16/16 or 32/16 operation
		7	CLRWDT	R/W	1: instruction MUL/DIV as 16*16, 16/16 or 32/16 operation	
		6	CLRTM3	R/W	0	Set 1 to clear and hold Timer3, need S/W clear.
	6 CLRTM3 5 TKSOC		TKSOC	R/W	0	Touch Key Start of Conversion Set 1 to start Touch Key conversion, and S/W need to write 0 to clear this flag
F8h	F8h AUX1 3		ADSOC	R/W	0	ADC Start of Conversion Set 1 to start ADC conversion. Cleared by H/W at the end of conversion. S/W can also write 0 to clear this flag.
1011			CLRPWM0	R/W	1	PWM0 clear enable 0: PWM0 is running 1: PWM0 is cleared and held or set PWM0 stop status by PWM0PMSK/PWM0NMSK & PWM0MSK=1
		2	CLRPWM1	R/W	1	PWM1/PWM2/PWM3/PWM4/PWM5/PWM6 clear enable 0: PWM1/PWM2/PWM3/PWM4/PWM5/PWM6 is running 1: PWM1/PWM2/PWM3/PWM4/PWM5/PWM6 is cleared and held
		0	DPSEL	R/W	0	Active DPTR Select

Adr	Flash	Bit#	Bit Name	Description			
3FFBh	CFGBG	4~0	BGTRIM	VBG adjustment. V _{BG} is trimmed to 1.18V in chip manufacturing.			
3FFDh	CFGWL	6~0	FRCF	C frequency adjustment. FRC is trimmed to 18.432 MHz in chip manufacturing.			
		7	PROT	Flash Code Protect, 1=Protect			
	Fh CFGWH 5 PORSEL		XRSTE	External Pin Reset Enable, 1=Enable.			
3FFFh			PORSEL	POR enable selection 0: POR always on (when PORPD=0) 1: POR turn on 2ms (1/8duty when PORPD=0)			
			HVS	High voltage switch for ROM write.			
		3~0	-	Reserved			

INSTRUCTION SET

Instructions are 1, 2 or 3 bytes long as listed in the 'byte' column below. Each instruction takes $1\sim8$ System clock cycles to execute as listed in the 'cycle' column below.

	ARITHMETIC								
Mnemonic	Description	byte	cycle	opcode					
ADD A,Rn	Add register to A	1	2	28-2F					
ADD A,dir	Add direct byte to A	2	2	25					
ADD A,@Ri	Add indirect memory to A	1	2	26-27					
ADD A,#data	Add immediate to A	2	2 2	24					
ADDC A,Rn	Add register to A with carry	1	2	38-3F					
ADDC A,dir	Add direct byte to A with carry	2	2	35					
ADDC A,@Ri	Add indirect memory to A with carry	1	2	36-37					
ADDC A,#data	Add immediate to A with carry	2	2	34					
SUBB A,Rn	Subtract register from A with borrow	1	2	98-9F					
SUBB A,dir	Subtract direct byte from A with borrow	2	2	95					
SUBB A,@Ri	Subtract indirect memory from A with borrow	1	2	96-97					
SUBB A,#data	Subtract immediate from A with borrow	2	2	94					
INC A	Increment A	1	2	04					
INC Rn	Increment register	1	2	08-0F					
INC dir	Increment direct byte	2	2	05					
INC @Ri	Increment indirect memory	1	2	06-07					
DEC A	Decrement A	1	2 2	14					
DEC Rn	Decrement register	1	2	18-1F					
DEC dir	Decrement direct byte	2	2	15					
DEC @Ri	Decrement indirect memory	1	2	16-17					
INC DPTR	Increment data pointer	1	4	A3					
MUL AB	Multiply A by B	1	8/16	A4					
DIV AB	Divide A by B	1	8/16/32	84					
DA A	Decimal Adjust A	1	2	D4					

	LOGICAL							
Mnemonic	Description	byte	cycle	opcode				
ANL A,Rn	AND register to A	1	2	58-5F				
ANL A,dir	AND direct byte to A	2	2	55				
ANL A,@Ri	AND indirect memory to A	1	2	56-57				
ANL A,#data	AND immediate to A	2	2	54				
ANL dir,A	AND A to direct byte	2	2	52				
ANL dir,#data	AND immediate to direct byte	3	4	53				
ORL A,Rn	OR register to A	1	2	48-4F				
ORL A,dir	OR direct byte to A	2	2	45				
ORL A,@Ri	OR indirect memory to A	1	2	46-47				
ORL A,#data	OR immediate to A	2	2	44				
ORL dir,A	OR A to direct byte	2	2	42				
ORL dir,#data	OR immediate to direct byte	3	4	43				
XRL A,Rn	Exclusive-OR register to A	1	2	68-6F				
XRL A,dir	Exclusive-OR direct byte to A	2	2	65				
XRL A, @Ri	Exclusive-OR indirect memory to A	1	2	66-67				
XRL A,#data	Exclusive-OR immediate to A	2	2	64				
XRL dir,A	Exclusive-OR A to direct byte	2	2	62				
XRL dir,#data	Exclusive-OR immediate to direct byte	3	4	63				
CLR A	Clear A	1	2	E4				
CPL A	Complement A	1	2	F4				
SWAP A	Swap Nibbles of A	1	2	C4				

DS-TM52F4974_E 149 Rev 1.7, 2025/10

LOGICAL								
Mnemonic	Description	byte	cycle	opcode				
RL A	Rotate A left	1	2	23				
RLC A	Rotate A left through carry	1	2	33				
RR A	Rotate A right	1	2	03				
RRC A	Rotate A right through carry	1	2	13				

	DATA TRANSFER								
Mnemonic	Description	byte	cycle	opcode					
MOV A,Rn	Move register to A	1	2	E8-EF					
MOV A,dir	Move direct byte to A	2	2	E5					
MOV A,@Ri	Move indirect memory to A	1	2	E6-E7					
MOV A,#data	Move immediate to A	2	2	74					
MOV Rn,A	Move A to register	1	2	F8-FF					
MOV Rn,dir	Move direct byte to register	2	4	A8-AF					
MOV Rn,#data	Move immediate to register	2	2	78-7F					
MOV dir,A	Move A to direct byte	2	2	F5					
MOV dir,Rn	Move register to direct byte	2	4	88-8F					
MOV dir,dir	Move direct byte to direct byte	3	4	85					
MOV dir,@Ri	Move indirect memory to direct byte	2	4	86-87					
MOV dir,#data	Move immediate to direct byte	3	4	75					
MOV @Ri,A	Move A to indirect memory	1	2	F6-F7					
MOV @Ri,dir	Move direct byte to indirect memory	2	4	A6-A7					
MOV @Ri,#data	Move immediate to indirect memory	2	2	76-77					
MOV DPTR,#data	Move immediate to data pointer	3	4	90					
MOVC A,@A+DPTR	Move code byte relative DPTR to A	1	8	93					
MOVC A,@A+PC	Move code byte relative PC to A	1	8	83					
MOVX A,@Ri	Move external data(A8) to A	1	8	E2-E3					
MOVX A,@DPTR	Move external data(A16) to A	1	8	E0					
MOVX @Ri,A	Move A to external data(A8)	1	8	F2-F3					
MOVX @DPTR,A	Move A to external data(A16)	1	8	F0					
PUSH dir	Push direct byte onto stack	2	4	C0					
POP dir	Pop direct byte from stack	2	4	D0					
XCH A,Rn	Exchange A and register	1	2	C8-CF					
XCH A,dir	Exchange A and direct byte	2	2	C5					
XCH A,@Ri	Exchange A and indirect memory	1	2	C6-C7					
XCHD A,@Ri	Exchange A and indirect memory nibble	1	2	D6-D7					

BOOLEAN								
Mnemonic	Description	byte	cycle	opcode				
CLR C	Clear carry	1	2	C3				
CLR bit	Clear direct bit	2	2	C2				
SETB C	Set carry	1	2	D3				
SETB bit	Set direct bit	2	2	D2				
CPL C	Complement carry	1	2	В3				
CPL bit	Complement direct bit	2	2	B2				
ANL C,bit	AND direct bit to carry	2	4	82				
ANL C,/bit	AND direct bit inverse to carry	2	4	В0				
ORL C,bit	OR direct bit to carry	2	4	72				
ORL C,/bit	OR direct bit inverse to carry	2	4	A0				
MOV C,bit	Move direct bit to carry	2	2	A2				
MOV bit,C	Move carry to direct bit	2	4	92				

DS-TM52F4974_E 150 Rev 1.7, 2025/10

	BRANCHING									
Mnemonic	Description	byte	cycle	opcode						
ACALL addr 11	Absolute jump to subroutine	2	6	11-F1						
LCALL addr 16	Long jump to subroutine	3	6	12						
RET	Return from subroutine	1	6	22						
RETI	Return from interrupt	1	6	32						
AJMP addr 11	Absolute jump unconditional	2	6	01-E1						
LJMP addr 16	Long jump unconditional	3	6	02						
SJMP rel	Short jump (relative address)	2	6	80						
JC rel	Jump on carry = 1	2	4 (or 6)	40						
JNC rel	Jump on carry = 0	2	4 (or 6)	50						
JB bit,rel	Jump on direct bit = 1	3	4 (or 6)	20						
JNB bit,rel	Jump on direct bit = 0	3	4 (or 6)	30						
JBC bit,rel	Jump on direct bit = 1 and clear	3	4 (or 6)	10						
JMP @A+DPTR	Jump indirect relative DPTR	1	6	73						
JZ rel	Jump on accumulator = 0	2	4 (or 6)	60						
JNZ rel	Jump on accumulator $\neq 0$	2	4 (or 6)	70						
CJNE A,dir,rel	Compare A, direct, jump not equal relative	3	4 (or 6)	B5						
CJNE A,#data,rel	Compare A,immediate, jump not equal relative	3	4 (or 6)	B4						
CJNE Rn,#data,rel	Compare register, immediate, jump not equal relative	3	4 (or 6)	B8-BF						
CJNE @Ri,#data,rel	Compare indirect, immediate, jump not equal relative	3	4 (or 6)	B6-B7						
DJNZ Rn,rel	Decrement register, jump not zero relative	2	4 (or 6)	D8-DF						
DJNZ dir,rel	Decrement direct byte, jump not zero relative	3	4 (or 6)	D5						

MISCELLANEOUS							
Mnemonic	Description	byte	cycle	opcode			
NOP	No operation	1	2	00			

In the above table, an entry such as E8-EF indicates a continuous block of hex opcodes used for 8 different registers, the register numbers of which are defined by the lowest three bits of the corresponding code. Non-continuous blocks of codes, shown as 11-F1 (for example), are used for absolute jumps and calls with the top 3 bits of the code being used to store the top three bits of the destination address.

DS-TM52F4974_E 151 Rev 1.7, 2025/10

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings (T_A=25°C)

Parameter	Rating	Unit
Supply voltage	$V_{SS} - 0.3 \sim V_{SS} + 5.5$	
Input voltage	$V_{SS} - 0.3 \sim V_{CC} + 0.3$	V
Output voltage	$V_{SS} - 0.3 \sim V_{CC} + 0.3$	
All pins output current high	-80	т А
All pins output current low	+150	mA
Maximum Operating Voltage	5.5	V
Operating temperature	−40 ~ +105	0.0
Storage temperature	−65 ~ +150	°C

2. DC Characteristics ($T_A=25$ °C, $V_{CC}=2.2V \sim 5.5V$)

Parameter	Symbol	Conditions		Min	Тур	Max	Unit			
Operating Voltage	V_{CC}	F _{SYSCLK}	=18.432 MHz	2.2	_	5.5	V			
Input High	17	All Innut	V _{CC} =5V	0.6V _{CC}	_	_	V			
Voltage	V_{IH}	All Input	V _{CC} =3V	0.6V _{CC}	_	_	V			
Innut I ov. Voltage	V	All Imput	$V_{CC}=5V$	_	_	$0.2V_{CC}$	V			
Input Low Voltage	V_{IL}	All Input	V _{CC} =3V	_	_	$0.2V_{CC}$	V			
			V_{CC} =5V, V_{OH} =0.9V $_{\text{CC}}$	6	12	_				
		All Output	V_{CC} =5V, V_{OH} =0.6V _{CC}	20	40	_				
		LEDBRITM=1	$V_{CC}=3V$, $V_{OH}=0.9V_{CC}$	2.5	5	_				
I/O Port Source	$ m I_{OH}$		V_{CC} =3V, V_{OH} =0.66V _{CC}	7.5	15	_	mA			
Current	тон	LED Pins	V_{CC} =5V, V_{OH} =0.9V $_{\text{CC}}$	6	12	_	ША			
			P0. P1. P2.		(P0.0~P0.3, P0.6~P0.7, P1.4~P1.7,	V_{CC} =5V, V_{OH} =0.6V _{CC}	10	20	_	
				P2.0~P2.1, P3.4~P3.7)	$V_{CC}=3V,$ $V_{OH}=0.9V_{CC}$	2.5	5	_		
		LEDBRITM=0		V_{CC} =3V, V_{OH} =0.66V _{CC}	5	10	_			
			V_{CC} =5V, V_{OL} =0.1 V_{CC} HSNKxEN=1	72	90	_				
I/O Port Sink	Ţ	All Outrast	V_{CC} =5V, V_{OL} =0.1 V_{CC} HSNKxEN=0	23	46	_	A			
Current	I _{OL}	I _{OL} All Output,	V_{CC} =3V, V_{OL} =0.1V _{CC} HSNKxEN=1	20	40	_	mA			
			V_{CC} =3V, V_{OL} =0.1V $_{CC}$ HSNKxEN=0	10	20	-				

DS-TM52F4974_E 152 Rev 1.7, 2025/10

Parameter	Symbol	Co	onditions	Min	Тур	Max	Unit			
		Fast mode	FRC=18.432 MHz	_	8.1	_				
		$V_{CC}=5V$	FRC=9.216 MHz	_	5.5	_				
		Fast mode	FRC=18.432 MHz	_	4.6	_	mA			
		$V_{CC}=3V$	FRC=9.216 MHz	_	3.2	-	IIIA			
		Slow mode	V _{CC} =5V	_	2.1	-				
		Slow mode	V _{CC} =3V	_	1.4	_				
		Idle mode	SRC, V _{CC} =5V	_	75	_				
Summly Cumment	${ m I_{DD}}$	PWRSAV=0	SRC, V _{CC} =3V	_	50	_				
Supply Current		1 _{DD}	I _{DD}	1 _{DD}	Idle mode	SRC, V _{CC} =5V	_	16.5	_	
				PWRSAV=1	SRC, V _{CC} =3V	_	7.2	_		
					Idle mode PWRSAV=1	SRC, V _{CC} =5V	_	9.7	_	
		PORPD=1	SRC, V _{CC} =3V	_	3.6	_	μA			
		Stop mode	V _{CC} =5V	_	0.4	_				
		PWRSAV=1	V _{CC} =3V	_	0.2	_				
		Halt mode	V _{CC} =5V	_	7.2	_				
		PWRSAV=1	V _{CC} =3V	_	2.4	_				
Dull Un Dosistor	D	V -V	V _{CC} =5V	_	32	_	ΚΩ			
Pull-Up Resistor	R_{PU}	$V_{IN} = V_{CC}$	$V_{CC}=3V$	_	54	_	K32			

3. Clock Timing

Parameter	Condition	Min	Тур	Max	Unit
	25°C, V _{CC} =4.5V	-1%	18.432	+1%	
FRC Frequency	0°C ~ 105°C, V _{CC} =4.5V	-1.5%	18.432	+1.5%	MHz
	-40 °C ~ 105 °C, V_{CC} = 3.0 ~ 5.5 V	-3.5%	18.432	+3.5%	
ana F	V _{CC} =5V	_	41	_	KHz
SRC Frequency	V _{CC} =3V	_	37	1	КПХ

4. Reset Timing Characteristics $(T_A = -40^{\circ}C \sim +105^{\circ}C)$

Parameter	Conditions		Тур	Max	Unit
RESET Input Low width	Input V_{CC} =5V ± 10 %	30	1	ı	μs
WDT 1 C	V _{CC} =5V, WDTPSC=11	_	50	_	
WDT wake up time	V _{CC} =3V, WDTPSC=11	_	55	_	ms
CPU start up time	$V_{CC} = 5 \text{ V}$	_	22	-	ms

DS-TM52F4974_E 153 Rev 1.7, 2025/10

5. LVR Circuit Characteristics $(T_A = 25$ °C)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
			_	4.15	_	
			_	4.01	-	
			- 3.87	-		
			_	3.73	_	
			_	3.59	ı	
			_	3.45	ı	
			_	3.31	-	
LVR Reference	V_{LVR}	T. 250C	_	3.17	_	V
Voltage		$T_A=25$ °C	_	3.03	ı	v
			_	2.89	-	
			_	2.75	_	
			_	2.61	_	
			_	2.47	_	
			_	2.33	_	
			_	2.19	_	1
			_	2.05	_	
LVR Hysteresis Window	V _{HYS_LVR}	$T_A = 25$ °C	_	20	_	mV
Low Voltage Detection time	t_{LVR}	$T_A=25$ °C	100	_	_	μs

6. LVD Circuit Characteristics $(T_A = 25^{\circ}C)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit		
			_	4.15	_			
			_	4.01	_			
			١	3.87	_			
			١	3.73	_			
			-	3.59	_			
			_	3.45	_			
			ı	3.31	_			
LVD Reference	V _{LVD}	T. 250G	ı	3.17	_	V		
Voltage		V LVD	V_{LVD} $T_A=25$ °C	VLVD I A-23 C	ı	3.03	_	•
			ı	2.89	_			
				ı	2.75	_		
			ı	2.61	_			
			ı	2.47	_			
			ı	2.33	_			
			ı	2.19	_			
			-	2.05	_			
LVD Hysteresis	V	LVDHYS = 0	_	20	_	mV		
Window	V_{HYS_LVD}	LVDHYS = 1		60	_	111 V		
Low Voltage Detection time	t _{LVR}	T _A =25°C	100	_	_	μs		

DS-TM52F4974_E 154 Rev 1.7, 2025/10

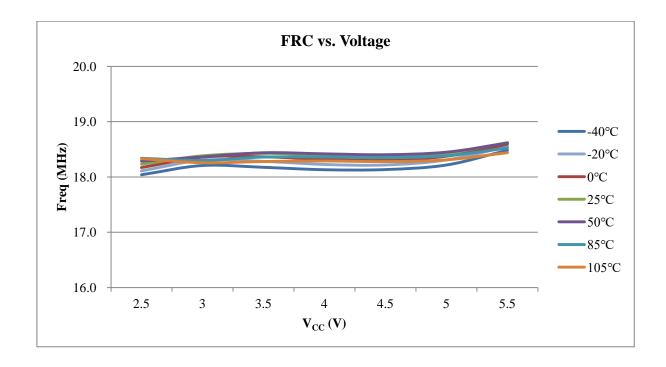
7. ADC Electrical Characteristics ($T_A=25^{\circ}C$, $V_{CC}=3.0V\sim5.5V$, $V_{SS}=0V$)

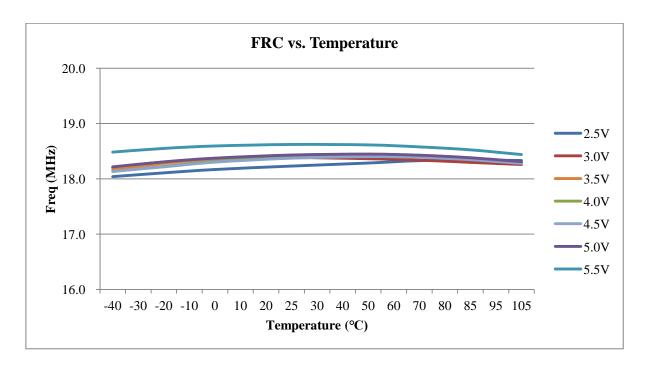
Parameter	Co	onditions	Min	Тур	Max	Unit
Total Accuracy	V _5	12 W W -0W	_	±2.5	±4	LSB
Integral Non-Linearity	v _{CC} =3.	$12 \text{ V}, \text{ V}_{\text{SS}} = 0 \text{ V}$	_	±3.2	±5	LSD
	Source impe	edance (Rs $< 5K\Omega$)	_	_	4.2	
May Input Clask (f	Source impe	dance (Rs $< 10 \text{K}\Omega$)	_	_	2.1	MHz
Max Input Clock (f _{ADC})	Source impe	dance (Rs $< 25K\Omega$)	_	_	1.1	MHZ
	Source is V _{BO}	(ADCHS=01100b)	_	_	F _{SYSCLK} /4	
Conversion Time	F_{AD}	$_{\rm OC} = 1 \rm MHz$	_	21	_	μs
G : G :	V _{CC} =5V, ADCVREFS=0		_	0.45	_	A
Conversion Current	$V_{CC}=4V$,	_	0.6	_	mA	
BandGap Voltage Reference		V _{CC} =2.5V~5.5V 25°C	-1.5%	1.18	+1.5%	
(V_{BG})	_	V _{CC} =2.5V~5.5V -40°C~105°C	-1.8%	1.18	+1.8%	
ADC Reference Voltage	tage	V _{CC} =3V~5.5V 25°C	-1.7%	2.49	+1.7%	V
(V_{ADC})	ADCVREFS=1	V _{CC} =2.8V~5.5V -40°C~105°C	-2.3%	2.49	+2.3%	V
V _{CC} /4 Reference Voltage		V _{CC} =5V, 25°C	-0.8%	1.252	+0.8%	
(V _{1/4})	_	V _{CC} =3.6V, 25°C	-0.8%	0.902	+0.8%	
Input Voltage		_	V_{SS}	_	V _{CC}	

8. TK Electrical Characteristics ($T_A = 25$ °C, $V_{CC} = 3.0 V \sim 5.5 V$, $V_{SS} = 0 V$)

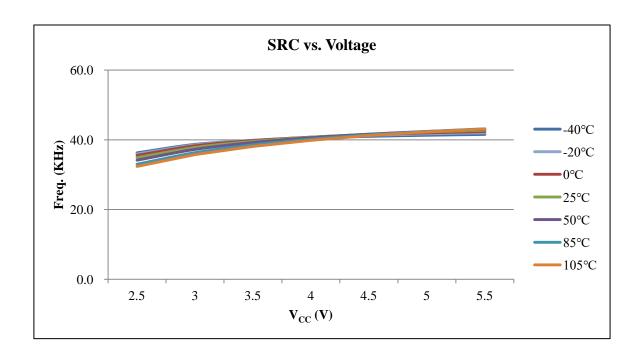
Parameter	Conditions	Min	Тур	Max	Unit
Conversion Current	V _{CC} =5.0V	_	2.5	_	mA

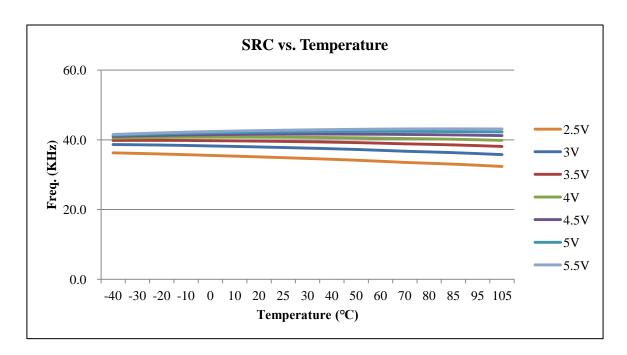
9. EEPROM Characteristics


Parameter	Conditions	Min	Тур	Max	Unit
Write Voltege	F _{SYS} =FRC/2, 47μF, -20°C ~ 50°C	3.0	5.0	5.5	V
Write Voltage	F_{SYS} =FRC/2, 47 μ F, -40°C ~ 105°C	3.5	5.0	5.5	v
	$V_{CC} = 3.0V \sim 5.5V, -20^{\circ}C \sim 50^{\circ}C$ $F_{SYS} = FRC/2$	20K	_	_	
Write Endurance*	$V_{CC} = 3.5V \sim 5.5V, -40^{\circ}C \sim 105^{\circ}C$ $F_{SYS} = FRC/2$	30K	_	_	cycles
	$V_{CC} = 3.5V \sim 5.5V, -20^{\circ}C \sim 105^{\circ}C$ $F_{SYS} = FRC/2$	50K	_	_	

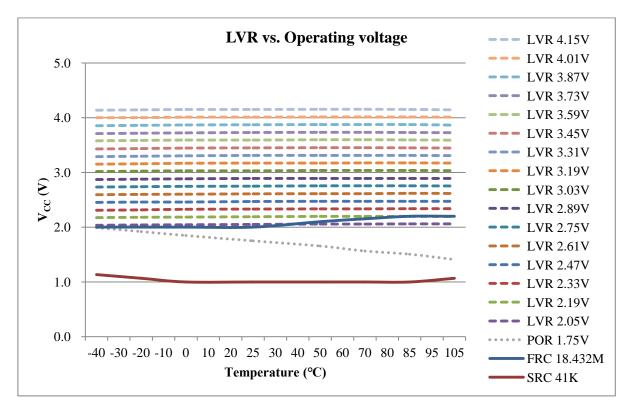

Note: The value of this parameter is based on the characteristics of tested samples.

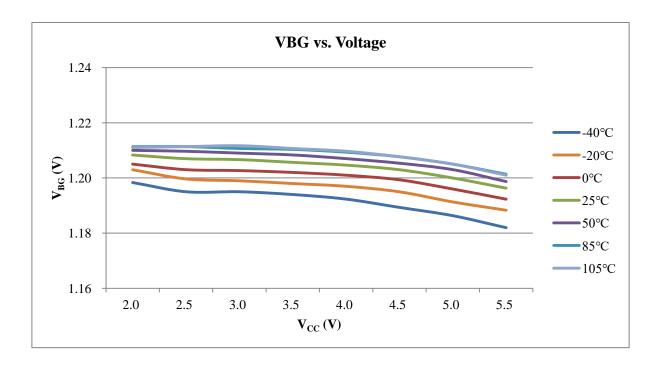
DS-TM52F4974_E 155 Rev 1.7, 2025/10


10. Characteristic Graphs



DS-TM52F4974_E 156 Rev 1.7, 2025/10





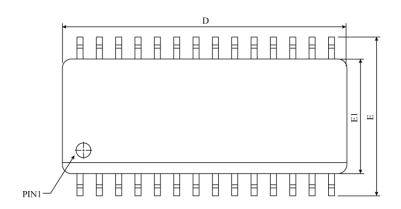
DS-TM52F4974_E 157 Rev 1.7, 2025/10

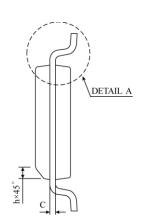
Note: POR: Power on reset. VCC should greater than POR when power on. Due to the variation of the manufacturing process, the POR value will be slightly different between different chips.

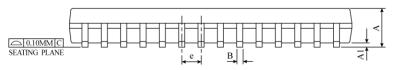
DS-TM52F4974_E 158 Rev 1.7, 2025/10

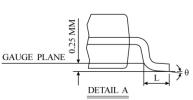
Package and Dice Information

Please note that the package information provided is for reference only. Since this information is frequently updated, users can contact Sales to consult the latest package information and stocks.


Ordering information


Ordering number	Package
TM52F49745S	SOP 28-pin (300 mil)
TM52F49745S3	SOP 28-pin (300 mil)
TM52F49745E	SSOP 28-pin (150 mil)
TM52F49744E	SSOP 24 pin (150mil)
TM52F49743S	SOP 20-pin (300 mil)
TM52F49743S2	SOP 20-pin (300 mil)
TM52F49742S	SOP 16-pin (150 mil)

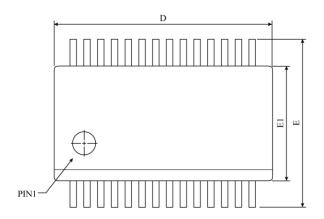

DS-TM52F4974_E 159 Rev 1.7, 2025/10

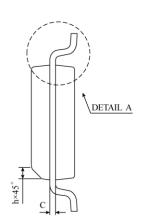


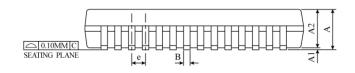
SOP-28 (300mil) Package Dimension

CVMDOL	DI	DIMENSION IN MM			DIMENSION IN INCH		
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
A	2.35	2.50	2.65	0.0926	0.0985	0.1043	
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.23	0.28	0.32	0.0091	0.0108	0.0125	
D	17.70	17.90	18.10	0.6969	0.7047	0.7125	
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910	
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992	
e		1.27 BSC			0.050 BSC		
h	0.25	0.50	0.75	0.0100	0.0195	0.0290	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC		MS-013 (AE)					

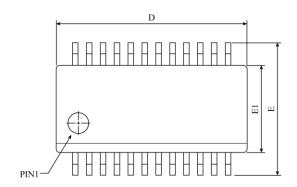
*NOTES: DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

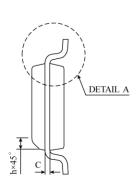

MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL

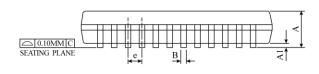

NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

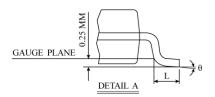

DS-TM52F4974_E 160 Rev 1.7, 2025/10

SSOP-28 (150mil) Package Dimension


DI ENGLOVIDA DA DE ENGLOVIDA DA DE CONTROL DA DE CONTROL DE CONTRO							
SYMBOL	DIMENSION IN MM			DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	1.50	1.65	1.80	0.06	0.06	0.07	
A1	0.102	0.176	0.249	0.004	0.007	0.010	
A2	1.40	1.475	1.55	0.06	0.06	0.06	
В	0.20	0.25	0.30	0.01	0.01	0.01	
С	0.2TYP			0.008TYP			
e	0.635TYP			0.025TYP			
D	9.804	9.881	9.957	0.386	0.389	0.392	
Е	5.842	6.020	6.198	0.230	0.237	0.244	
E1	3.86	3.929	3.998	0.152	0.155	0.157	
L	0.406	0.648	0.889	0.016	0.026	0.035	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	M0-137(AF)						

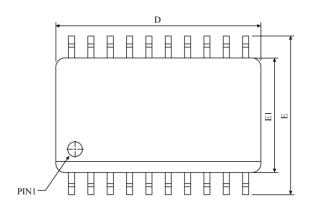

 $\& * \text{NOTES:} \;\; \text{DIMENSION "D" DOES NOT INCLUDE MOLD PROTRUSIONS OR GATE BURRS.} \;\; \text{MOLD PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.006 INCH PER SIDE.}$

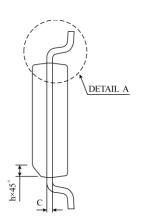

DS-TM52F4974_E 161 Rev 1.7, 2025/10

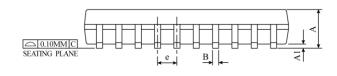


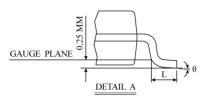
SSOP-24 (150mil) Package Dimension

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	1.35	1.55	1.75	0.053	0.061	0.069	
A1	0.10	0.18	0.25	0.004	0.007	0.010	
A2	-	-	1.50	-	-	0.059	
В	0.20	0.25	0.30	0.008	0.010	0.012	
С	0.18	0.22	0.25	0.007	0.009	0.010	
D	8.56	8.65	8.74	0.337	0.341	0.344	
Е	5.79	6.00	6.20	0.228	0.236	0.244	
E1	3.81	3.90	3.99	0.150	0.154	0.157	
e	0.635 BSC			0.025 BSC			
L	0.41	0.84	1.27	0.016	0.033	0.050	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	M0-137 (AE)						

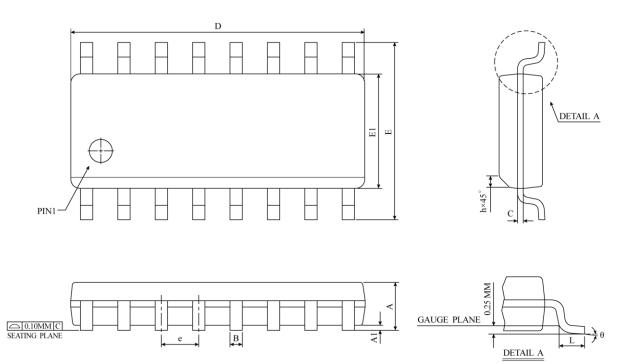

 $\stackrel{\triangle}{\mathbb{R}}$ *Notes : dimension " d " does not include mold protrusions or gat burns.


MOLD PROTRUSIONS AND GATE BURRS SHALL NOT


EXCEED 0.006 INCH PER SIDE.



SOP-20 (300mil) Package Dimension


SYMBOL	DIMENSION IN MM			DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	2.35	2.50	2.65	0.0926	0.0985	0.1043	
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.23	0.28	0.32	0.0091	0.0108	0.0125	
D	12.60	12.80	13.00	0.4961	0.5040	0.5118	
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910	
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992	
e	1.27 BSC			0.050 BSC			
h	0.25	0.50	0.75	0.0100	0.0195	0.0290	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	MS-013 (AC)						

riangle * Notes : Dimension " d" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions and gate burrs shall not exceed 0.15 MM (0.006 Inch) Per side.

DS-TM52F4974_E 163 Rev 1.7, 2025/10

SOP-16 (150mil) Package Dimension

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH		
	MIN	NOM	MAX	MIN	NOM	MAX
A	1.35	1.55	1.75	0.0532	0.0610	0.0688
A1	0.10	0.18	0.25	0.0040	0.0069	0.0098
В	0.33	0.42	0.51	0.0130	0.0165	0.0200
С	0.19	0.22	0.25	0.0075	0.0087	0.0098
D	9.80	9.90	10.00	0.3859	0.3898	0.3937
Е	5.80	6.00	6.20	0.2284	0.2362	0.2440
E1	3.80	3.90	4.00	0.1497	0.1536	0.1574
e	1.27 BSC			0.050 BSC		
h	0.25	0.38	0.50	0.0099	0.0148	0.0196
L	0.40	0.84	1.27	0.0160	0.0330	0.0500
θ	0°	4°	8°	0°	4°	8°
JEDEC	MS-012 (AC)					

DS-TM52F4974_E 164 Rev 1.7, 2025/10