

TM56F5412/16/12B/16B

DATA SHEET

Rev 0.94

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. tenx does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. tenx products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses tenx products for any such unintended or unauthorized application, Buyer shall indemnify and hold tenx and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that tenx was negligent regarding the design or manufacture of the part.

AMENDMENT HISTORY

Version	Date	Description
0.90	Apr, 2020	New release.
0.91	Aug, 2020	Page 10 Added SOP16/SOP20 pin assignment
		Page12 Added SOP16/SOP20 pin summary
		Page 23 Modify the lookup table example code
		Page104 Added SOP16/SOP20
		ordering information
		page 105/106 add SOP16/SOP20
		package dimension
		Page 6/75/94 Modify the description error.
0.92	Sep, 2020	Page 27/28 modify IRCF register description, and move CLKCTRL register
	_	description to page 28
		Page 34 Added INT0EDG/INT1EDG register description
		Page 35: modify TXD1F/TXD0F description
		Page 54~58 modify the PWM0/1/2 CLR and PWM1A/B/C OE description
		Page 72 modify Slave I2C Command description
0.93	Jan, 2021	Add TM56F5412B/TM56F5416B Description
		Page 64 Add Difference between TM56F5412/TM56F5416 and
		TM56F5412B/TM56F5416B
		Page 16 modify Read EEPROM demo code
		Page 96 modify SUBLW description
0.94	Apr, 2022	Page10 Added MSOP10/QFN20 wire bonding
		Page12 Added MSOP10/QFN20 pin summary
		Page104 Added MSOP10/QFN20 ordering information
		page 109/110 Added MSOP10/QFN20 package dimension

CONTENTS

AM	END	MENT HISTORY	2
CO	NTEN	NTS	3
		RES	
		I BLOCK DIAGRAM	
		IGNMENT DIAGRAM	
		CRIPTIONS	
		IMARY	
		ON DESCRIPTION	
1.		U Core	
	1.1	Program ROM (PROM)	
		1 Reset Vector (000H)	
		2 Interrupt Vector (004H)	
	1.2	System Configuration Register (SYSCFG)	
	1.3	Page Lock Function	
	1.4	EEPROM	
	1.5	RAM Addressing Mode	
	1.6	Programming Counter (PC) and Stack	
		2 STATUS Register (03H/83H/103H/183H)	
2.		et	
	2.1	Power on Reset	
	2.2	Low Voltage Reset	
	2.3	External Pin Reset	
	2.4	Watchdog Timer Reset	
3.		ck Circuitry and Operation Mode	
	3.1	System Clock	
	3.2	Dual System Clock Modes Transition	
	3.3	System Clock Oscillator	
4.		rrupt	
5.		Port	
	5.1	PA0-4,PA7, PB0-7, PC0-3 and PD0-7	
6.		pheral Functional Block	
	6.1	Watchdog (WDT) /Wakeup (WKT) Timer	
	6.2	Timer0	
	6.3	Timer1	
	6.4	T2:15-bit Timer	
	6.5	PWM0: 8 bits PWM	
	6.6	PWM1A/PWM1B/PWM1C: 8 bits PWMs	
	6.7	PWM2: 8 bits PWM	
	6.8	Analog-to-Digital Converter	
	6.9	Touch Key	
	6.10) Specific Purpose Slave I2C Interfac	71

ME	MORY MAP	75				
INS	INSTRUCTION SET					
ELE	ECTRICAL CHARACTERISTICS	98				
1.	Absolute Maximum Ratings	98				
2.	DC Characteristics	98				
3.	Clock Timing	99				
4.	Reset Timing Characteristics	99				
5.	LVR Circuit Characteristics	99				
	ADC Electrical Characteristics					
7.	Characteristic Graphs	101				
PAC	CKAGING INFORMATION	104				

FEATURES

1. ROM: 4K x 16 bits Flash Program Memory with Page Locker function

2. EEPROM: 128 x 8 bits

3. RAM: 336 x 8 bits

4. STACK: 8 Levels

5. System Oscillation Sources (Fsys):

- Fast-clock
 - ♦ FIRC (Fast Internal RC): 16 MHz
- Slow-clock
 - ♦ SIRC (Slow Internal RC): 70 KHz @VCC=5V

6. System Clock Prescaler:

• System Oscillation Sources can be divided by 1/2/4/16 as System Clock (Fsys)

7. Dual System Clock:

• FIRC+SIRC

8. Power Saving Operation Mode

- FAST Mode: Slow-clock can be disabled or enabled, Fast-clock keeps CPU running
- SLOW Mode: Fast-clock can be disabled or enabled, Slow-clock keeps CPU running
- IDLE Mode: Fast-clock and CPU stop. Slow-clock, T2, or Wake-up Timer keep running
- STOP Mode: All clocks stop, T2 and Wake-up Timer stop

9. 3 Independent Timers

- Timer0
 - ♦ 8-bit timer divided by 1~256 pre-scaler option, Reload/Interrupt/Stop function
- Timer1
 - ♦ 8-bit timer divided by 1~256 pre-scaler option, Reload/Interrupt/Stop function
 - ♦ Overflow and Toggle out
- T2
 - ♦ 15-bit timer with 4 interrupt interval time options
 - ♦ IDLE mode wake-up timer or used as one simple 15-bit time base

♦ Clock source: Slow-clock (SIRC), Fsys/128

10. Interrupt

- Three External Interrupt pins
 - ♦ 1 pin is falling edge wake-up triggered & interrupts
 - ♦ 2 pins are rising or falling edge wake-up triggered & interrupt
- Timer0/Timer1/T2/WKT (wake-up) Interrupts
- TK (Touch Key) /ADC Interrupt
- I2C Interrupt
- Individual Interrupt Vector

11. Wake-up (WKT) Timer

Clocked by built-in RC oscillator with 4 adjustable interrupt times
 16 ms/33 ms/65 ms/130 ms @VCC=3V, 15 ms/29 ms/59 ms/118 ms @VCC=5V

12. Watchdog Timer

- Clocked by built-in RC oscillator with 4 adjustable reset times
 130 ms/260 ms/1040 ms/2080 ms @VCC=3V, 118 ms/236 ms/944 ms/1888 ms @VCC=5V
- Watchdog timer can be disabled/enabled in STOP mode

13. PWMx5

- PWM0:
 - ♦ 8 bits, duty-adjustable, period-adjustable controlled PWM
 - ♦ PWM0 clock source: Fast-clock or FIRC 16 MHz/32MHz, with 1~64 pre-scalers
- PWM1A/PWM1B/PWM1C:
 - ♦ 8 bits, duty-adjustable (Independent), period-adjustable controlled (Shared) PWM x3
 - → PWM1A/1B/1C clock source (Shared): Fast-clock or FIRC 16 MHz/32MHz, with 1~64 pre-scalers
- PWM2:
 - ♦ 8 bits, duty-adjustable, period-adjustable controlled PWM
 - ♦ PWM2 clock source: Fast-clock or FIRC 16 MHz/32MHz, with 1~64 pre-scalers

14. 12-bit ADC Converter with 12 input channels and 1 internal reference voltage

- Internal Bandgap reference voltage1.25V ±2% @25°C, VCC=3V~5V
- ADC reference voltage=VCC/4V/3V/2.5V selection

15. PB2~PB7 individual pin change wake up

16. Reset Sources

• Power On Reset/Watchdog Reset/Low Voltage Reset/External Pin Reset

17. Low Voltage Reset (LVR) /Low Voltage Detection Flag (LVD) Option:

- 4-Level Low Voltage Reset: 2.4V/2.5V/3.2V/3.7V
- 3-Level Low Voltage Detection Flag: 2.5V/3.2V/3.7V (when LVR = 2.4V)

18. 16-Channel Touch Key with 3 TK-module (TKM0/TKM1/TKM2)

- TKM0 and TKM1 with 4-channel touch key, TKM2 with 8-channel touch key
- Each module include:
 - ♦ 3-bit TK reference clock capacitor adjustment
 - ♦ 3-bit touch key clock frequency select(can be fixed frequency or auto change)
 - ♦ 12-bit TK scan length adjustment
- Interrupt/Wake-up CPU while key is pressed

19. Operating Voltage :

- Fsys= 1 MHz, LVR ~5.5V
- Fsys=16 MHz, 2.8V~5.5V
- 20. Operating Temperature Range: -40°C to + 85°C
- 21. Table Read Instruction: 16-bit ROM data lookup table
- 22. Instruction set: 39 Instructions

23. Instruction Execution Time

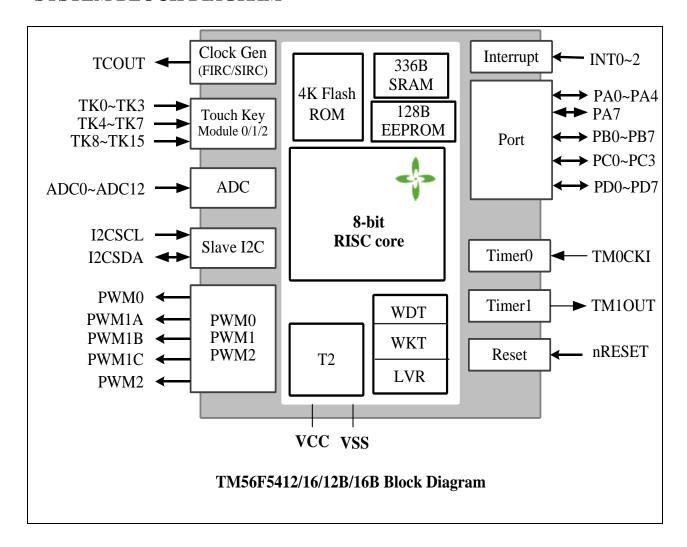
• 2 system clocks (Fsys) per instruction except branch

24. I/O ports: Maximum 26 programmable I/O pins

- Open-Drain Output
- CMOS Push-Pull Output
- Schmitt Trigger Input with pull-up resistor option

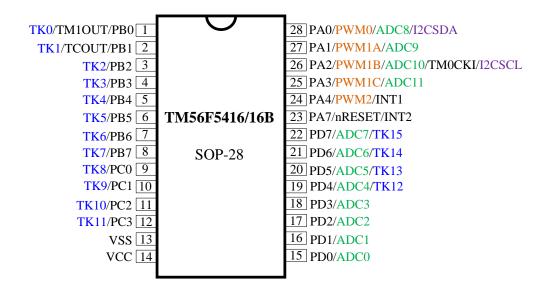
25. Programming connectivity support 4-wire (ICP) or 5-wire program

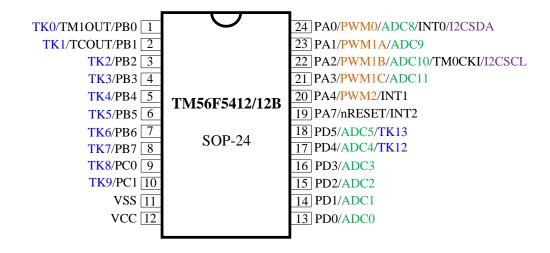
- 26. Page Locker Size: 512W/640W/768W/23040W by 128 words step
- 27. Package Types:
 - SOP-28 (TM56F5416/TM56F5416B)

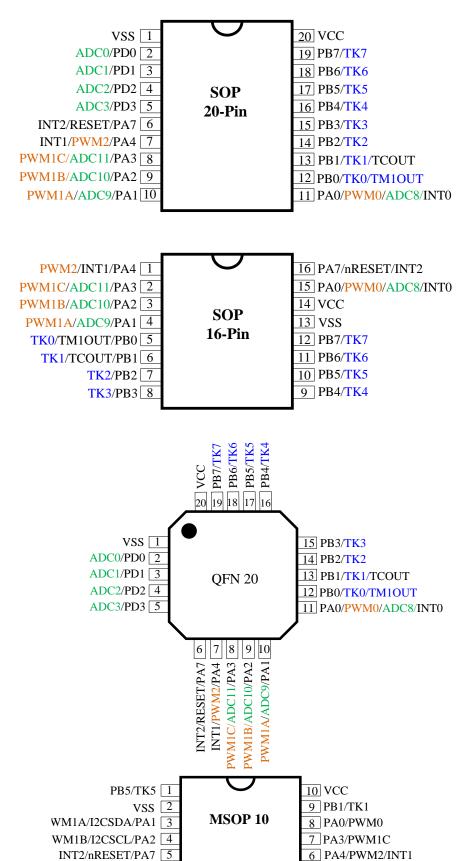


- SOP-24 (TM56F5412/TM56F5412B)
- SOP-20 (TM56F5416/TM56F5416B)
- SOP-16 (TM56F5416/TM56F5416B)
- QFN-20 (TM56F5416B)
- MSOP-10 (TM56F5416B)

28. Supported EV board on ICE


EV board: EV8226


SYSTEM BLOCK DIAGRAM



PIN ASSIGNMENT DIAGRAM

PIN DESCRIPTIONS

Name	In/Out	Pin Description
PA7, PA4–PA0	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or open-drain output. Pull-up resistor are assignable by software.
nRESET	I	External active low reset/ Schmitt-trigger input
VCC, VSS	P	Power input pin and ground
INT0~INT2	I	External interrupt input
PB7-PB0	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or open-drain output. Pull-up resistor are assignable by software.
PC3-PC0	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or open-drain output. Pull-up resistor are assignable by software.
PD7-PD0	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or open-drain output. Pull-up resistor are assignable by software.
PWM0 PWM1A PWM1B PWM1C PWM2	О	PWM0/PWM1/PWM2 outputs
ADC12~ADC0	I	Analog to Digital Convert input pin
TK3~TK0	I	Touch Key Module 0 input
TK7~TK4	I	Touch Key Module 1 input
TM15~TK8	I	Touch Key Module 2 input
TM0CKI	I	Timer0's input pin in counter mode
TCOUT	0	Fsys/2 clock output
TM1OUT	0	Timer1 overflow toggle output
I2CSCL	I	I2C Serial clock input
I2CSDA	I/O	I2C serial data pin

Programming pins:

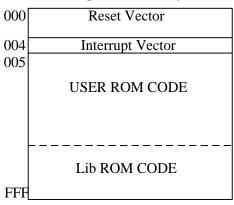
Normal mode (5-wire): VCC / VSS / PA0 / PA1 / PA2

 $ICP\ mode\ (4-wire):\ VCC\ /\ VSS\ /\ PA0\ /\ PA1\ -When\ using\ ICP\ (In-circuit\ Program)\ mode,\ the\ PCB\ needs\ to\ remove\ all\ components\ of\ PA0,\ PA1.$

Pin Summary

	Di.	ı nu	mh	or					GF	OI		et					
	111	1 110	шо	CI				Input Out		put	r res	Alt	ern	nate Function			
SOP-28	SOP-24	SOP-20	QFN-20	SOP16	MSOP10	Pin Name	Type	Weak Pull-up	Ext. Interrupt	O.D.	P.P.	Function after reset	PWM	ADC	Touch Key	12C	MISC
1	1	12	12	5		PB0/TM1OUT/TK0	I/O			О	О	PB0			О		TM1OUT
2	2	13	13	6	9	PB1/TCOUT/TK1	I/O			О	О	PB1			О		TCOUT
3	3	14	14	7		PB2/TK2	I/O	О		О	О	PB2			О		
4	4	15	15	8		PB3/TK3	I/O	О		О	О	PB3			О		
5	5	16	16	9		PB4/TK4	I/O	О		О	О	PB4			О		
6	6	17	17	10		PB5/TK5	I/O	О		О	О	PB5			О		
7	7	18	18	11		PB6/TK6	I/O	О		О	О	PB6			О		
8	8	19	19	12		PB7/TK7	I/O	О		О	О	PB7			О		
9	9					PC0/TK8	I/O			О	О	PC0			О		
10	10					PC1/TK9	I/O			О	О	PC1			О		
11						PC2/TK10	I/O			О	О	PC2			О		
12						PC3/TK11	I/O			О	О	PC3			О		
13	11	1	1	13	2	VSS	P										
14	12	20	20	14	10	VCC	P										
15	13	2	2			PD0/ADC0	I/O			О	О	PD0		О			
16	14	3	3			PD1/ADC1	I/O			О	О	PD1		О			
17	15	4	4			PD2/ADC2	I/O			О	О	PD2		О			TM0OUT
18	16	5	5			PD3/ADC3	I/O			О	О	PD3		О			
19	17					PD4/ADC4/TK12	I/O			О	О	PD4		О	О		
20	18					PD5/ADC5/TK13				О	О	PD5		О	О		
21						PD6/ADC6/TK14						PD6		О	О		
22						PD7/ADC7/TK15	I/O					PD7		О	О		
23	19	6	6	16	5	PA7/ INT2/ nRESET	I/O		О	О	О	PA7					nRESET
24	20	7	7	1	6	PA4/INT1/ PWM2	I/O		О	О	О	PA4	О				
25	21	8	8	2	7	PA3/ADC8/PWM1C	I/O			О	О	PA3	О	О			
26	22	9	9	3	4	PA2/ADC9/TM0CKI/I2CSCL/PWM1B	I/O			О	О	PA2	О	О		О	TM0CKI
27	23	10	10	4	3	PA1/ADC10/PWM1A	I/O			О	О	PA1	О	О			
28	24	11	11	15	8	PA0/ADC11/INT0/I2CSDA/PWM0	I/O		О	О	О	PA0	О	О		О	

Symbol: O.D. = Open Drain P.P. = Push-Pull Output


FUNCTION DESCRIPTION

1. CPU Core

1.1 Program ROM (PROM)

The Flash Program ROM of this device is 4K words, with an extra 64-Word INFO area to store the SYSCFG and an extra 128-Byte EEPROM. The ROM can be written multi-times and can be read as long as the PROTECT and LPROT bit of SYSCFG are not set. The SYSCFG can be read no matter PROTECT or LPROT is set or cleared, but PROTECT bit can be cleared only when User ROM Code area is erased, and LPROT bit can be cleared only whe the Lib ROM Code area is erased. That is, unprotect the PROTECT or LPROT bit needsto erase the corresponding ROM area. If LPROT bit is set, the ROM can still be written multi-times in the User ROM Code area to update user ROM code again by writer, but the Lib ROM Code area will not be read or written again by writer untill the LPROT bit is cleared. On the other hand, if PROTECT bit is set, the user ROM code area will not be read by writer, and the user ROM code can't be updated until the PROTECT bit is cleared.

Program Memory

00 EEPROM 128 x 8

1.1.1 Reset Vector (000H)

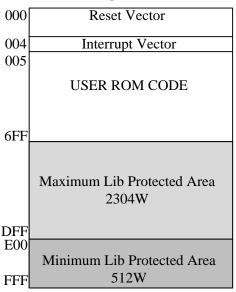
After reset, system will restart the program counter (PC) at the address 000h, all registers will revert to the default value.

1.1.2 Interrupt Vector (004H)

When an interrupt occurs, the program counter (PC) will be pushed onto the stack and jumps to address 004H.

1.2 System Configuration Register (SYSCFG)

The System Configuration Register (SYSCFG) is located at Flash INFO area; it contains two 13bits registers (CFGWL/CFGWH). The SYSCFG determines the option for initial condition of CPU. It is written by PROM Writer only. User can select LVR operation Mode and chip operation mode by SYSCFG register. The 13th bit of CFGWH is code protect selection bit . If this bit is 1, the data in PROM will be protected, when user reads PROM.


Bit			13~0					
Default V	alue		000000000000					
Bit		Description						
		LPRO	LPROT: Lib Code protection selection					
	13	1	Enable					
		0	Disable					
		LSIZE	: Lib Size selection					
CFGWL		1111	2304W					
	12~9							
		0001	512W					
		0000	No use Page locker function					
	8~0	Reser	ved					
		PROT	ECT: Code protection selection					
	13	1	Enable					
		0	Disable					
		XRST	E: External Pin (PA7) Reset Enable					
	12	1	Enable					
		0	Disable					
		LVR:	Low Voltage Reset Mode					
CFGWH		11	LVR 3.7V (without LVD function)					
l crown	11~10	10	LVR 3.2V (without LVD function)					
		01	LVR 2.5V (without LVD function)					
		00	LVR 2.4V (with LVD function, LVDS 00 : 3.2V 01: 2.5V 1X: 3.7V)					
		WDTE	: WDT Reset Enable					
	9~8	11	Always Enable					
	3~0	10	Enable in FAST/SLOW mode, Disable in IDLE/STOP mode					
		0X Disable						
	7~0	Reser	ved					

1.3 Page Lock Function

TM56F5412/16/12B/16B support Page locker function. By setting LPROT (CFGWL.13), user can choose whether to turn it on. If the user A (library code provider) turns this function on, the user A (library code provider) can select different size (512~2304W) of lib protected area by LSZIE (CFGWL 12~9). In lib protected area, the user B (firmware developer) can't read ROM code by TABRL/TABRH instruction or in any other way. By using the TICE99IDE tool, the user A can provide a protected lib for the user B to use, but the user B does not kno its details, and the user B still can continue to complete the main code in the unprotected area.

4K Program ROM

T 0700	* 11 50
LSIZE	Lib Protected Area
2304	(700H~FFFH)
2176	(780H~FFFH)
2048	(800H~FFFH)
1920	(880H~FFFH)
1792	(900H~FFFH)
1664	(980H~FFFH)
1536	(A00H~FFFH)
1408	(A80H~FFFH)
1280	(B00H~FFFH)
1152	(B80H~FFFH)
1024	(C00H~FFFH)
896	(C80H~FFFH)
768	(D00H~FFFH)
640	(D80H~FFFH)
512	(E00H~FFFH)
	•

1.4 EEPROM

The TM56F5412/16/12B/16B contain 128 bytes of data EEPROM memory. It is organized as a separate data space, in which single bytes can be read and written. According the physical characteristic the EEPROM need more long access time than Program ROM. The EEPROM has an endurance of at least 50K write/erase cycle.

The EEPROM Read usage is same as use Table Read instruction except EEPROM enable bit must be set to high. By writing 0xE2 to register EEPEN (18Eh) can set the EEPROM enable bit, writing other value to EEPEN (18Eh) will clear the EEPROM enable bit.

♦ Example: read EEPROM data @address 23h

MOVLW E2h

MOVWX EEPEN ; set EEPROM enable bit

CLRX DPH ; set DPH=0 for EEPROM write/read

MOVLW 00h MOVWX DPH MOVLW 23h

MOVWX DPL ; set DPTR=0023h

; read EEPROM @Address 23h data into W by using opcode TABRL

TABRL

. . . **.**

; another way to read EEPROM data into W

MOVLW 01h :

MOVWX TABR ; TABR=01h=opcode TABRL MOVXW TABR ; Read EEPROM data to W

. . .

The EEPROM Write usage is similar to read EEPROM except the LVRPD must be set to 0x37 to disable LVR. When F/W writes data to the register EEPDT (18Fh), the data will also be written to EEPROM.

♦ Example: write EEPROM data A5h to address 23h

MOVLW E2h ;

MOVWX EEPEN ; set EEPROM enable bit

CLRX DPH ; set DPH=0 for EEPROM write/read

MOVLW 23h

MOVWX DPL ; set DPTR=0023h

MOVLW 00000011b

MOVWX EEPCTL ; setEEPROM write with 7.2mS time out

MOVLW 037H ; W=37H

MOVWX LVRPD ; LVRPD = 037H, force LVR disable

; LVR must be disabled before EEP write operation

MOVLW A5h

MOVWX EEPDT ; write data A5h EEPDT (18Fh)

; the data also save to EEPROM @Address 23h

BTXSC EEPTO ; check EEPROM write time-out flag

GOTO TIMEOUT

CLRX EEPEN ; protect EEPROM from abnormal write CLRX LVRPD ; LVRPD = 00H, clear LVR disable

18Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EEPCTL	EEPTO	_	_	_	_	_	EEI	PTE
R/W	R	_	_	_	_	_	R/W	R/W
Reset	0	_	_	_	-	_	0	0

18Dh.7 **EEPTO:** EEPROM Write Time-Out flag

18Dh.1~0 **EEPTE:** Write Time-Out enable (Busy wait time)

00:Disable 01: 0.9ms 10:3.6ms 11:7.2ms

18Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EEPEN		EEPEN						
R/W		W						
Reset		0						

18Eh.7~0 **EEPEN:** EEPROM Access Enable

write 0xE2 to this register will enable EEPROM access write others value to this register will disable EEPROM access

18Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
EEPDT		EEPDT							
R/W		W							
Reset		0							

18Fh.7~0 **EEPDT:** EEPROM Data to write

write data to this register will let H/W write the data to EEPROM when EEPROM access is enable

109h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LVRPD		LVRPD						
R/W		W						
Reset		0						

109.7~0 **LVRPD:** LVR power down register

Write 0x37 to force LVR be disabled. (LVR must be disabled before EEPROM Write operation) Write other value to clear LVR disable.

1.5 RAM Addressing Mode

There is one Data Memory Plane in CPU. The Plane is partitioned into four banks. Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for Special Function Register (SFR). Above the SFR are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.


Bit RP1 and RP0 (STATUS[6:5]) are the bank select bit

RP1: RP0	BANK
00	0
01	1
10	2
11	3

The plane can be addressed directly or indirectly. The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing. Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the

File Select Register, FSR. Reading the INDF register itself, indirectly (FSR = '0') will read 00h. Writing to the NDF register indirectly results in a no operation (althought status bit may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bir (STATUS<7>). Refer to the figure below.

Direct / Indirect Addressing

Keeping RP0=RP1=0 in the begining of the F/W code and using the new instruction set. The advantage of using new instruction is user can ignore the bank location of registers and the code size can be saved. The new instruction is almost same as the old instruction. By replacing the "F" to "X" in the instruction set can easily use the new instruction without switching the bank. For example:

BC F	TM0IE	→	BCX	TM0IE
DEC F	CNT, 1	→	DECX	CNT,1
INCFSZ	RAM25, 0	→	INCXSZ	RAM25, 0
MOVWF	PAMODL	→	MOVWX	PAMODL
RLF	RAMA0, 0	→	RLX	RAMA0, 0
SWAPF	ADCTL, 0	→	SWAPX	ADCTL, 0

DS-TM56F5412_16_12B_16B_E 18 Rev 0.94, 2022/04/11

	BANK0		BANK1		BANK2		BANK3
_	00~7Fh		80h~FFh		100h~17Fh	-	180h~1FFh
00h	INDF	80h	INDF	100h	INDF	180h	INDF
01h	TM0	81h	OPTION	101h	TM0	181h	OPTION
02h	PCL	82h	PCL	102h	PCL	182h	PCL
03h	STATUS	83h	STATUS	103h	STATUS	183h	STATUS
04h	FSR	84h	FSR	104h	FSR	184h	FSR
05h	PAD	85h		105h	TESTREG	185h	DPL
06h	PBD	86h		106h		186h	DPH
07h	PCD	87h		107h		187h	
08h	PDD	88h 89h		108h 109h	LVRPD	188h	
09h 0Ah	PCLATH	8Ah	PCLATH	109H	PCLATH	189h 18Ah	PCLATH
0An 0Bh	INTIE	8Bh	INTIE	10An	INTIE	18Bh	INTIE
0Ch	INTIF	8Ch	PAMODH	10Ch	IINTIL	18Ch	TABR
0Dh	114111	8Dh	PAMODL	10Dh		18Dh	EEPCTL
0Eh		8Eh	PBMODH	10Eh	BGTRIM	18Eh	EEPEN
0Fh	CLKCTL	8Fh	PBMODL	10Fh	2011(11)	18Fh	EEPDT
10h	TM0RLD	90h	PCMODL	110h	I2CTXD0	190h	
11h	TM0CTL	91h	PDMODH	111h	I2CTXD1	191h	TKMCTL0
12h	TM1	92h	PDMODL	112h	I2CCTL	192h	TKMCTL1
13h	TM1RLD	93h		113h	I2CFLG	193h	TKMCHS
14h	TM1CTL	94h	PWMCTL1	114h	I2CRCD0	194h	TKMFLG
15h	T2CTL	95h	PWM0PRD	115h	I2CRCD1	195h	TKM0DL
16h	MF016	96h	PWM1PRD	116h		196h	TKM1DL
17h	ADH	97h	PWM2PRD	117h		197h	TKM2DL
18h	ADCTL	98h	MF098	118h		198h	TKM10DH
19h	MF019	99h		119h		199h	TKM2DH
1Ah	PWM0D	9Ah	TKM0CON	11Ah		19Ah	TKM0TMRH
1Bh	PWM1AD	9Bh	TKM1CON	11Bh		19Bh	TKM0TMRL
1Ch	PWM1BD	9Ch	TKM2CON	11Ch		19Ch	TKM1TMRH
1Dh	PWM1CD	9Dh		11Dh		19Dh	TKM1TMRL
1Eh	PWM2D	9Eh		11Eh		19Eh	TKM2TMRH
1Fh	PWMCTL0	9Fh		11Fh		19Fh	TKM2TMRL
20h		A0h		120h		1A0h	
~		~		~		~	
	RAM Bank0		RAM Bank1		RAM Bank2		RAM Bank3
~	area	~	area	~	area	~	area
	(80 Bytes)		(80 Bytes)		(80 Bytes)		(80 Bytes)
6Fh		EFh		16Fh		1EFh	
-	common area	F0h	accesses	170h	accesses	1F0h	accesses
~	16 Bytes	~	70h~7Fh	~	70h~7Fh	~	70h~7Fh
7Fh		FFh		17Fh		1FFh	

♦ Example: read/write register by using direct addressing (RP0=RP1=0)

TM1 equ 12h :SFR in Bank0 PWM1PRD 96h :SFR in Bank1 equ I2CTXD0 110h :SFR in Bank2 equ TKMCTL0 191h ;SFR in Bank3 equ RAM20 equ 20h ;RAM in Bank0 A0h ;RAM in Bank1 RAMA0 equ 120h :RAM in Bank2 RAM120 equ RAM1A0 1A0h ;RAM in Bank3 equ

MOVXW TM1 ; read TM1 (Bank0) to W
MOVXW PWM1PRD ; read PWM1PRD (Bank1) to W
MOVXW I2CTXD0 ; read I2CTXD0 (Bank2) to W
MOVXW TKMCTL0 ; read TKMCTL0 (Bank4) to W

MOVLW 16h

MOVWX RAM20 ; W=16h write to RAM[0x20]
MOVWX RAMA0 ; W=16h write to RAM[0xA0]
MOVWX RAM120 ; W=16h write to RAM[0x120]
MOVWX RAM1A0 ; W=16h write to RAM[0x1A0]

.

MOVLW 037H ; W=37H

MOVWX LVRPD ; LVRPD = W = 037H, force LVR disable

♦ Example: read/write register by using indirect addressing (RP0=RP1=0, IRP=1)

MOVLW PWM2PRD ; W=97H

MOVWX FSR ; FSR = W = 97H

MOVXW INDF ; read SFR PWM2PRD (97h) to W

.

BSX IRP ; $IRP=1 \Rightarrow Bank2/3$

MOVLW 09H ; W=09H

MOVWX FSR ; FSR = W = 09H

MOVLW 037H ; W=37H

MOVWX INDF : LVRPD (109H) = W = 037H

♦ Example: read/write register by using indirect addressing (RP0=RP1=0, IRP=0)

MOVLW PWM2PRD ; W=97H

MOVWX FSR ; FSR = W = 97H

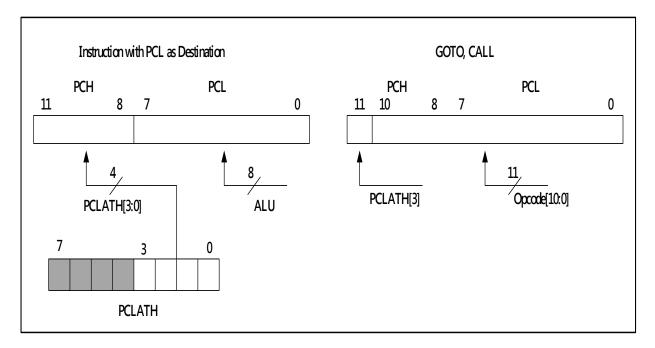
MOVXW INDF ; read SFR PWM2PRD (97h) to W

.

BCX IRP ; IRP=0 => Bank0/1

MOVLW 09H ; W=09H

MOVWX FSR ; FSR = W = 09H


MOVLW 037H ; W=37H

MOVWX INDF ; LVRPD (109H) = W = 037H

1.6 Programming Counter (PC) and Stack

The Programming Counter is 12-bit wide capable of addressing a 4K x 16 Flash ROM. The low byte comes from PCL register, which is readable and writable register. The upper bits (PC[11:8]) are not readable, but are indirectly writable through the PCLATH register. On any RESET, the upper bits of the PC will be cleared. As a program instruction is executed, the PC will contain the address of the next program instruction to be executed. The PC value is normally increased by one except the followings. The Reset Vector (000h) and the Interrupt Vector (004h) are provided for PC initialization and Interrupt. For CALL/GOGO instruction, PC loads 12 bit address from instruction word. For RET/RETI/RETLW instruction, PC retrives its content from the top level STACK. Executeing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC[11:8] bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper 4 bits to the PCLATH register. When the lower 8 bits are written to the PCL register, all 12 bits of program counter wil change to the values contained in the PCLATH register and those being written to the PCL register.

The STACK is 12-bit wide and 8-level indepth. The CALL instruction and hardware interrupt will push STACK level in order. While the RET/RETL/RETLW instruction pops STACK level in order.

For table lookup, the device offer the powerful table read instructions TABRL, TABRH to return the 16-bit ROM data into W register by setting DPTR={DPH, DPL} registers.

♦ Example: To look up the PROM data located "TABLE1" and "TABLE2".

ORG 00h : Reset Vector **START GOTO** 04h **ORG** ; Interrupt Entry Address **MOVWX** W TMP ; if HWAUTO =1, can omit this line **STATUS** ; if HWAUTO =1, can omit this line MOVXW **MOVWX** STATUS_TMP; if HWAUTO =1, can omit this line **MOVXW PCLATH** MOVWX PCLATH TMP:

DS-TM56F5412_16_12B_16B_E 21 Rev 0.94, 2022/04/11

PAGESEL .MAC ROMADDR

MOVWX PCLATH

.ENDM

MOVLW (ROMADDR>>8) & 0xFF

PAGESEL TM0INT ; Macro instruction. Because TM0INT_TASK is located at

another 2K ROM page, CALL/GOTO only support 2K access.

BTXSC TM0IF

CALL TM0INT TASK

:

MOVXW PCLATH_TMP

MOVWX PCLATH

MOVXW STATUS_TMP; if HWAUTO =1, can omit this line MOVWX STATUS; if HWAUTO =1, can omit this line SWAPX W_TMP, f; if HWAUTO =1, can omit this line SWAPX W_TMP; if HWAUTO =1, can omit this line MOVXW W_TMP; if HWAUTO =1, can omit this line

RETI

START:

MOVLW 00h

MOVWX INDEX ; Set lookup table's address

LOOP:

MOVLW (TABLE1>>8) & 0xff

MOVWX PCLATH ; Instruction with PCL as Destination MOVXW INDEX ; Move index value to W register

CALL TABLE1 ; To lookup data, W=55h

• • • • •

BCX PCLATH,3

GOTO LOOP ; Go to LOOP label

.

MOVLW (TABLE2>>8)&0xff

MOVWX DPH ; DPH register (F186.3~0)

MOVLW (TABLE2)&0xff

MOVWX DPL ; DPL register (F185.7~0)

TABRL ; read PROM low byte data to W (W=86h)
TABRH ; read PROM high byte data to W (W=19h)

ORG F68h

TABLE1:

ADDWX PCL, 1; Add the W with PCL, the result back in PCL

RETLW 55h; W=55h when return

.

TABLE2:

.DT 0x1986, 0x3719, 0x2983 ; 16-bit ROM data

TM0INT TASK:

MOVLW 11101111B MOVWX INTIF

:

RET

Note: The chip defines 256 ROM address as one page, so that ROM has 16 pages, 000H~0FFH, 100H~1FFH, ... F00H~FFFH. One the other words, PC[11:8] can be defined as page. A lookup table must be located at the same page to avoide getting wrong data. Thus, the lookup table has maximum 255 data for above example with starting a lookup table at X00H (X=1,2,...F). If a lookup table has fewer data, it needs not setting the starting address at X00H, but only confirms all lookup table are located at the same page.

1.6.1 ALU and Working (W) Register

The ALU is 8-bit wide and capable of addition, subtraction, shift and logical operations. In two-operand instructions, typically one operand is the W register, which is an 8-bit non-addressable register used for ALU operations. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either W register or a file register. Depending on the instruction executed, the ALU may affect the values of Carry (C), Digit Carry (DC), and Zero (Z) Flags in the STATUS register. The C and DC flags operate as a /Borrow and /Digit Borrow, respectively, in subtraction.

Note: /Borrow represents inverted of Borrow register.

/Digit Borrow represents inverted of Digit Borrow register

1.6.2 STATUS Register (03H/83H/103H/183H)

This register contains the arithmetic status of ALU and the Reset status. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. It is recommended, therefore, that only BCX, BSX and MOVWX instructions are used to alter the STATUS Register because these instructions do not affect those bits.

STATUS	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0						
Reset Value	0	0	0	0	0	0	0	0						
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W						
Bit		Description												
7	0 = Bank	IRP: Register Bank Select bit (used for indirect addressing) $0 = \text{Bank } 0.1 \text{ (00h - FFh)}$ $1 = \text{Bank } 2.3 \text{ (100h - 1FFh)}$												
6:5	RP1:RP0 : Register Bank Select bits (used for direct addressing) 00 = Bank 0 (00h - 7Fh) 01 = Bank 1 (80h - FFh) 10 = Bank 2 (100h - 17Fh) 11 = Bank 3 (180h - 1FFh) Each bank is 128 bytes													
4	0: after Pov	TO: Time Out Flag 0: after Power On Reset, LVR Reset or CLRWDT/SLEEP instruction 1: WDT time out occurs												
3			LVR Reset or	· CLRWDT in	struction									
2	1: the result	t of a logic op	eration is not eration is zero	1										
1	0: no carry	DC: Decimal Carry Flag or Decimal / Borrow Flag ADD instruction O: no carry 1: a carry from the low nibble bits of the result Occurs SUB instruction O: a borrow from the low nibble bits of the result occurs												
0	C: Carry Flag 0: no carry 1: a carry or		struction		0: a borrow 1: no borro	occurs from	struction the MSB							

DS-TM56F5412_16_12B_16B_E 23 Rev 0.94, 2022/04/11

♦ Example: Write immediate data into STATUS register.

MOVLW 00h

MOVWX STATUS ; Clear STATUS register

♦ Example: Bit addressing set and clear STATUS register.

 $\begin{array}{lll} BSX & STATUS, 0 & ; Set C=1. \\ BCX & STATUS, 0 & ; Clear C=0. \end{array}$

♦ Example: Determine the C flag by BTXSS instruction.

BTXSS STATUS, 0 ; Check the carry flag GOTO LABEL_1 ; If C=0, goto label_1 GOTO LABEL_2 ; If C=1, goto label_2

2. Reset

This device can be RESET in four ways.

- Power-On-Reset (POR)
- Low Voltage Reset (LVR)
- External Pin Reset (PA7)
- Watchdog Reset (WDT)

Resets can be caused by Power on Reset (POR) , External Pin Reset (XRST) , Watchdog Timer Reset (WDTR) , or Low Voltage Reset (LVR) . The CFGWH controls the Reset functionality. After Reset, the SFRs are returned to their default value, the program counter (PC) is cleared , and the system starts running from the reset vector 000H place. The TO and PD flags at status register (STATUS) are indicate system reset status.

2.1 Power on Reset

After Power-On-Reset, all system and peripheral control registers are then set to their default hardware Reset values. The clock source, LVR level and chip operation mode are selected by the SYSCFG register value.

2.2 Low Voltage Reset

The Low Voltage Reset features static reset when supply voltage is below a threshold level. There are three threshold levels can be selected. The LVR's operation mode is defined by the SYSCFG register. See the following LVR Selection Table; user must also consider the lowest operating voltage of operating frequency.

LVR Selection Table:

LVR level	Operating voltage
LVR2.4	5.5V > VCC > 2.4V
LVR2.5	5.5V > VCC > 2.5V
LVR3.2	5.5V > VCC > 3.2V
LVR3.7	$5.5V > VCC > 3.7V \text{ or } V_{CC} = 5.0V$

Different Fsys have different system minimum operating voltage, reference to Operating Voltage of DC characteristics, if current system voltage is low than minimum operating voltage and lower LVR is selected, then the system maybe enters dead-band and error occurs.

2.3 External Pin Reset

The External Pin Reset can be disabled or enabled by the SYSCFG register. It needs to keep at least 2 SIRC clock cycle long to be seen by the chip. XRST also set all the control registers to their default reset value. The TO/PD flags are not affected by these resets.

2.4 Watchdog Timer Reset

WDT overflow Reset can be disabled or enabled by the SYSCFG register. It runs in Fast/Slow mode and runs or stops in IDLE/STOP mode. WDT overflow speed can be defined by WDTPSC SFR. WDT is cleared by device Reset or CLRWDT SFR bit WDT overflow Reset also set all the control registers to their default reset value. The TO/PD flags are not affected by these resets.

♦ Example: Defining Reset Vector

ORG 000H

GOTO START ; Jump to user program address.

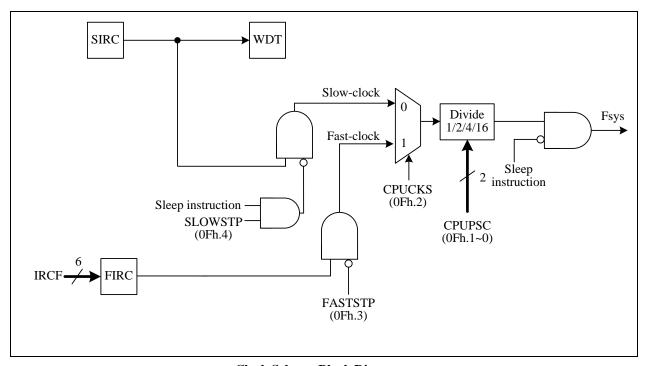
ORG 010H

START:

... ; 010H, The head of user program

...

GOTO START


3. Clock Circuitry and Operation Mode

3.1 System Clock

The device is designed with dual-clock system. There are two kinds of clock source, i.e. SIRC (Slow Internal RC), and FIRC (Fast Internal RC). Each clock source can be applied to CPU kernel as system clock. When in IDLE mode, only Slow-clock can be configured to keep oscillating to provide clock source to T2 block. Refer to the figure below.

After Reset, the device is running at Slow mode with 80 KHz SIRC. S/W should select the proper clock rate for chip operation safety. The higher $V_{\rm CC}$ allows the chip to run at a higher System clock frequency. In a typical condition, an 16 MHz System clock rate requires $V_{\rm CC} > 2.8V$.

The CLKCTL SFR controls the System clock operating. H/W automatically blocks the S/W abnormally setting for this register. S/W can only change the Slow-clock type in Fast mode and change the Fast-clock type in Slow mode. Never to write both FASTSTP=1 & CPUCKS=1. It is recommended to write this SFR bit by bit.

Clock Scheme Block Diagram

The frequency of FIRC (Fast Internal RC) can be adjusted by IRCF and IRCF is trimmed to FIRC=16 MHz in chip manufacturing

DS-TM56F5412_16_12B_16B_E 27 Rev 0.94, 2022/04/11

0Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCTL	_	_	_	SLOWSTP	FASTSTP	CPUCKS	CPU	PSC
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
Reset	_	_	_	0	1	0	1	1

0Fh.4 **SLOWSTP:** Stop Slow-clock in Stop Mode

0: no Stop

1: Stop Slock-clock

0Fh.3 **FASTSTP:** Stop Fast Clock

0: Fast Clock Running

1: Fast Clock Stop

0Fh.2 **CPUCKS:** System Clock selection

0: Slow Clock as system clock

1: Fast Clock as system clock

0Fh.1~0 **CPUPSC:** System clock Prescaler

0: div 16 1: div 4

2: div 2

3: div 1

FAST Mode:

In this mode, the program is executed using Fast-clock as CPU clock (Fsys) . The Timer0, Timer1 blocks are also driven by Fast-clock, The PWM0/PWM1 block can driven by FIRC16M, FIRC32M or Fsys. T2 can be driven by Slow-clock or Fsys/128 by setting T2CKS (15h.2).

SLOW Mode:

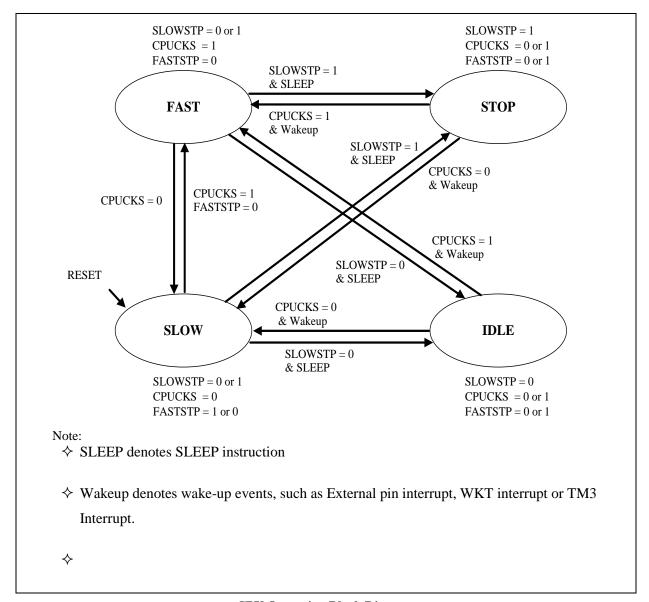
After power-on or reset, device enters SLOW mode, the default Slow-clock is SIRC. In this mode, the Fast-clock can stopped (by FASTSTP=1, for power saving) or running (by FASTSTP=0), and Slow-clock is enabled. All peripheral blocks (Timer0, Timer1etc...) clock sources are Slow-clock in the SLOW mode.

IDLE Mode:

If Slow-clock is enabled (SLOWSTP=0) and T2CKS=0 before executing the SLEEP instruction, the CPU enters the IDLE mode. In this mode, the Slow-clock source keeps T2 block running. CPU stop fetching code and all blocks are stop except T2 related circuits. Idle mode is terminated by Reset or enabled Interrupts wake up.

Another way to keep clock oscillation in IDLE mode is setting WKTIE=1 before executing the SLEEP instruction. In such condition, the WKT keeps working and wake up CPU periodically.

T2 and WKT/WDT are independent and have their own control registers. It is possible to keep both T2 and WKT working and wake-up in the IDLE mode.


STOP Mode:

If Slow-clock and WKT/WDT are disabled before executing the SLEEP instruction, every block is turned off and the device enters the STOP mode. STOP mode is similar to IDLE mode. The difference is all clock oscillators either Fast-clock or Slow-clock is power down and no clock is generated.

3.2 Dual System Clock Modes Transition

The device is operated in one of four modes: FAST mode, SLOW mode, IDLE mode, and STOP mode.

CPU Operation Block Diagram

CPU Mode & Clock Functions Table:

Mode	Oscillator	Fsys	Fast-clock	Slow-clock	TM0/TM1	T2	Wakeup event
FAST	FIRC	Fast-clock	Run	Set by SLOWSTP	Run	Run	X
SLOW	SIRC	Slow-clock	Set by FASTSTP	Run	Run	Run	X
IDLE	SIRC	Stop	Stop	Run	Stop	Run	WKT/IO/T2
STOP	Stop	Stop	Stop	Stop	Stop	Stop	IO

• FAST mode switches to SLOW mode

The following steps are suggested to be executed by order when FAST mode switches to SLOW mode:

- (1) Enable Slow-clock (SLOWSTP=0)
- (2) Switch to Slow-clock (CPUCKS=0)
- (3) Stop Fast-clock (FASTSTP=1)
- ♦ Example: Switch FAST mode to SLOW mode.

BCX SLOWSTP ; Enable Slow-clock.

NOP

BCX CPUCKS ; Fsys=Slow-clock. BSX FASTSTP ; Disable Fast-clock.

SLOW mode switches to FAST mode

SLOW mode can be enabled by CPUCKS=0 in CLKCTL register. The following steps are suggested to be executed by order when SLOW mode switches to FAST mode:

- (1) Enable Fast-clock (FASTSTP=0)
- (2) Switch to Fast-clock (CPUCKS=1)
- ♦ Example: Switch SLOW mode to FAST mode (The Fast-clock stop).

BCX FASTSTP ; Enable Fast-clock.

NOP

BSX CPUCKS ; Fsys=Fast-clock

• IDLE mode Setting

The IDLE mode can be configured by following setting in order:

- (1) Enable Slow-clock (SLOWSTP=0) or WKT(WKTIE=1)
- (2) Switch T2 clock source to Slow-clock (T2CKS=0)
- (3) Execute SLEEP instruction

IDLE mode can be waken up by External interrupt, WKT interrupt and TM3 interrupt.

♦ Example: Switch FAST/SLOW mode to IDLE mode.

BCX SLOWSTP ;

TP ; Enable Slow-clock.

MOVLW 00000**000**B

MOVWX T2CTL ; T2 Clock source=Slow-clock. T2PSC=div 32768

SLEEP ; Enter IDLE mode.

STOP Mode Setting

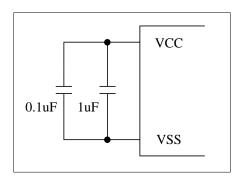
The STOP mode can be configured by following setting in order:

- (1) Stop Slow-clock (SLOWSTP=1)
- (2) Stop WKT/WDT (WKTIE=0, WDTE=10 or 0X)
- (3) Execute SLEEP instruction

STOP mode can be waken up only by External pin interrupt.

♦ Example: Switch FAST/SLOW mode to STOP mode.

BSX SLOWSTP ; Disable Slow-clock. MOVLW 0000**0**000B ; Disable WKT counting

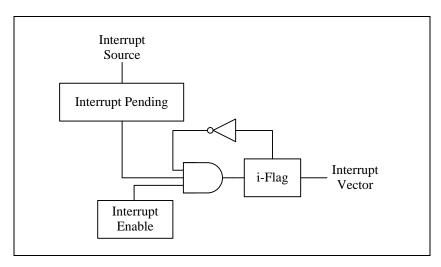

MOVWX INTIE

SLEEP ; Enter STOP mode.

3.3 System Clock Oscillator

In the Fast Internal RC (FIRC) mode, the on-chip oscillator generates 16 MHz system clock. Since power noise degrades the performance of Internal Clock Oscillator, placing power supply bypass capacitors 1 uF and 0.1 uF very close to VCC/VSS pins improves the stability of clock and the overall system.

Internal RC Mode



4. Interrupt

TM56F5412/16/12B/16B has 1 level, 1 vector and 10 interrupt sources. Each interrupt source has its own enable control bit. An interrupt event will set its individual pending flag, no matter its enable control bit is 0 or 1.

If the corresponding interrupt enable bit (INTIE[7:0], I2CIE, TKIE) has been set, it would trigger CPU to service the interrupt. CPU accepts interrupt in the end of current executed instruction cycle. In the mean while, a "CALL 004" instruction is inserted to CPU, and i-flag is set to prevent recursive interrupt nesting.

The i-flag is cleared in the instruction after the "RETI" instruction. That is, at least one instruction in main program is executed before service the pending interrupt. The interrupt event is level triggered. F/W must clear the interrupt event register while serving the interrupt routine.

0Bh/8Bh/10Bh/18Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

INTIE.7 **ADCIE:** ADC interrupt enable

0: disable 1: enable

INTIE.6 **T2IE:** T2 interrupt enable

0: disable 1: enable

INTIE.5 **TM1IE:** Timer1 interrupt enable

0: disable 1: enable

INTIE.4 **TM0IE:** Timer0 interrupt enable

0: disable 1: enable

INTIE.3 **WKTIE:** Wakeup Timer interrupt enable

0: disable 1: enable

INTIE.1

INTIE.2 INT2IE: INT2 (PA7) interrupt enable

0: disable 1: enable

INT1IE: INT1 (PA4) interrupt enable

0: disable 1: enable

INTIE.0 INTOIE: INTO (PA0) interrupt enable

0: disable 1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

OCh.7 **ADCIF:** ADC interrupt event pending flag

This bit is set by H/W after end of ADC conversion, write 0 to this bit will clear this flag

0Ch.6 **T2IF:** T2 interrupt event pending flag

This bit is set by H/W while T2 overflows, write 0 to this bit will clear this flag

0Ch.5 **TM1IF:** Timer1 interrupt event pending flag

This bit is set by H/W while Timer1 overflows, write 0 to this bit will clear this flag

0Ch.4 **TM0IF:** Timer0 interrupt event pending flag

This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

0Ch.3 **WKTIF:** Wakeup Timer interrupt event pending flag

This bit is set by H/W while Wakeup Timer is timeout, write 0 to this bit will clear this flag

OCh.2 **INT2IF:** INT2 (PA7) pin falling interrupt pending flag

This bit is set by H/W at INT2 pin's falling edge, write 0 to this bit will clear this flag

0Ch.1 **INT1IF:** INT1 (PA4) pin falling/rising interrupt pending flag

This bit is set by H/W at INT1 pin's falling/rising edge, write 0 to this bit will clear this flag

0Ch.0 **INT0IF:** INT0 (PA0) pin falling/rising interrupt pending flag

This bit is set by H/W at INTO pin's falling/rising edge, write 0 to this bit will clear this flag

81h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTON	HWAUTO	INT0EDG	INT1EGE	-	WDTPSC		WKTPSC	
R/W	R/W	R/W	R/W	-	R/W	R/W	R/W	R/W
Reset	0	0	0	-	1	1	1	1

81h.6 INT0EDG: INT0 interrupt trigger edge

0: falling edge trigger, 1: rising edge trigger

81h.5 INT1EDG: INT1 interrupt trigger edge

0: falling edge trigger, 1: rising edge trigger

192h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKMCTL1	TKMHSEN	TKM2PD	TKM1PD	TKM0PD	TKIE	TKM2JMP	TKM1JMP	TKM0JMP
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	1	1	1	0	0	0	0

192h.3 **TKIE:** Touch Key interrupt enable

0: disable 1: enable

194h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKMFLG	-	TKM2IF	TKM1IF	TKM0IF	TKIF	-	-	-
R/W	-	R/W	R/W	R/W	R/W	-	-	-
Reset	-	0	0	0	0	-	-	-

194h.6 **TKM2IF:** Touch Key module2 interrupt pending flag,

set by H/W after end of TK2 conversion, write 0 to clear this bit or write 1 to TKM2SOC will clear this flag

194h.5 **TKM1IF:** Touch Key module1 interrupt pending flag,

set by H/W after end of TK1 conversion, write 0 to clear this bit or write 1 to TKM1SOC will clear this flag

194h.4 **TKM0IF:** Touch Key module0 interrupt pending flag,

set by H/W after end of TK0 conversion, write 0 to clear this bit or write 1 to TKM0SOC will clear this flag

194h.3 **TKIF:** Touch Key interrupt pending flag,

set by H/W while TKM0, TKM1 or TKM2 are end of conversion, write 0 to this bit will clear all of Touch Key flag.

112h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
I2CCTL	-	-	-	I2CIE	I2CEN	-	I2CID	
R/W	-	-	-	R/W	R/W	-	R/W	
Reset	_	-	-	0	0	-	0	0

112h.4 **I2CIE:** Slave I2C interrupt enable

0: disable 1: enable

113h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
I2CFLG	-	I2CIF	TXD1F	TXD0F	RCD10VF	RCD1F	RCD00VF	RCD0F
R/W	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	-	0	0	0	0	0	0	0

113h.6 **I2CIF:** Slave I2C interrupt pending flag

This bis is set by H/W while

- ♦ I2CRCD0 or I2CRCD1 receive data finished
- ♦ I2CRCD0 or I2CRCD1 data overflow occurred
- ♦ I2CTXD0 or I2CTXD1 data transmit finished

Write 0 to this bit will clear this flag and slave I2C related flags.

- 113h.5 **TXD1F:** Slave I2C transmitting data register 1 flag
 - This bit is set by H/W while I2CTXD1 data transmitting finished, write 0 to this bit will clear this flag
- 113h.4 **TXD0F:** Slave I2C transmitting data register 0 flag

This bit is set by H/W while I2CTXD0 data transmitting finished, write 0 to this bit will clear this flag

113h.3 **RCD10VF:** Slave I2C receiving data register 1 overflow

This bit is set by H/W while receiving I2CRCD1 overflow, write 0 to this bit will clear this flag

113h.2 **RCD1F:** Slave I2C receiving data register 1 flag

This bit is set by H/W while data receiving to I2CRCD1 finished, write 0 to this bit will clear this flag

113h.1 **RCD0OVF:** Slave I2C receiving data register 0 overflow

This bit is set by H/W while receiving I2CRCD0 overflow, write 0 to this bit will clear this flag

113h.0 **RCD0F:** Slave I2C receiving data register 0 flag

This bit is set by H/W while data receiving to I2CRCD0 finished, write 0 to this bit will clear this flag

5. I/O Port

5.1 PA0-4,PA7, PB0-7, PC0-3 and PD0-7

These pins can be used as Schmitt-trigger input, CMOS push-pull output. The pull-up resistor is assignable to each pin by S/W setting. To use the pin in Schmitt-trigger input mode, S/W needs to set the I/O pin to Mode0 or Mode1 and PxD=1. Reading the pin data (PxD) has different meaning. In "Read-Modify-Write" instruction, CPU actually reads the output data register. In the others instructions, CPU reads the pin state. The so-called "Read-Modify-Write" instruction includes BSX, BCX and all instructions.

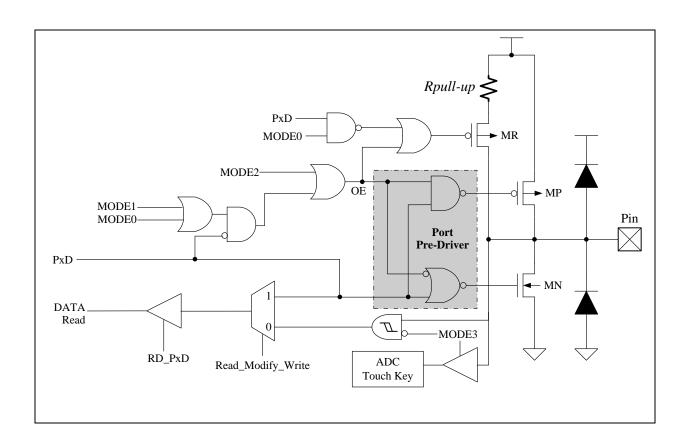
These pins can operate in four different modes as below.

Mode	PA0~PA4, PB, PC, PD pin function	PxD SFR data	Pin State	Resistor Pull-up	Digital Input
Mode 0	Open Drain	0	Drive Low	N	N
	Input	1	Pull-up	Y	Y
Mode 1	Open Drain	0	Drive Low	N	N
	Open Drain	1	Hi-Z	N	Y
Mode 2	CMOS Output	0	Drive Low	N	N
	CMOS Output	1	Drive High	N	N
	Touch Key (when TKCHS)	0	TK	N	N
Mode 3	ADC	0	_	N	N
	Waltour	1	_	Y	Y
	Wakeup	0	_	N	Y

I/O Pin Function Table

Beside I/O port function, each pin has one or more alternative functions, such as ADC and Touch Key.

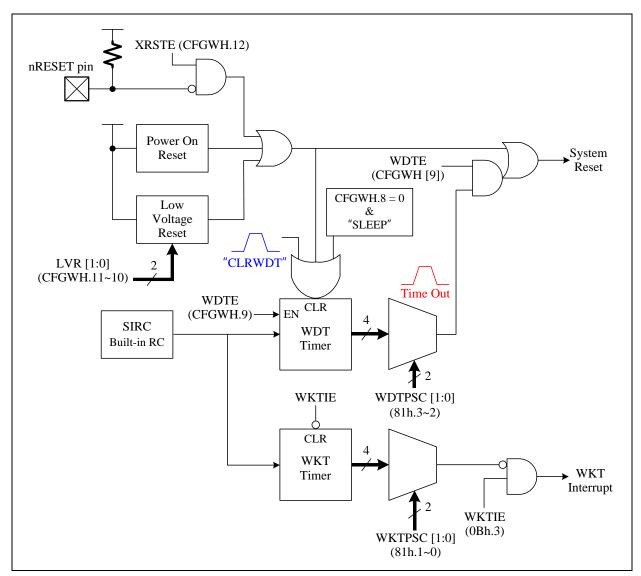
Pin Name	Wake-up	CKO	ADC/TK	others	Mode3
PA0	INT0		ADC8	PWM0/I2CSDA	ADC8
PA1			ADC9	PWM1A	ADC9
PA2			ADC10	PWM1B/I2CSDC/ TM0CKI	ADC10
PA3			ADC11	PWM1C	ADC11
PA4	INT1			PWM2	
PA7	INT2				
PB0		TM1OUT	TK0		
PB1		TCOUT	TK1		
PB2	Wakeup		TK2		Wakeup
PB3	Wakeup		TK3		Wakeup
PB4	Wakeup		TK4		Wakeup
PB5	Wakeup		TK5		Wakeup
PB6	Wakeup		TK6		Wakeup
PB7	Wakeup		TK7		Wakeup
PC0			TK8		
PC1			TK9		
PC2			TK10		
PC3			TK11		
PD0			ADC0		ADC0
PD1			ADC1		ADC1
PD2			ADC2		ADC2
PD3			ADC3		ADC3
PD4			ADC4/TK12		ADC4
PD5			ADC5/TK13		ADC5
PD6			ADC6/TK14		ADC6
PD7			ADC7/TK15		ADC7


PortA/B/C/D multi-function Table

The necessary SFR setting for pin's alternative function is list below.

Alternative Function	Mode	PxD SFR data	Pin State	Other necessary SFR setting
INTO, INT1	0	1	Input with Pull-up	INTxIE
TM0CKI	1	1	Input	TM0CTL
TK0~TK15	2	0	Touch Key Idling, CMOS output Low	TKMxCHS
	_	· ·	Touch Key Scanning	TKMxCHS
AD0~AD11	3	X	ADC Channel	ADCHS
PWM0, PWM2,	1	X	PWM Output (Open Drain)	PWM0OE PWM2OE PWM1AOE
PWM1A, PWM1B, PWM1C	2	X	PWM Output (COMS Output)	PWM1BOE PWM1COE
IOCOCI.	0	1	Input with Pull-up	
I2CSCL	1	1	Input	IA CICITI
IACOD A	0	X	Input with Pull-up/ Open Drain Output	I2CCTL
I2CSDA	1	X	Input / Open Drain Output	
Walsone	2	0	Input	
Wake-up	3	1	Input with Pull-up	

Mode Setting for Port Alternative Function



6. Peripheral Functional Block

6.1 Watchdog (WDT) /Wakeup (WKT) Timer

The WDT and WKT share the same built-in internal RC Oscillator and have individual own counters. The overflow period of WDT, WKT can be selected by individual prescaler (WDTPSC [1:0], WKTPSC [1:0]). The WDT timer is cleared by the CLRWDT instruction. If the Watchdog is enabled (CFGWH.9=WDTE=1), the WDT generates the chip reset signal. Set CFGWH.8 to '0' can let WDT timer stop counting after executing SLEEP instruction, i.e. CFGWH.8=1 WDT timer is always keep counting even if the SLEEP instruction is executed.

The WKT timer is an interval timer, WKT time out will generate WKT Interrupt Flag (WKTIF). The WKT timer is cleared/stopped by WKTIE=0. Set WKTIE=1, the WKT timer will always count regardless at any CPU operating mode.

WDT/WKT Block Diagram

Watchdog clear is controlled by CLRWDT instruction and moving any value into WDTCLR is to clear watchdog timer.

♦ Example: Clear watchdog timer by CLRWDT instruction.

MAIN:

; Execute program.

CLRWDT ; Execute CLRWDT instruction.

• • •

GOTO MAIN

♦ Example: Setup WDT time and disable after executing SLEEP instruction.

MOVLW 0000**01**11B

MOVWX OPTION ; Select WDT Time out=256 ms @5V

SLEEP

♦ Example: Set WKT period and interrupt function.

MOVLW 000001**10**B

MOVWX OPTION ; Select WKT period=64 ms @5V.

MOVLW 1111<u>0</u>111B ; Clear WKT interrupt request flag by using byte operation

; Don't use bit operation "BCX WKTIF" clear interrupt flag

MOVWX INTIF :

MOVLW 0000<u>1</u>000B

MOVWX INTIE

; Enable WKT interrupt function

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.3 **WKTIF:** Wakeup Timer interrupt event pending flag
This bit is set by H/W while Wakeup Timer is timeout, write 0 to this bit will clear this flag

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

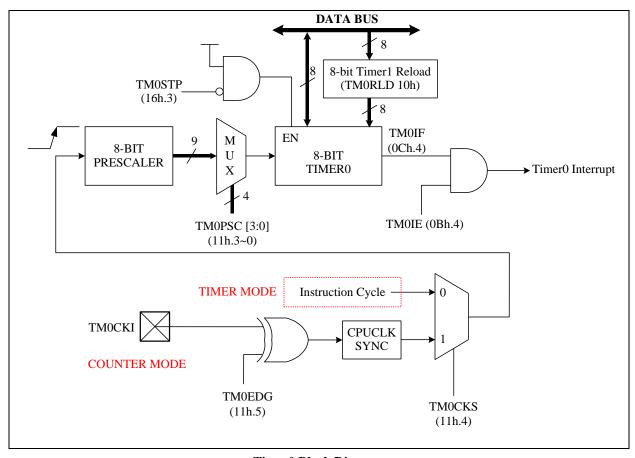
0Bh.3 **WKTIE:** Wakeup Timer interrupt enable

0: disable 1: enable

81h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTON	HWAUTO	INT0EDG	INT1EGE	-	WDT	TPSC	WKT	PSC
R/W	R/W	R/W	R/W	-	R/W	R/W	R/W	R/W
Reset	0	0	0	-	1	1	1	1

81h.3~2 **WDTPSC:** WDT period (@VCC=5V)

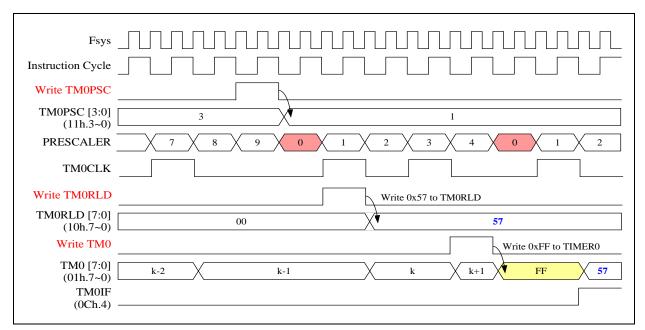
00: 128 ms 01: 256 ms 10: 1024 ms 11: 2048 ms


81h.1~0 **WKTPSC:** WKT period (@VCC=5V)

00: 16 ms 01: 32 ms 10: 64 ms 11: 128 ms

6.2 Timer0

The Timer0 is an 8-bit wide register 01h (TM0). It can be read or written as any other register. Besides, Timer0 increases itself periodically and automatically rolls over a new "offset value" (TM0RLD) while it rolls over based on the pre-scaled clock source, which can be Fsys/2 or TM0CKI (PA2) rising/falling input. The Timer0 increase rate is determined by "Timer0 Pre-Scale" (TM0PSC) register. The Timer0 always generates TM0IF when its count rolls over. It generates Timer0 Interrupt if (TM0IE) is set. Timer0 can be stopped counting if the TM0STP bit is set.



Timer0 Block Diagram

The following timing diagram describes the Timer0 works in pure Timer mode.

When the Timer0 prescaler (TM0PSC) is written, the internal 8-bit prescaler will be cleared to 0 to make the counting period correct at the first Timer0 count. TM0CLK is the internal signal that causes the Timer0 to increase by 1 at the end of TM0CLK. TM0WR is also the internal signal that indicates the Timer0 is directly written by instruction; meanwhile, the internal 8-bit prescaler will be cleared. When Timer0 counts from FFh to TM0RLD, TM0IF (Timer0 Interrupt Flag) will be set to 1 and generate interrupt if TM0IE (Timer0 Interrupt Enable) is set.

Timer0 works in Timer mode (TM0CKS=0)

The equation of TM0 interrupt time value is as following:

TM0 interrupt interval cycle time=Fsys/2/TM0PSC/ (256-TM0)

♦ Example: Setup TM0 work in Timer mode

; Setup TM0 clock source and divider

MOVLW 0000<u>0101</u>B ; TM0CKS=0, Setup TM0 clock= Fsys/2

MOVWX TM0CTL ; TM0PSC=5, TM0PSC= Fsys/64

; Set TM0 timer.

BSX TM0STP ; Disable TM0 counting (Default "0").

MOVLW 156

MOVWX TM0 ; Write 156 into TM0 register

MOVLW 124

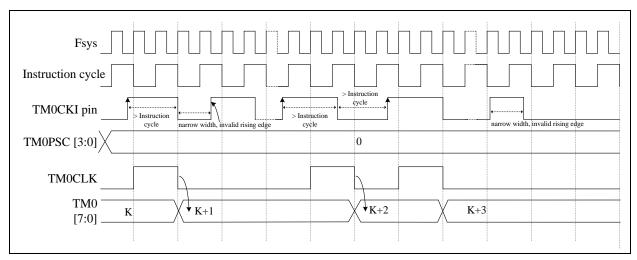
MOVWX TM0RLD ; Write 156 into TM0RLD register

; Enable TM0 timer and interrupt function.

MOVLW 11101111B ; Clear TM0 request interrupt flag by byte operation

MOVWX INTIF ; 0Ch

MOVLW 00010000B; Enable TM0 interrupt function


MOVWX INTIE : 0Bh

BCX TM0STP ; Enable TM0 counting (Default "0").

The following timing diagram describes the Timer0 works in Counter mode.

If TM0CKS=1 then Timer0 counter source clock is from TM0CKI pin. TM0CKI signal is synchronized by instruction cycle (Fsys/2) that means the high/low time durations of TM0CKI must be longer than one instruction cycle time (Fsys/2) to guarantee each TM0CKI's change will be detected correctly by the synchronizer.

Timer0 works in Counter mode for TM0CKI (TM0EDG=0), TM0CKS=1

♦ Example: Setup TM0 work in Counter mode and clock source from TM0CKI pin (PA2)

; Setup TM0 clock source from TM0CKI pin (PA2) and divider.

MOVLW 00**110000**B

MOVWX TM0CTL ; TM0EDG=1

; Select TM0 prescaler counting edge=falling edge. ; TM0CKS=1, Setup TM0 clock=TM0CKI pin (PA2)

; TM0PSC=0

; TM0 clock prescaler= TM0CKI divided by 1

; Set TM0 timer and stop TM0 counting.

BSX TM0STP ; Disable TM0 counting (Default "0").

MOVLW 00H

MOVWX TM0; Write 0 into TM0 register 01H.

; Start TM0 count and read TM0 counter.

BCX TM0STP ; Enable TM0 counting.

NOP NOP

BSX TM0STP ; Disable TM0 counting (Default "0")

MOVXW TM0

01h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0		=	-	TN	M0	-	=	=
R/W								
Reset	0	0	0	0	0	0	0	0

01h **TM0:** Timer0 content

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Bh.4 **TM0IE:** Timer0 interrupt enable

0: disable 1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.4 **TM0IF:** Timer0 interrupt event pending flag

This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

10h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0RLD		=	-	TM0	RLD	=	-	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

10h TM0RLD: Timer0 Reload Data

11h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0CTL	-	_	TM0EDG	TM0CKS		TM0	PSC	
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

11h.5 **TM0EDG:** Timer0 prescaler counting edge for TM0CKI pin

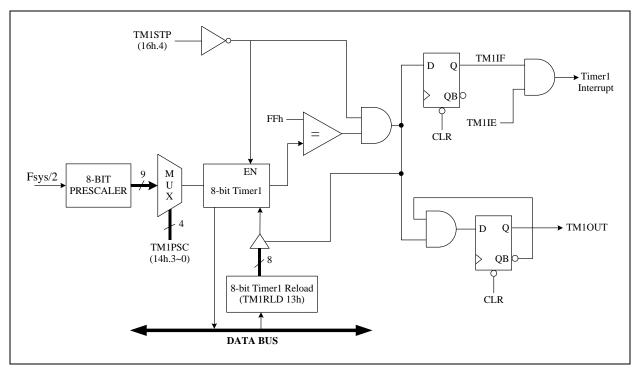
0: rising edge 1: falling edge

11h.4 **TM0CKS:** Timer0 prescaler clock source

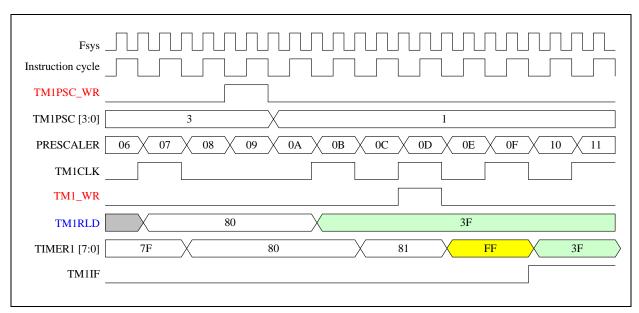
0:Fsys/2 1: TM0CKI pin (PA2 pin)

11h.3~0 **TM0PSC:** Timer0 prescaler. Timer0 prescaler clock source divided by

0001:/2 0010: /4 0000: /1 0011:/8 0100: /16 0101: /32 0110: /64 0111:/128 1000: /256 1001: /512 1010: /1024 1011: /2048 1100: /4096 1101:/8192 1110: /16384 1111:/32768

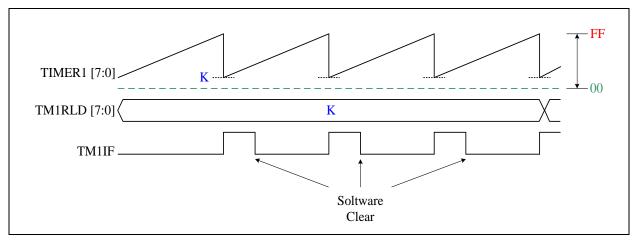

16h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF016	LVDF	LVDEN	T2CLR	TM1STP	TM0STP	LVRSAV	LV	DS
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	0	1	0	0	1	0	1

16h.3 **TM0STP:** Timer0 counter stop 0: Release 1: Stop counting



6.3 Timer1

The Timer1 is an 8-bit wide register. It can be read or written as any other register. Besides, Timer1 increases itself periodically and automatically reloads a new "offset value" (TM1RLD) while it rolls over based on the pre-scaled instruction clock (Fsys/2). The Timer1 increase rate is determined by TM1PSC register. Set the TM1STP bit will stop Timer1 counting. TM1OUT is an output signal that toggles when Timer1 overflow.



Timer1 Block Diagram

Timer1 Timing Diagram

Timer1 Reload Diagram

♦ Example: Setup TM1 work in Timer mode and counting overflow toggle out to TM1OUT (PB0) configuration.

; Setup TM1 clock source, divider and enable TM1OUT

MOVLW 0000<u>0101</u>B

MOVWX TM1CTL ; TM1PSC=5 , Select TM1 clock=Fsys/64. BSX TM1OE ; Enable TM1OUT function pin (PB0).

; Set TM1 timer offset and stops TM1 counting

BSX TM1STP ; Stop TM1 counting (Default "0").

MOVLW F0H

MOVWX TM1; Write F0H into TM1 counter

; Enable TM1 timer and interrupt function.

MOVLW 11011111B ; Clear TM1 request interrupt flag by byte operation

MOVWX INTIF ; 09H

MOVLW 00<u>1</u>00000B ; Enable TM1 interrupt function.

MOVWX INTIE ;

BCX TM1STP ; Enable TM1 counting (Default "0").

Example:

Fsys=4 MHz, TM1PSC=1, TM1 clock source=Fsys/4=1 MHz

TM1RLD=0xF0,

TM1 interrupt time= (1/1 MHz) * (0xFF - 0xF0) = 1 us*16=16 us

TM1OUT output time period=16 us *2=32 us.

TM1OUT output frequency=1/32 us=31.250 KHz.

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Bh.5 **TM1IE:** Timer1 interrupt enable

0: disable 1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.5 **TM1IF:** Timer1 interrupt event pending flag

This bit is set by H/W while Timer1 overflows, write 0 to this bit will clear this flag

12h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM1				TN	М 1			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

12h **TM1:** Timer1 content

13h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM1RLD				TM1	RLD			
R/W	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0

13h.7~0 **TM1RLD:** Timer1 reload offset value while it rolls over

14h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM1CTL	_	_	_	_		TM1	PSC	
R/W	_	_	_	_	W	W	W	W
Reset	_	_	_	_	0	0	0	0

14h.3~0 **TM1PSC:** Timer1 prescaler. Timer1 clock source divided by

 0000: Fsys/2
 0001: Fsys/4
 0010: Fsys/8
 0011: Fsys/16

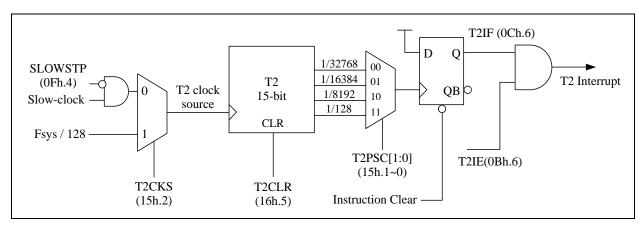
 0100: Fsys/32
 0101: Fsys/64
 0110: Fsys/128
 0111: Fsys/256

1xxx: Fsys/512

16h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF016	LVDF	LVDEN	T2CLR	TM1STP	TM0STP	LVRSAV	LV	DS
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	0	1	0	0	1	0	1

16h.4 **TM1STP:** Timer1 counter stop

0: Release1: Stop counting


98h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF098	TCOE	TM10E	PWM00E	PWM2OE	PWM1AOE	PWM1BOE	PWM1COE	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
Reset	0	0	0	0	0	0	0	-

F1B.5 **TM10E:** Enable Timer1 overflow toggle output to PB0 pin (TM10UT)

6.4 T2:15-bit Timer

The T2 is a 15-bit counter and the clock sources are from either Fsys/128 or Slow-clock. It is used to generate time base interrupt and T2 counter block clock. The T2 content cannot be read by instructions. It generates interrupt flag T2IF (0Ch.6) with the clock divided by 32768/16384/8192/128 depends on T2PSC[1:0] (15h.1~0) register bits. The following figure shows the block diagram of T2.

T2 Block Diagram

Example:

[CPU running at FAST mode, Fsys=Fast-clock= FIRC 4 MHz]

♦ Example:

; Setup T2 clock source and divider .

MOVLW 00000<u>101</u>B ;15h.2 (T2CKS) = 1, T2 clock source = Fsys/128

MOVWX T2CTL ;15h.1~0 (T2PSC) =1, Divided by 16384

 \diamond

BSX T2CLR ;16h.5 (T2CLR)=1, Stop T2 counting.

; Enable T2 timer and interrupt function.

MOVLW 10111111B ; Clear T2 request interrupt flag by byte operation

MOVWX INTIF ;

MOVLW 01000000B; Enable T2 interrupt function.

MOVWX INTIE ;

BCX T2CLR ; Enable T2 counting (Default "0").

T2 clock source is Fsys/128 = 4 MHz/128 = 31250 Hz, T2PSC = /16384

T2 frequency = 31250 Hz / 16384 = 1.907 Hz

♦Example:

[CPU running at SLOW mode, Fsys = Slow-clock = SIRC 80Hz]

♦ Example:

; Setup T2 clock source and divider

MOVLW $00000\underline{000}$ B ; 15h.2 (T2CKS) = 0, T2 clock source = Slow-clock

MOVWX T2CTL ; 15.1~0 (T2PSC) =0, Divided by 32768

BSX T2CLR ; Stop T2 counting.

; Enable T2 timer and interrupt function.

MOVLW 10111111B ; Clear T2 request interrupt flag

MOVWX INTIF

MOVLW 01000000B ; Enable T2 interrupt function.

MOVWX INTIE

BCX T2CLR ; Enable T2 counting (Default "0").

T2 clock source is Slow-clock = 80KHz, T2PSC = /32768,

T2 frequency = 80000Hz / 32768 = 2.44Hz

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Bh.6 **T2IE:** T2 interrupt enable

> 0: disable 1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.6 **T2IF:** T2 interrupt event pending flag

This bit is set by H/W while T2 overflows, write 0 to this bit will clear this flag

0Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCTL	_	_	_	SLOWSTP	FASTSTP	CPUCKS	CPU	PSC
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
Reset	_	_	_	0	1	0	1	1

0Fh.4 **SLOWSTP:** Stop Slow-clock in Stop Mode

0: no Stop 1: Stop

15h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T2CTL	_	I	Ι	_	_	T2CKS	T2F	PSC
R/W	_	_	_	_	_	R/W	R/W	R/W
Reset	_	_	_	_	_	0	0	0

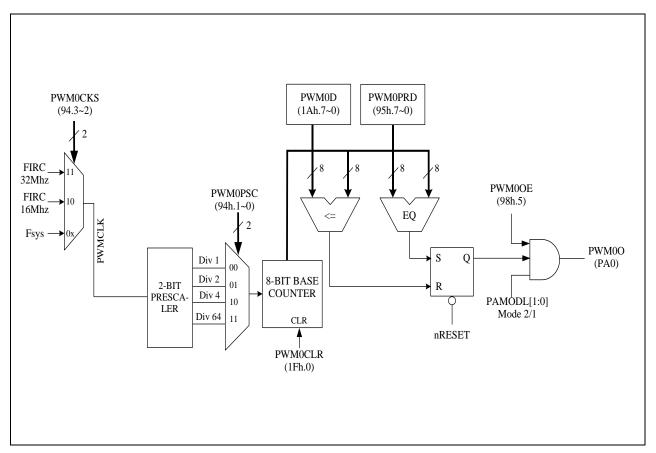
15h.2 **T2CKS:** "T2 clock source" selection.

0: Slow-clock; 1: Fsys/128

T2PSC: T2 prescaler. "T2 clock source" divided by -00: 32768 01: 16384 10: 8192 11: 128 15h.1~0

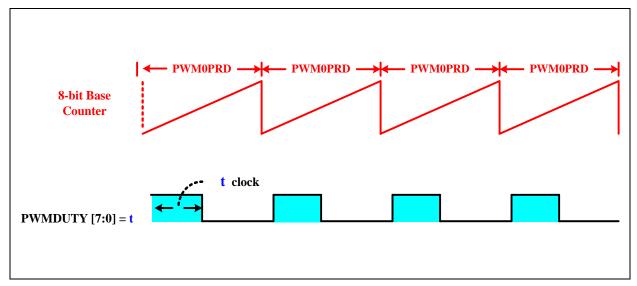
16h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF016	LVDF	LVDEN	T2CLR	TM1STP	TM0STP	LVRSAV	LV	DS
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	0	1	0	0	1	0	1

16h.5 T2CLR: T2 counter clear


0: Release 1: Stop counting

6.5 PWM0: 8 bits PWM

The PWM0 can generate various frequency waveforms with 1024 duty resolution based on PWM0CLK, which can select Fsys or FIRC 16MHz OR FIRC 32MHz, decided by PWM0CKS (94.3~2). The advantage of higher PWM frequency is that the post RC filter can transform the PWM signal to more stable DC voltage level. The PWM output signal reset to low level whenever the 8-bit base counter matches the PWM0 duty register PWM0D (1Ah.7~0).


The PWM0 period can be set by writing period value to PWM0PRD register (95h). Note that changing the PWM0PRD will immediately change the PWM0PRD values. Changing PWM0D (1Ah.7~0) also immediately change the PWM0D values. The Programmer must pay attention to the current time to change PWM0PRD by observing the following figure. There is a digital comparator that compares the PWM0 counter and PWM0RD, if PWM0 counter is larger than PWM0PRD after setting the PWM0PRD, a fault long PWM cycle will be generated because PWM0 counter must count to overflow then keep counting to PWM0PRD to finish the cycle.

PWM0 Block Diagram

DS-TM56F5412_16_12B_16B_E 52 Rev 0.94, 2022/04/11

PWM0 Timing Diagram

♦ Example: [CPU running at Fast mode, Fsys=FIRC 16Mhz]

; Setup PWM0 clock prescaler

MOVLW 00001011B ; PWM0 clock source = FIEC 16MHz

MOVWX PWMCTL1 ; PWM0 prescaler /64

MOVLW 80h

MOVWX PWM0PRD ; set PWM0 period =80h

MOVLW 20h;

MOVWX PWM0D ; set PWM0 duty =20h BCX PWM0CLR ; release PWM0 clear flag

MOVLW xxxxxx10B

MOVWX PAMODL ; set PA0 as CMOS output BSX PWM0OE ; enable PWM0 output to PA0

95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM0PRD				PW	M0PRD			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

95h.7~0 **PWM0PRD:** PWM0 period data

1Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM0D		PWM0D							
R/W									
Reset	0	0	0	0	0	0	0	0	

1Ah.7~0 **PWM0D:** PWM0 duty 8-bit

1Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCTL0	PWM	2CKS	PWM	2PSC	-	PWM2CLR	PWM1CLR	PWM0CLR
R/W	R/	W	R/W	R/W	-	R/W	R/W	R/W
Reset	0	0	0	0	-	0	0	0

1Fh.0 **PWM0CLR:** PWM0 clear

0:PWM0 enable 1:PWM0 clear and keep low

94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCTL1	PWM	1CKS	PWM1PSC		PWM0CKS		PWM0PSC	
R/W	R	W	R/	W	R/	W	R/	W
Reset	0	0	0	0	0	0	0	0

94h.3~2 **PWM0CKS:** PWM0 Clock Source

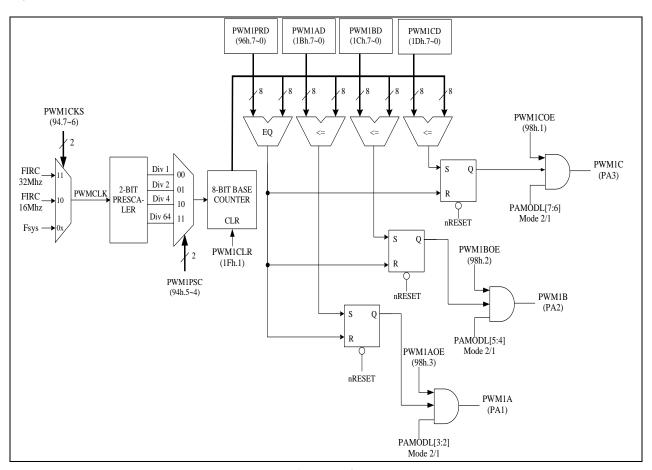
0x: Fsys 10:FIRC16M 11:FIRC32M

94h.1~0 **PWM0PSC:** PWM0 Clock Source Prescaler

00: DIV1 01: DIV2 10:DIV4 11:DIV64

98h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF098	TCOE	TM10E	PWM0OE	PWM2OE	PWM1AOE	PWM1BOE	PWM1COE	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
Reset	0	0	0	0	0	0	0	-

98h.5 **PWM0OE:** PWM0 Output Enable


0: Disable 1:Enable, PWM0 output to PA0

6.6 PWM1A/PWM1B/PWM1C: 8 bits PWMs

PWM1A/PWM1B/PWM1C are 3 PWMs which have independent duty and common period. The PWMs can generate various frequency waveform with 256 duty resolution based on PWMCLK, which can select Fsys, FIRC 16 MHz or 32Mhz, decided by PWMCKS (96h.5~4). The advantage of higher PWM frequency is that the post RC filter can transform the PWM signal to more stable DC voltage level. The PWM output signal reset to low level whenever the 8-bit base counter matches the 8-bit of PWM duty register PWM1AD/PWM1BD/PWM1CD.

The PWM1A/1B/1C common period can be set by writing period value to PWM1PRD register (96h). Note that changing the PWM1PRD will immediately change the PWM1PRD values. The Programmer must pay attention to the current time to change PWM1PRD by observing the following figure. There is a digital comparator that compares the PWM1A/1B/1C counter and PWM1RD, if PWM1A/1B/C counter is larger than PWM1PRD after setting the PWM1PRD, a fault long PWM cycle will be generated because PWM1A/1B/1C counter must count to overflow then keep counting to PWM1PRD to finish the cycle.

PWM1 Block Diagram

96h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM1PRD				PWM	1PRD			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

96h.7~0 **PWM1PRD:** PWM1 period data

1Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM1AD		PWM1AD						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

1Bh.7~0 **PWM1AD:** PWM1A duty 8-bit

1Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM1BD				PWN	11BD			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

1Ch.7~0 **PWM1BD:** PWM1B duty 8-bit

1Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM1CD		PWM1CD						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

1Dh.7~0 **PWM1CD:** PWM1C duty 8-bit

1Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCTL0	PWM	2CKS	PWM2PSC		-	PWM2CLR	PWM1CLR	PWM0CLR
R/W	R/	R/W		R/W	-	R/W	R/W	R/W
Reset	0	0	0	0	-	0	0	0

1Fh.1 **PWM1CLR:** PWM1 clear

0:PWM1 enable 1:PWM1 clear and keep low

94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCTL1	PWM	1CKS	PWM1PSC		PWM0CKS		PWM0PSC	
R/W	R/	W	R/	W	R/	W	R/	W
Reset	0	0	0	0	0	0	0	0

94h.7~6 **PWM1CKS:** PWM1 Clock Source

0x: Fsys 10:FIRC16M 11:FIRC32M

94h.5~4 **PWM1PSC:** PWM1 Clock Source Prescaler 00: DIV1 01: DIV2 10:DIV4 11:DIV64

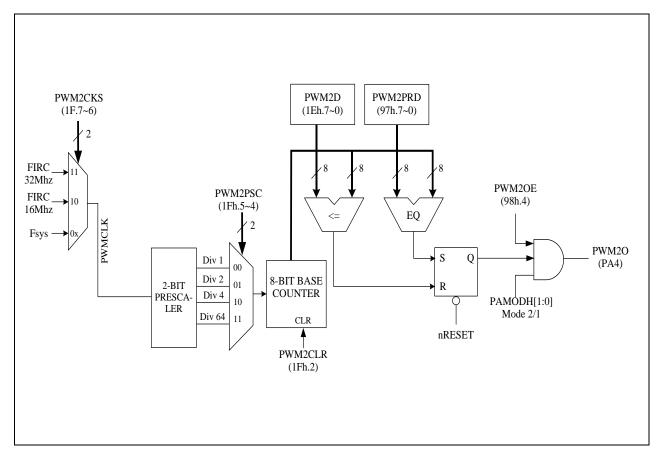
98h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF098	TCOE	TM10E	PWM00E	PWM2OE	PWM1AOE	PWM1BOE	PWM1COE	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
Reset	0	0	0	0	0	0	0	-

98h.3 **PWM1AOE:** PWM1A Output Enable

0: Disable 1:Enable, PWM1A output to PA1

98h.2 **PWM1BOE:** PWM1B Output Enable

0: Disable 1:Enable, PWM1B output to PA2


98h.1 **PWM1COE: PWM1C** Output Enable

0: Disable 1:Enable, PWM1C output to PA3

6.7 PWM2: 8 bits PWM

The PWM2 has the same structure as PWM0. The PWM2 can generate various frequency waveforms with 1024 duty resolution based on PWM2CLK, which can select Fsys or FIRC 16MHz OR FIRC 32MHz, decided by PWM2CKS (1F.7~6). A spread LSB technique allows PWM2 to run its frequency at "PWM2CLK divided by 256" instead of "PWM2CLK divided by 1024", which means the PWM2 is 4 times faster than normal. The advantage of higher PWM2 frequency is that the post RC filter can transform the PWM2 signal to more stable DC voltage level. The PWM output signal reset to low level whenever the 8-bit base counter matches the PWM0 duty register PWM2D (1Eh.7~0).

The PWM2 period can be set by writing period value to PWM2PRD register (97h). Note that changing the PWM2PRD will immediately change the PWM2PRD values. Changing PWM2D (1Eh.7~0) also immediately change the PWM2D values. The Programmer must pay attention to the current time to change PWM2PRD by observing the following figure. There is a digital comparator that compares the PWM0 counter and PWM2RD, if PWM2 counter is larger than PWM2PRD after setting the PWM2PRD, a fault long PWM cycle will be generated because PWM2 counter must count to overflow then keep counting to PWM2PRD to finish the cycle.

PWM2 Block Diagram

97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM2PRD		PWM2PRD								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	1	1	1	1	1	1	1	1		

97h.7~0 **PWM2PRD:** PWM2 period data

1Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM2D		PWM2D									
R/W											
Reset	0	0	0	0	0	0	0	0			

1Eh.7~0 **PWM2D:** PWM2 duty 8-bit

1Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCTL0	PWM	2CKS	PWM2PSC		-	PWM2CLR	PWM1CLR	PWM0CLR
R/W	R/	W	R/W	R/W	-	R/W	R/W	R/W
Reset	0	0	0	0	-	0	0	0

1Fh.7~6 **PWM2CKS:** PWM2 Clock Source

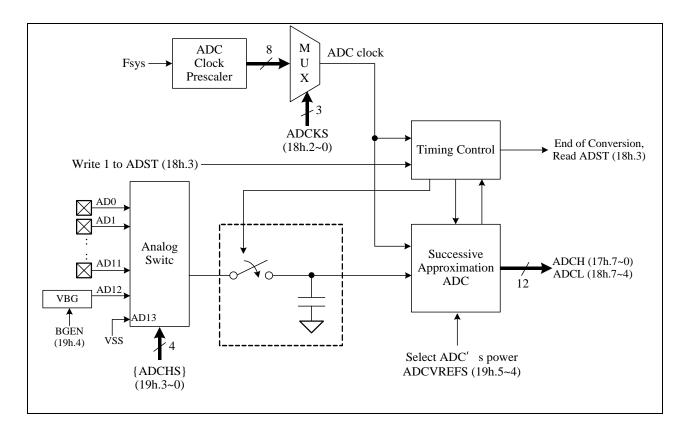
0x: Fsys 10:FIRC16M 11:FIRC32M

1Fh.5~4 **PWM2PSC:** PWM2 Clock Source Prescaler

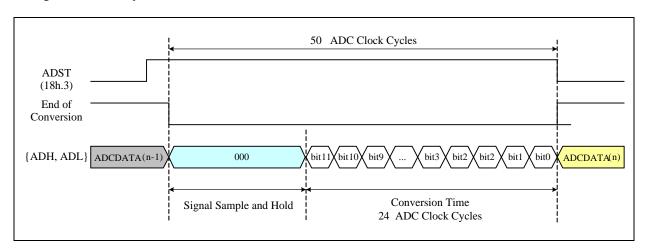
00: DIV1 01: DIV2 10:DIV4 11:DIV64

1Fh.2 **PWM2CLR:** PWM2 clear

0:PWM2 enable 1:PWM2 clear and keep low


98h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF098	TCOE	TM10E	PWM00E	PWM2OE	PWM1AOE	PWM1BOE	PWM1COE	-
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
Reset	0	0	0	0	0	0	0	-

98h.4 **PWM2OE:** PWM2 Output Enable


0: Disable 1:Enable, PWM2 output to PA4

6.8 Analog-to-Digital Converter

The 12-bit ADC (Analog to Digital Converter) consists of a 12-channel analog input multiplexer, control register, clock generator, 12-bit successive approximation register, and output data register. To use the ADC, user needs to set ADCKS (18h.2~0) to choose a proper ADC clock frequency, which must be less than 1 MHz. User then launches the ADC conversion by setting the ADST (18h.3) control bit. After end of conversion, H/W automatic clears the ADST (18h.3) bit. User can poll this bit to know the conversion status. The PxMODE control registers are used for ADC pin configuration, user must set the Pin Mode=3 when the pin is used as an ADC input. The setting can disable the pin logical input path to save power consumption. User needs to set {ADCHS} (19h.3~0) to choose the input channel of ADC. One of them, AD12 is VBG1.25V input for ADC. Besides, VBG is controlled by BGEN (19h.6). ADC reference voltage is selected by ADCVREFS (19h.5~4).

Example:

[CPU running at FAST mode, Fsys=FIRC 16 MHz]

ADC clock frequency=1 MHz, ADC channel=ADC10 (PA2).

♦ Example:

MOVLW 00000<u>**111</u>**B ; Fsys=16 MHz</u>

MOVWX CLKCTL ;

MOVLW 01<u>11</u>0101B ; ADC2 (PA2) Pin Mode=3=ADC input

MOVWX PAMODL;

MOVLW 00000**011**B ; Fsys=16 MHz

MOVWX ADCTL ; 18h.2~0 (ADCKS) = ADC clock=Fsys/32=500KHz

MOVLW 0100**1010**B ; 19h.6=1, enable VBG1.25V; 19h.5~4=0, VREF=VCC

MOVWX MF019 ; 19h.3~0 (ADCHS [3:0]) =10, ADC select ADC10 (PA2 pin).

BSX ADST ; 18h.3 (ADST), ADC start conversion.

WAIT_ADC:

BTXSC ADST ; Wait ADC conversion finish.

GOTO WAIT_ADC

MOVXW ADH ; 17h.7~0, Read ADC result [11:4] into W MOVXW ADCTL ; 18h.7~4, Read ADC result [3:0] into W

:

17h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
ADCH		ADCH									
R/W	R	R	R	R	R	R	R	R			
Reset	-	-	ı	-	ı	ı	-	_			

17h.7~0 **ADH:** ADC output data MSB, ADQ [11:4]

18h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCTL	ADCL				ADST	ADCKS		
R/W	R	R	R	R	R/W	R/W	R/W	R/W
Reset	-	-	_	_	0	0	0	0

18h.7~4 **ADCL:** ADC output data LSB, ADQ [3:0]

18h.3 **ADST:** ADC start bit.

0: H/W clear after end of conversion

1: ADC start conversion

18h.2~0 **ADCKS:** ADC clock frequency selection:

000: Fsys/256 100: Fsys/16 001: Fsys/128 101: Fsys/8 010: Fsys/64 110: Fsys/4 011: Fsys/32 111: Fsys/2

19h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
MF019	-	BGEN	ADCV	'REFS	ADCHS				
R/W	-	R/W	R/W		R/W				
Reset	-	1	0	0	0	0	0	0	

F19.6 **BGEN:** Band Gap BG1.25V enable

0: Disable

1: Enable and Auto disable in STOP/IDLE mode

F19.5~4 **ADCVREFS:** ADC VREF select,

00: VCC, 01: 2.5V, 10: 3V, 11: 4V

F19.3~0 **ADCHS:** ADC channel select

 0000: ADC0 (PD0)
 0001: ADC1 (PD1)
 0010: ADC2 (PD2)
 0011: ADC3 (PD3)

 0100: ADC4 (PD4)
 0101: ADC5 (PD5)
 0110: ADC6 (PD6)
 0111: ADC7 (PD7)

 1000: ADC8(PA0)
 1001: ADC9(PA1)
 1010: ADC10(PA2)
 1011: ADC11(PA3)

1100: VBG 1.25V 1101: ADC13(VSS) 1110: ADC14(VSS)

6.9 Touch Key

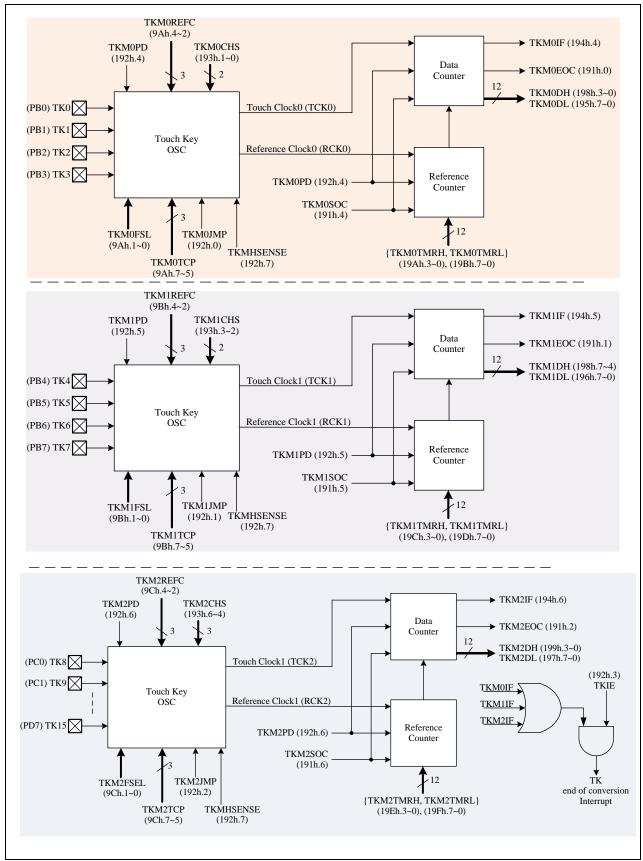
The Touch Key offers an easy, simple and reliable method to implement finger touch detection. In most applications, it doesn't require any external component. The device support 3 modules, 16 channels touch key detection.

To use the Touch Key, user must setup the Pin Mode (see Section 5) correctly as below table. Setting Mode2 for an Idling Touch Key pin can CMOS output Low and reduce the mutual interference between the adjacent keys.

PxMODx setting for Touch Key	TK0~TK15
Pin is Touch Key, Idling	CMOS output Low
Pin is Touch Key, Scanning	(Mode2)

There are three Touch Key Modules (Module0, Module1 and Module2) in the TM56F5412/16/12B/16B. Each module can work independently. In the Touch Key Module, there are two oscillators: Reference Clock (RCKx) and Touch Clock (TCKx). They are connected to the Reference Counter and Data Counter respectively. The frequency of RCKx can be adjusted by setting TKMxREFC. Reference Counter is used to control conversion time. TKMxTCP is touch key clock frequency select (only available in TKMxJMP=0). When TKMxJMP=1, the touch key clock frequency is automatically change.

From starting touch key conversion to end, it will take 0 to 4096 RCK oscillation cycles by setting TKMxTMR. After end of conversion, user can get TK Data (TKMxDH, TKMxDL) from Data counter. TK Data is affected by finger touching. As finger touching TCK is getting slower, the value of TK Data is smaller than the no finger touching. According to the difference of TKMxDATA, user can check if it is touched of not. A suitable TKMxTMR and TKMxREFC setting can adjust TK Data to adapt the system board circumstances. To get the best TKMxREFC setting, user can try different TKMxREFC value, and then find the one which makes the TK Data and TKMxTMR as close as possible. In the other hand, user can adjust the overall operating frequency of the TK system (including TCKx & RCKx) by setting TKMxFSL (frequency select). For all tTouch Key Module, there is a control signal TKMHSENSE (192h.7) can be set to enhance the Touch key performance.


To start the Scanning, user assigns TKMxPD=0, then set the TKMxSOC bit to start touch key conversion, the TKMxSOC bit can be automatically cleared while end of conversion. However, if the SYSCLK is too slow, H/W might fail to clear TKMxSOC due to clock sampling rate. TKMxEOC=0 means conversion is in process. TKMxEOC=1 means the conversion is finish, and the touch key counting result is stored into the 12 bits TK Data Counter TKMxDH and TKMxDL.

TKIF (sum of TKM0IF, TKM1IF and TKM2IF) will active at the first time enable Touch Key function (TKMxPD=0), user should clear TKIF after TKMxPD cleared.

TKM0IF	TKM1IF	TKM2IF	TKIF	STATE			
0	0	0	0	IDLE			
1	0	0	1	TK Module0 is end of conversion			
0	1	0	1	TK Module1 is end of conversion			
1	1	0	1	TK Module0 and Module1 are both end of			
				conversion			
0	0	1	1	TK Module2 is end of conversion			
1	0	1	1	TK Module0 and Module2 are both end of			
				conversion			
0	1	1	1	TK Module1 and Module2 are both end of			
				conversion			
1	1	1	1	All TK module are end of conversion			

Touch Key Interrupt Flag Description

Touch Key Structure

The touch key modules of TM56F5412/TM56F5416 are different to the touch key modules of TM56F5412B/TM56F5416B. The difference is list below.

The Touch Key module difference between TM56F5412/5416 and TM56F5412B/5416B

	5412/5416	5412B/5416B
TKMxREFC	-	The capacitance is 2pF lower than 5412/5416
TKMxTCP –		When TCP=111, RC oscillation become slow, Voltage stabilization is better
Suggestion 1	-	When FSEL=3, TCP=7, HSEN=1 Voltage stabilization effect is best
Suggestion 2	-	For PCB application, short wire path: set REFC=0, long wire path: set REFC=1 or 2

X=0,1,2

♦ Example: Use TK module0, Module1 and Module2, Touch key channel = TK2 (PB2), TK4 (PB4), TK12 (PD4)

.ORG 004h

INT:

BTXSC TKIF ; check TKIF

CALL INT_TK RETI

INT_TK:

BTXSC TKM0IF ; check TKM0IF

CALL INT_TKM0

BTXSC TKM1IF ; check TKM1IF

CALL INT_TKM1

BTXSC TKM2IF ; check TKM2IF CALL INT_TKM2

RET

INT_TKM0:

MOVLW 11101111B ; clear TKM0IF

MOVWX TKMFLG

MOVXW TKM10DH ; read TK0 DATA[11:8] into W register MOVXW TKM0DL ; read TK0 DATA[7:0] into W register

RET

INT_TKM1:

MOVLW 11011111B ; clear TKM1IF

MOVWX TKMFLG

MOVXW TKM10DH ; read TK1 DATA[11:8] into W register MOVXW TKM1DL ; read TK1 DATA[7:0] into W register

RET INT_TKM2:

MOVLW 11101111B; clear TKM2IF

MOVWX TKMFLG

MOVXW TKM2DH ; read TK2 DATA[11:8] into W register MOVXW TKM2DL ; read TK2 DATA[7:0] into W register

RET

SET_MODE:

MOVLW xx10xxxxB ; PBMODL[5:4] = 10b

MOVWX PBMODL ; set PB2 as Mode 2 for touch key input BCX PBD,2 ; clear PB2 as CMOS output low

MOVLW xxxxxx10B ; PBMODH[1:0] = 10b

MOVWX PBMODH; set PB4 as Mode 2 for touch key input BCX PBD,4; clear PB4 as CMOS output low

MOVLW xxxxxx10B ; PDMODH[1:0] = 10b

MOVWX PDMODH; set PD4 as Mode 2 for touch key input BCX PDD,4; clear PD4 as CMOS output low

TK_INIT:

MOVLW 00100100B ;

MOVWX TKM0CON; set TKM0TCP=1, TKM0REFC=1, TKM0FSL=0

MOVLW 00h

MOVWX TKM0TMRH

MOVLW 64H

MOVWX TKM0TMRL ; TKM0TMR=64H=100

MOVLW 01001000B

MOVWX TKM1CON ; set TKM0TCP=2, TKM0REFC=2, TKM0FSL=0

MOVLW 00h

MOVWX TKM1TMRH

MOVLW C8H

MOVWX TKM1TMRL ; TKM1TMR=C8H=200

MOVLW 00000000B

MOVWX TKM2CON; set TKM2TCP=0, TKM2REFC=0, TKM2FSL=0

MOVLW 00h

MOVWX TKM2TMRH

MOVLW 80H

MOVWX TKM2TMRL ; TKM0TMR=80H=128

MOVLW x100 00 10B; set TKM2CHS=4, TKM1CHS=0, TKM0CHS=2

MOVWX TKMCHS

MOVLW 00000000B ; enable TK Module0/1/2, TKMxJMP=0

MOVLW 11110111B ; clear TKIF

MOVWX TKMFLG ;;;BSX TKIE

MOVLW 10001100B

MOVWX TKMCTL1 ; TKMHSEN=1, TKM2 high sensitivity

; TMK2PD=TKM1PD=TKM0PD=0,

; enable TMM2/TKM1/TKM0 activity

; TKIE=1, enable TK interrupt

; TKM2JMP=1, TKM2 clock mode auto-change ; TKM1JMP= TKM0JMP=0, TKM2/TKM1

; clock mode fixed(refer to TKM1TCP/ TKM0TCP)

TK START:

BSX TKM0SOC ; start TKM0 conversion BSX TKM1SOC ; start TKM1 conversion BSX TKM2SOC ; start TKM2 conversion

•

9Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKM0CON	MOCON TKMOTCP				TKM0REFC	TKM0FSL		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

9Ah.7~5 **TKM0TCP:** TK module0 touch key clock frequency select; (only available in TKM0JMP=0)

TKM0TCP ={TKM0TCP[0], TKM0TCP[1], TKM0TCP[2] }, 000: slowest, ..., 111: fastest

9Ah.4~2 **TKM0REFC:** TK module0 Reference clock capacitor select;

000:smallest, ..., 111:biggest(conversion time longest)

9Ah.1~0 **TKM0FSL:** TK module0 clock(RCK0/TCK0) frequency selection;

00: slowest, ..., 11: fastest

9Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKM1CON	KM1CON TKM1TCP			TKM1REFC			TKM1FSL	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

9Bh.7~5 **TKM1TCP:** TK module1 touch key clock frequency select; (only available in TKM1JMP=0)

TKM1TCP ={TKM0TCP[0], TKM1TCP[1], TKM1TCP[2] }, 000: slowest, ..., 111: fastest

9Bh.4~2 **TKM1REFC:** TK module1 Reference clock capacitor select;

000:smallest, ..., 111:biggest(conversion time longest)

9Bh.1~0 **TKM1FSL:** TK module1 clock(RCK1/TCK1) frequency selection;

00: slowest, ..., 11: fastest

9Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKM2CON	TKM2TCP				TKM2REFC	TKM2FSL		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

9Ch.7~5 **TKM2TCP:** TK module2 touch key clock frequency select; (only available in TKM2JMP=0) TKM2TCP ={TKM2TCP[0], TKM2TCP[1], TKM2TCP[2] }, 000: slowest, ..., 111: fastest

9Ch.4~2 **TKM2REFC:** TK module2 Reference clock capacitor select; 000:smallest, ..., 111:biggest(conversion time longest)

9Ch.1~0 **TKM2FSL:** TK module2 clock(RCK2/TCK2) frequency selection;

00: slowest, ..., 11: fastest

191h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKMCTL0	-	TKM2SOC	TKM1SOC	TKM0SOC	-	TKM2EOC	TKM1EOC	TKM0EOC
R/W	-	R/W	R/W	R/W	-	R/W	R/W	R/W
Reset	-	0	0	0	-	-	-	-

191h.6 **TKM2SOC:** Start Touch Key Module2 conversion

Set 1 to start Touch Key Module2 conversion. If SYSCLK is fast enough, this bit will be cleared by H/W at the end of conversion. S/W can also write 0 to clear this flag

191h.5 **TKM1SOC:** Start Touch Key Module1 conversion

Set 1 to start Touch Key Module1 conversion. If SYSCLK is fast enough, this bit will be cleared by H/W at the end of conversion. S/W can also write 0 to clear this flag

191h.4 **TKM0SOC:** Start Touch Key Module0 conversion

Set 1 to start Touch Key Module0 conversion. If SYSCLK is fast enough, this bit will be cleared by H/W at the end of conversion. S/W can also write 0 to clear this flag

191h.2 **TKM2EOC:** Touch Key Module2 end of conversion flag, TKM2EOC may have 3uS delay after TKM2SOC=1, so F/W must wait enough time before polling this Flag.

0: Indicates conversion is in progress

1: Indicates conversion is finished

191h.1 **TKM1EOC:** Touch Key Module1 end of conversion flag, TKM1EOC may have 3uS delay after TKM1SOC=1, so F/W must wait enough time before polling this Flag.

0: Indicates conversion is in progress

1: Indicates conversion is finished

191h.0 **TKM0EOC:** Touch Key Module0 end of conversion flag, TKM0EOC may have 3uS delay after TKM0SOC=1, so F/W must wait enough time before polling this Flag.

0: Indicates conversion is in progress

1: Indicates conversion is finished

192h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKMCTL1	TKMHSEN	TKM2PD	TKM1PD	TKM0PD	TKIE	TKM2JMP	TKM1JMP	TKM0JMP
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	1	1	1	0	0	0	0

- 192h.7 **TKMHSEN:** TK Module Sensitivity, 1=higher sensitivity; 0=normal.
- 192h.6 **TKM2PD:** Touch Key Module2 power down

0: Touch Key Module2 running

1: Touch Key Module2 power down

192h.5 **TKM1PD:** Touch Key Module12 power down

0: Touch Key Module1 running

1: Touch Key Module1 power down

192h.4 **TKM0PD:** Touch Key Module0 power down

0: Touch Key Module0 running

1: Touch Key Module0 power down

192h.3 **TKIE:** Touch Key interrupt enable

0: Disable Touch Key interrupt

1: Enable Touch Key interrupt

192h.2 **TKM2JMP:** Touch Key Module2 clock mode

0: Fix frequency (refer to TKM2TCP)

1: Auto-change

192h.1 **TKM1JMP:** Touch Key Module1 clock mode

0: Fix frequency (refer to TKM1TCP)

1: Auto-change

192h.0 **TKM0JMP:** Touch Key Module0 clock mode

0: Fix frequency (refer to TKM0TCP)

1: Auto-change

193h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKMCHS	-	TKM2CHS			TKM1CHS		TKM0CHS	
R/W	-	R/W			R/W		R/W	

Reset	_	0	0	0	0	0	0	0

193h.6~4 **TKM2CHS**: TK module2 Channel Select

000: TK8 (PC0)

001: TK9 (PC1)

010: TK10 (PC2)

011: TK11 (PC3)

100: TK12 (PD4)

101: TK13 (PD5)

110: TK14 (PD6)

111: TK15 (PD7)

193h.3~2 TKM1CHS: TK module1 Channel Select

00: TK4 (PB4)

01: TK5 (PB5)

10: TK6 (PB6)

11: TK7 (PB7)

193h.1~0 TKM0CHS: TK module0 Channel Select

00: TK0 (PB0)

01: TK1 (PB1)

10: TK2 (PB2)

10: TK3 (PB3)

194h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKMFLG	-	TKM2IF	TKM1IF	TKM0IF	TKIF	-	-	-
R/W	-	R/W	R/W	R/W	R/W	-	-	-
Reset	-	0	0	0	0	-	-	-

194h.6 **TKM2IF:** Touch Key Module2 interrupt event pending flag

This bit is set while Touch Key Module 2 is end of conversion, write 0 to this bit will clear this flag or sets the TKM2SOC to clear this bit

194h.5 **TKM1IF:** Touch Key Module1 interrupt event pending flag

This bit is set while Touch Key Module1 is end of conversion, write 0 to this bit will clear this flag or sets the TKM1SOC to clear this bit

194h.4 **TKM0IF:** Touch Key Module0 interrupt event pending flag

This bit is set while Touch Key Module0 is end of conversion, write 0 to this bit will clear this flag or sets the TKM0SOC to clear this bit

194h.3 **TKIF:** Touch Key interrupt event pending flag

This bit is set by H/W while Touch Key Module0 or Module1 or Module2 are end of conversion, write 0 to this bit will clear **all** of the Touch Key flag

195h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TKM0DL		TKM0DL								
R/W	R	R	R	R	R	R	R	R		
Reset	-	-	-	-	-	-	-	-		

195h.7~0 **TKM0DL:** Touch Key Module0 data LSB[7:0]

196h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TKM1DL		TKM1DL								
R/W	R	R	R	R	R	R	R	R		
Reset	-	-	-	-	-	-	-	-		

196h.7~0 **TKM1DL:** Touch Key Module1 data LSB[7:0]

197h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TKM2DL		TKM2DL								
R/W	R	R	R	R	R	R	R	R		
Reset	-	-	-	-	-	-	-	-		

197h.7~0 **TKM2DL:** Touch Key Module2 data LSB[7:0]

198h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TKM10DH		TKM	1DH		TKM0DH				
R/W	R	R	R	R	R	R	R	R	
Reset	-	-	-	-	-	-	-	-	

198h.7~4 **TKM1DH:** Touch Key Module1 data MSB[11:8] 198h.3~0 **TKM0DH:** Touch Key Module0 data MSB[11:8]

199h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKM2DH	-	-	-	-	TKM2DH			
R/W	-	-	-	-	R	R	R	R
Reset	-	-	-	-	-	-	-	-

198h.3~0 **TKM2DH:** Touch Key Module2 data MSB[11:8]

19Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKM0TMRH	-	-	-	-	TKM0TMRH			
R/W	-	-	-	-	R/W			
Reset	-	-	-	-	0	0	0	0

19Ah.3~0 **TKM0TMRH**: Touch Key Module0 reference counter MSB[11~8]

19Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TKM0TMRL		TKM0TMRL								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

19Bh.7~0 **TKM0TMRL** Touch Key Module0 reference counter LSB[7~0]

19Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKM1TMRH	-	-	-	-		TKM1	TMRH	
R/W	-	-	-	-		R/	W	
Reset	-	-	-	-	0	0	0	0

19Ch.3~0 **TKM1TMRH**: Touch Key Module1 reference counter MSB[11~8]

19Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TKM1TMRL		TKM1TMRL							
R/W	R/W								
Reset	0	0	0	0	0	0	0	0	

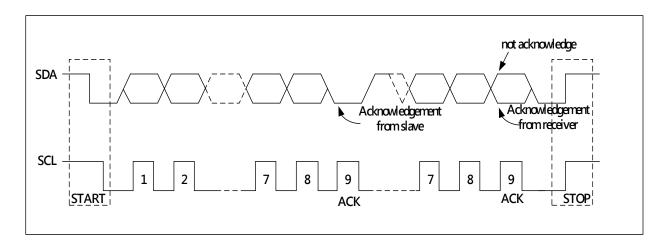
19Dh.7~0 **TKM1TMRL** Touch Key Module1 reference counter LSB[7~0]

19Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKM2TMRH	-	-	-	-		TKM2	TMRH	
R/W	-	-	-	-		R/	W	
Reset	-	-	-	-	0	0	0	0

19Eh.3~0 **TKM2TMRH**: Touch Key Module2 reference counter MSB[11~8]

19Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKM2TMRL		TKM2TMRL						
R/W	R/W							
Reset	0	0	0	0	0	0	0	0

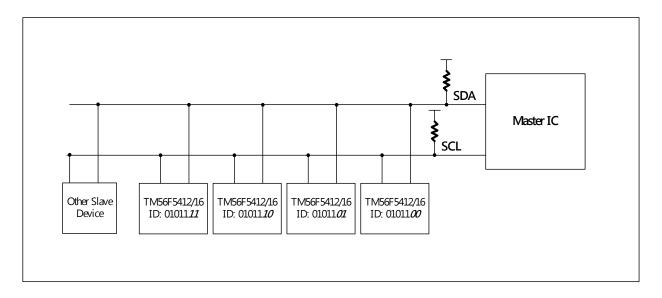
19Fh.7~0 **TKM2TMRL** Touch Key Module2 reference counter LSB[7~0]



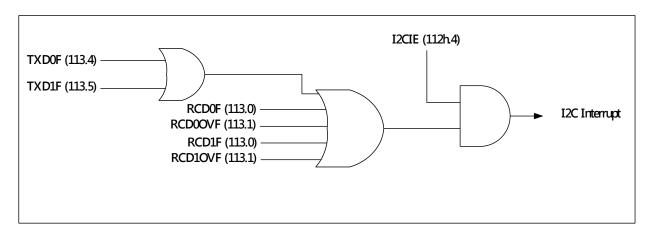
6.10 Specific Purpose Slave I2C Interfac

Specific purpose slave I2C interface in TM56F5412/16/12B/16B could be used for data transmission. This interface is based on a standard I2C (Inter-Integrated Circuit), and TM56F5412/16/12B/16B is always as a slave mode. When the master node (another IC or device) sends the correct ID through I2C, it can read data from the register I2CTXD0 (110h.7~0) and I2CTXD1 (111h.7~0) of TM56F5412/16/12B/16B or write data to the register I2CRCD0 (114h.7~0) and I2CRCD1 (115h.7~0) of TM56F5412/16/12B/16B.

Slave I2C Interface Block Diagram



I2C Protocol


DS-TM56F5412_16_12B_16B_E 71 Rev 0.94, 2022/04/11

To use the slave I2C interface, the I2CEN (112h.3) bit has to be set. TM56F5412/16/12B/16B supports 4 slave device IDs by setting I2CID (112.1~0). TM56F5412/16/12B/16B can generate the transmitting flag TXD0F (113h.4) and TXD1F (113h.5) when data transmitting finished. It generates the receiving flag RCD0F (113h.0) and RCD1F (113h.2) when data receiving finished. It can also generates the receiving overflow flag RCD0VF (113h.1) and RCD10VF (113h.3) when data receiving finished but the receiving flag is not cleared. If one of those I2C flags is set, the I2C interrupt flag I2CIF (113h.6) will be generated. It generates I2C interrupt if the I2CIE (112h.4) bit is set. Refer to following table and figure.

I2C Parallel Connection Application Circuit

Slave I2C Interrupt Block Diagram

RCDxOVF	RCDxF	I2CIF	STATE
0	0	0	IDLE
0	1	1	Date received to I2CRCDx register
1	1	1	Data overflow occurred at I2CRCDx register

DS-TM56F5412_16_12B_16B_E 72 Rev 0.94, 2022/04/11

Master write Data to I2C _RCD0 of TM56F5412/16

S 0 1 0 1 1 A A 0 k d d d d d d d d k P

Slave ID | 8bi

8bits Data to I2C_RCD0

Master write Data to I2C _RCD0 & I2C _RCD1 of TM56F5412/16

S 0 1 0 1 1 A A 0 k d d d d d d d d d d d d d d d d d R P

Slave ID

8bits Data to I2C_RCD0

8bits Data to I2C_RCD1

S Start

P Stop

k Slave Ack

K Master Ack

Rev 0.94, 2022/04/11

d Data from Master to Slave

D Data from Slave to Master

A Slave ID Last 2 bits (Default 00)

Master read Data from I2C _TXD0 of TM56F5412/16

S 0 1 0 1 1 A A 1 K D D D D D D D K P

Slave ID

8bits Data from I2C_TXD0

Master read Data from I2C _TXD0 & I2C _TXD1 of TM56F5412/16

Slave ID

8bits Data from I2C_TXD0

8bits Data from I2C_TXD1

TM56F5412/16/12B/16B I2C Commands

110h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
I2CTXD0	I2CTXD0										
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

110h.7~0 **I2CTXD0:** The transmitting register 0 of slave I2C

111h	Bit 7	Bit 6	Bit 1	Bit 0							
I2CTXD1	I2CTXD1										
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

111h.7~0 **I2CTXD1:** The transmitting register 1 of slave I2C

112h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
I2CCTL	-	-	-	I2CIE	I2CEN	- I2CID		CID
R/W	=	-	-	R/W	R/W	-	R/W	
Reset	-	-	-	0	0	-	0	0

112h.4 **I2CIE:** Slave I2C interrupt enable

0: disable

1: enable

112h.3 **I2CEN:** Slave I2C interface enable

0: disable

1: enable

112h.1~0 **I2CIE:** Slave I2C ID last 2 bits

113h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
I2CFLG	-	I2CIF	TXD1F	TXD0F	RCD10VF	RCD1F	RCD10VF	RCD0F
R/W	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	-	0	0	0	0	0	0	0

113h.6 **I2CIF:** I2C interrupt event pending flag, This bit is set by H/W while

a: I2CRCD0 or I2CRCD1 receive data finished

b: I2CRCD0 or I2CRCD1 data overflow occured

c: I2CTXD0 or I2CTXD1 data transmit finished

113h.5 **TXD1F:** Slave I2C transmitting data register 1 flag

This bit is set by H/W while I2CTXD1 data transmitting finished, write 0 to this bit will clear this flag

113h.4 **TXD0F:** Slave I2C transmitting data register 0 flag

This bit is set by H/W while I2CTXD0 data transmitting finished, write 0 to this bit will clear this flag

113h.3 **RCD10VF:** Slave I2C receiving data register 1 overflow

This bit is set by H/W while receiving data to I2CRCD1 overflow, write 0 to this bit will clear this flag

113h.2 **RCD1F:** Slave I2C receiving data register 1 flag

This bit is set by H/W while data receiving to I2CRCD1 finished, write 0 to this bit will clear this flag

113h.1 **RCD0OVF:** Slave I2C receiving data register 0 overflow

This bit is set by H/W while receiving data to I2CRCD0 overflow, write 0 to this bit will clear this flag

113h.0 **RCD0F:** Slave I2C receiving data register 0 flag

This bit is set by H/W while data receiving to I2CRCD0 finished, write 0 to this bit will clear this flag

114h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
I2CRCD0	I2CRCD0										
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

114h.7~0 **I2CRCD0:** The receiving register 0 of slave I2C

115h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
I2CRCD1		I2CRCD1											
R/W		R/W											
Reset	0	0	0	0	0	0	0	0					

115h.7~0 **I2CRCD1:** The receiving register 1 of slave I2C

MEMORY MAP

Name	Address	R/W	Rst	Description			
INDF (00h/80h				Function related to: RAM W/R			
INDF	00.7~0	R/W	-	Not a physical register, addressing INDF actually point to the register whose address is contained in the FSR register			
TM0 (01h/101h	<u>)</u>			Function related to: Timer0			
TM0	01.7~0	R/W	0	Timer0 content			
PCL (02h/82h/		10,11		Function related to: PROGRAM COUNT			
PCL	02.7~0	R/W	0	Programming Counter LSB [7~0]			
STATUS (03h/				Function related to: STATUS			
IRP	03.7	R/W	0	Register Bank Select bit (used for indirect addressing)			
RP1	03.6	R/W	0	Register Bank Select bit 1 (used for direct addressing)			
RP0	03.5	R/W	0	Register Bank Select bit 1 (used for direct addressing) Register Bank Select bit 0 (used for direct addressing)			
				WDT timeout flag, cleared by PWRST, 'SLEEP' or 'CLRWDT'			
ТО	03.4	R	0	instruction			
PD	03.3	R	0	Power down flag, set by 'SLEEP', cleared by 'CLRWDT' instruction			
Z	03.2	R/W	0	Zero flag			
DC	03.1	R/W	0	Decimal Carry flag			
С	03.0	R/W	0	Carry flag			
FSR (04h/84h/104h/184h) Function related to: RAM W/R							
FSR	04.7~0	R/W	-	File Select Register, indirect address mode pointer			
PAD (05h)				Function related to: Port A			
DAD 05.7.0	R	-	Port A pin or "data register" state				
TAD	PAD 05.7~0	W	FF	Port A output data register			
PBD (06h)				Function related to: Port B			
PBD	06.7~0	R	-	Port B pin or "data register" state			
FBD	00.7~0	W	FF	Port B output data register			
PCD (07h)				Function related to: Port C			
PDD	07.3~0	R	-	Port C pin or "data register" state			
	07.60	W	FF	Port C output data register			
PDD (08h)	T			Function related to: Port D			
PDD	08.7~0	R	-	Port D pin or "data register" state			
		W	FF	Port D output data register			
PCLATH (0Ah				Function related to: PROGRAM COUNT			
PCLATH	0A.3~0	R/W	0	Write Buffer for the upper 4 bits of the Program Counter			
INTIE (0Bh/8B		1		Function related to: Interrupt Enable			
ADCIE	0B.7	R/W	0	ADC interrupt enable, 1=enable, 0=disable			
T2IE	0B.6	R/W	0	T2 interrupt enable, 1=enable, 0=disable			
TM1IE	0B.5	R/W	0	Timer1 interrupt enable, 1=enable, 0=disable			
TM0IE	0B.4	R/W	0	Timer0 interrupt enable, 1=enable, 0=disable			
WKTIE	0B.3	R/W	0	Wakeup Timer interrupt enable, 1=enable, 0=disable Set 0 to clear & disable WKT timer			
INT2IE	0B.2	R/W	0	INT2 pin (PA7) interrupt enable, 1=enable, 0=disable			
INT1IE	0B.1	R/W	0	INT1 pin (PA4) interrupt enable, 1=enable, 0=disable			
INT0IE	0B.0	R/W	0	INT0 pin (PA0) interrupt enable, 1=enable, 0=disable			

Name	Address	R/W	Rst	Description
INTIF (0Ch)	-			Function related to: Interrupt Flag
ADGIE	00.7	R	-	ADC interrupt flag, set by H/W after end of ADC conversion
ADCIF	0C.7	W	0	write 0: clear this flag; write 1: no action
TOTE	00.6	R	-	T2 interrupt event pending flag, set by H/W while T2 overflows
T2IF	0C.6	W	0	write 0: clear this flag; write 1: no action
TM1IF	0C.5)C.5		Timer1 interrupt event pending flag, set by H/W while Timer1 overflows
		W	0	write 0: clear this flag; write 1: no action
TM0IF	0C.4	0C.4 R -		Timer0 interrupt event pending flag, set by H/W while Timer0 overflows
		W	0	write 0: clear this flag; write 1: no action
WKTIF	0C.3	R	-	WKT interrupt event pending flag, set by H/W while WKT time out
WKIII	00.5	W	0	write 0: clear this flag; write 1: no action
INT2IF	0C.2	R	-	INT2 (PA7) interrupt event pending flag, set by H/W at INT2 pin's falling edge
		W	0	write 0: clear this flag; write 1: no action
INT1IF	0C.1	R	-	INT1 (PA4) interrupt event pending flag, set by H/W at INT1 pin's falling/rising edge
		W	0	write 0: clear this flag; write 1: no action
INT0IF	0C.0	R	-	INTO (PA0) interrupt event pending flag, set by H/W at INTO pin's falling/rising edge
W 0			0	write 0: clear this flag; write 1: no action
CLKCTL (0Fh	1)			Function related to: Fsys
-	0F.7~5	-	-	Reserved
SLOWSTP	0F.4	R/W	0	Stop Slow-clock in Stop Mode 0: no Stop 1: Stop
FASTSTP	0F.3	R/W	1	Stop Fast-clock 0:no Stop 1:Stop
CPUCKS	0F.2	R/W	0	Select Fast-clock 0: Fsys=Slow-clock 1: Fsys=Fast-clock
CPUPSC	0F.1~0	R/W	11	Fsys Prescaler, 0: div 16, 1: div 4, 2: div 2, 3: div 1
TM0RLD (10h	1)			Function related to: TM0
TM0RLD	10.7~0	R/W	0	Timer0 reload Data
TM0CTL (11h)			Function related to: TM0
	11.7~6			
TM0EDG	11.5	R/W	0	Timer0 prescaler counting edge for TM0CKI pin 0: rising edge
TM0CKS	11.4	R/W	0	Timer0 prescaler clock source 0: Fsys/2 1: TM0CKI pin (PA2 pin)
TM0PSC	11.3~0	R/W	0	Timer0 prescaler. Timer0 prescaler clock source divided by 0000: /1 0101: /32 1010: /1024 1111: /32768 0001: /2 0110: /64 1011: /2048 0010: /4 0111: /128 1100: /4096 0011: /8 1000: /256 1101: /8192 0100: /16 1001: /512 1110: /16384

Name	Address	R/W	Rst	Description
TM1 (12h)				Function related to: Timer1
TM1	12.7~0	R/W	0	Timer1 content
TM1RLD (13h	1)			Function related to: Timer1
TM1RLD	13.7~0	R/W	0	Timer1 reload Data
TM1CTL (14h)			Function related to: Timer1
TM1PSC	14.3~0	R/W	0	Timer1 prescaler. Timer1 clock source 0000: Fsys/2 0001: Fsys/4 0010: Fsys/8 0011: Fsys/16 0100: Fsys/32 0101: Fsys/64 0110: Fsys/128 0111: Fsys/256 1xxx: Fsys/512
T2CTL (15h)				Function related to: T2
T2CKS	15.2	R/W	0	T2 clock source selection. 1: Fsys/128 0: Slow-clock
T2PSC	15.1~0	R/W	0	T2 prescaler. T2 clock source divided by - 00: 32768 01: 16384 10: 8192 11: 128
MF016 (16h)				Function related to: T2/TM1/TM0/LVR/LVD
LVDF	16.7	R	-	Low voltage detection flag, set by H/W while Vcc ≤ LVD
LVDEN	16.6	R/W	0	Low voltage detection function enable, (When LVR=2.4V) 1=enable, 0=disable
T2CLR	16.5	R/W	1	T2 counter clear 0: Release 1: Stop counting
TM1STP	16.4	R/W	0	Timer1 counter stop 0: Release 1: Stop counting
TM0STP	16.3	R/W	0	Timer0 counter stop 0: Release 1: Stop counting
LVRSAV	16.2	R/W	1	LVR/LVD power save 1: LVR/LVD auto power off in STOP/IDLE mode 0: LVR/LVD enable in in STOP/IDLE mode
LVDS	16.1~0	R/W	01	LVD select 00: 3.2V 01: 2.5V 1x: 3.7V (When LVR=2.4V)
ADCH (17h)				Function related to: ADC
ADCH	17.7~0	R	-	ADC output data MSB, ADQ [11:4]
ADCTL (18h)	1			Function related to: ADC
ADCL	18.7~4	R	-	ADC output data LSB, ADQ [3:0]
ADST	18.3	R/W	0	ADC start bit. 0: H/W clear after end of conversion 1: ADC start conversion
ADCKS	18.2~0	R/W	0	ADC clock frequency selection: 000: Fsys/256 100: Fsys/16 001: Fsys/128 101: Fsys/8 010: Fsys/64 110: Fsys/4 011: Fsys/32 111: Fsys/2

Name	Address	R/W	Rst	Description			
MF019 (19h)		_		Function related to: ADC			
-	19.7	-	-	Reserved			
BGEN	19.6	R/W	1	Band Gap BG1.25V & Vtemp function enable 0: Disable 1: Enable and Auto disable in STOP/IDLE mode			
ADCVREFS	19.5~4	R/W	0	ADC VREF select, 00: VCC, 01: 2.5V, 10: 3V, 11: 4V			
ADCHS	19.3~0	R/W	0	ADC channel select 0000: ADC0 (PD0) 0110: ADC6 (PD6) 1100: VBG1.2V 0001: ADC1 (PD1) 0111: ADC7 (PD7) 1101: VSS 0010: ADC2 (PD2) 1000: ADC8(PA0) 1110: VSS 0011: ADC3 (PD1) 1001: ADC9(PA1) 0100: ADC4 (PD4) 1010: ADC10(PA2) 0101: ADC5 (PD5) 1011: ADC11(PA3)			
PWM0D (1Ah)				Function related to: PWM0			
PWM0D	1A.7~0	R/W	0	PWM0 Duty			
PWM1AD (1B)	h)			Function related to: PWM1			
PWM1AD	1B.7~0	R/W	0	PWM1A Duty			
PWM1BD (1Ch)				Function related to: PWM1			
PWM1BD	1C.7~0	R/W	0	PWM1B Duty			
PWM1CD (1D)	h)			Function related to: PWM1			
PWM1CD	1D.7~0	R/W	0	PWM1C Duty			
PWM2D (1Eh)				Function related to: PWM2			
PWM2D	1E.7~0	R/W	0	PWM2 Duty			
PWMCTL0 (11	F h)			Function related to: PWM0/1/2			
PWM2CKS	1F.7~6	R/W	0	PWM2 Clock Source 0x: Fsys 10:FIRC16M 11:FIRC32M			
PWM2PSC	1F.5~4	R/W	0	PWM2 Clock Source Prescaler 00: DIV1 01: DIV2 10:DIV4 11:DIV64			
PWM2CLR	1F.2	R/W	0	PWM2 clear and hold 0:PWM2 enable 1:PWM2 clear and hold			
PWM1CLR	1F.1	R/W	0	PWM1 clear and hold 0:PWM1 enable 1:PWM1 clear and hold			
PWM0CLR	1F.	R/W	0	PWM0 clear and hold 0:PWM0 enable 1:PWM0 clear and hold			
User Data Mem	ory						
RAM	20~6F	R/W	- 1	RAM Bank0 area (80 Bytes)			
RAM	70~7F	R/W	-	RAM common area (16 Bytes)			

Name	Address	R/W	Rst	Description
OPTION (81h/	/181h)			Function related to: STATUS/INTO/INT1/WDT/WKT
HWAUTO	81.7	R/W	0	Enter interrupt vector, HW auto save/restore WREG and STATUS w/o TO, PD 0:disable 1: Enable
INT0EDG	81.6	R/W	0	INT0 pin edge interrupt event 0: falling edge to trigger 1: rising edge to trigger
INT1EDG	81.5	R/W	0	INT1 pin edge interrupt event 0: falling edge to trigger 1: rising edge to trigger
WDTPSC	81.3~2	R/W	11	WDT pre-scale selections: 00: 128mS 01: 256mS 10: 1024mS 11: 2048mS
WKTPSC	81.1~0	R/W	11	WKT pre-scale selections: 00: 16mS 01: 32mS 10: 64mS 11: 128mS
PAMODH (8C	Ch)			Function related to: Port A
PA7MOD	8C.7~6	R/W	00	PA7~PA4 I/O mode control
PA6MOD	8C.5~4	R/W	01	00: Mode0 01: Mode1
PA5MOD	8C.3~2	R/W	01	10: Mode2
PA4MOD	8C.1~0	R/W	01	11: Mode3
PAMODL (8D	h)			Function related to: Port A
PA3MOD	8D.7~6	R/W	01	PA3~PA0 I/O mode control
PA2MOD	8D.5~4	R/W	01	00: Mode0 01: Mode1
PA1MOD	8D.3~2	R/W	01	10: Mode2
PA0MOD	8D.1~0	R/W	01	11: Mode3
PBMODH (8El	1)			Function related to: Port B
PB7MOD	8E.7~6	R/W	01	PB7~PB4 I/O mode control
PB6MOD	8E.5~4	R/W	01	00: Mode0 01: Mode1
PB5MOD	8E.3~2	R/W	01	10: Mode2
PB4MOD	8E.1~0	R/W	01	11: Mode3
PBMODL (8Fh)			Function related to: Port B
PB3MOD	8F.7~6	R/W	01	PB3~PB0 I/O mode control
PB2MOD	8F.5~4	R/W	01	00: Mode0 01: Mode1
PB1MOD	8F.3~2	R/W	01	10: Mode1 10: Mode2
PB0MOD	8F.1~0	R/W	01	11: Mode3
PCMODL (901	h)			Function related to: Port C
PC3MOD	90.7~6	R/W	01	PC3~PC0 I/O mode control
PC2MOD	90.5~4	R/W	01	00: Mode0
Pc1MOD	90.3~2	R/W	01	01: Mode1 10: Mode2
PC0MOD	90.1~0	R/W	01	11: Mode3

Name	Address	R/W	Rst	Description				
PDMODH (91h	i)	-		Function related to: Port D				
PD7MOD	91.7~6	R/W	01	PD7~PD4 I/O mode control				
PD6MOD	91.5~4	R/W	01	00: Mode0				
PD5MOD	91.3~2	R/W	01	01: Mode1 10: Mode2				
PD4MOD	91.1~0	R/W	01	11: Mode3				
PDMODL (92h)			Function related to: Port D				
PD3MOD	91.7~6	R/W	01	Pd3~PD0 I/O mode control				
PD2MOD	91.5~4	R/W	01	00: Mode0				
PD1MOD	91.3~2	R/W	01	01: Mode1 10: Mode2				
PD0MOD	91.1~0	R/W	01	11: Mode3				
PWMCTL1 (9	4h)			Function related to: PWM0/PWM1				
				PWM1 Clock Source				
PWM1CKS	94.7~6	R/W	0	0x: Fsys				
	<i>y</i> , 0	10	Ü	10:FIRC16M 11:FIRC32M				
				PWM1 Clock Source Prescaler				
PWM1PSC	94.5~4	R/W	1	00: DIV1 01: DIV2 10:DIV4 11:DIV64				
				PWM0 Clock Source				
PWM0CKS 94.3~2	R/W	0	0x: Fsys					
				10:FIRC16M 11:FIRC32M				
				PWM0 Clock Source Prescaler				
PWM0PSC	94.1~0	R/W	0	00: DIV1 01: DIV2 10:DIV4 11:DIV64				
PWM0PRD (9	5h)			Function related to: PWM0				
PWM0PRD	95.7~0	R/W	0	PWM0 period data				
PWM1PRD (9	6h)			Function related to: PWM1				
PWM1PRD	96.1~0	R/W	0	PWM1 period data				
PWM2PRD (9	7h)			Function related to: PWM2				
PWM2PRD	96.1~0	R/W	0	PWM2 period data				
MF098 (98h)				Function related to: PWM0/PWM1/PWM2/TM1/TC				
TCOE	98.7	R/W	0	TCOUT Output Enable				
				0: Disable 1: Enable, output to PB1 Timer1 overflow toggle Output Enable				
TM1OE	98.6	R/W	0	0: Disable 1:Enable, output to PB0				
PWM0OE	98.5	R/W	0	PWM0 Output Enable				
r WWIUUE	70.3	IX/ VV	U	0: Disable 1:Enable, PWM0 output to PA0				
PWM2OE	98.4	R/W	0	PWM2 Output Enable O: Disable 1: Enable PWM2 output to PA4				
		_		0: Disable 1:Enable, PWM2 output to PA4 PWM1A Output Enable				
PWM1AOE	98.3	R/W	0	0: Disable 1:Enable, PWM1A output to PA1				
PWM1BOE	98.2	R/W	0	PWM1B Output Enable				
1 WMIDOE	70.2	13/ **	, ,	0: Disable 1:Enable, PWM1B output to PA2				
PWM1COE	98.1	R/W	0	PWM1C Output Enable 0: Disable 1:Enable, PWM1C output to PA3				
				O. Disable T. Eliable, I WINTE Output to IA3				

Name	Address	R/W	Rst	Description
TKM0CON (9.	Ah)	-		Function related to: Touch Key Module0
ТКМ0ТСР	9A.7~5	R/W	1	TK module0 touch key clock frequency select; 000:slowest,, 111:fastest
TKM0REFC	9A.4~2	R/W	0	TK module0 Reference clock capacitor select; 000:smallest,, 111:biggest(conversion time longest)
TKM0FSL	9A.1~0	R/W	0	TK module0 clock(RCK0/TCK0) frequency selection; 00: slowest,, 11: fastest
TKM1CON (9)	Bh)			Function related to: Touch Key Module1
		D/W	1	TK module1 touch key clock frequency select;
TKM1TCP	9B.7~5	R/W	1	000:slowest,, 111:fastest
TKM1REFC	9B.4~2	R/W	0	TK module1 Reference clock capacitor select; 000:smallest,, 111:biggest(conversion time longest)
TKM1FSL	9B.1~0	R/W	0	TK module1 clock(RCK1/TCK1) frequency selection; 00: slowest,, 11: fastest
TKM2CON (9	Ch)			Function related to: Touch Key Module2
ТКМ2ТСР	9C.7~5	R/W	1	TK module2 touch key clock frequency select; 000:slowest,, 111:fastest
TKM2REFC	9C.4~2	R/W	0	TK module2 Reference clock capacitor select; 000:smallest,, 111:biggest(conversion time longest)
TKM2FSL	9C.1~0	R/W	0	TK module2 clock(RCK2/TCK2) frequency selection; 00: slowest,, 11: fastest
User Data Memory				
RAM	A0~EF	R/W	_	RAM Bank1area (80 Bytes)
TESTREG (10	5h)			Function related to: TEST
TESTREG	105.1~0	R/W	11	Test bits, Keep 11
LVRPD (109h)				Function related to: LVR
LVRPD	109	W	-	Write 0x37 to force LVR disable
BGTRIM (10E	lh)			Function related to: VBG
BGTRIM	10E.3~0	R/W		VBG voltage adjustment 00h: Lowest voltage Fh: Highest voltage
I2CTXD0 (110	h)			Function related to: Slave I2C
I2CTXD0	110.7~0	R/W	0	The transmitting register0 of slave I2C
I2CTXD1 (111	h)			Function related to: Slave I2C
I2CTXD1	111.7~0	R/W	0	The transmitting register1 of slave I2C
I2CCTL (112h) Function related to: Slave I2C				
I2CIE	112.4	R/W	0	I2C Interrupt Enable 0: Disable 1: Enable
I2CEN	112.3	R/W	0	Slave I2C interface enable 0: Disable 1: Enable
I2CID	112.1~0	R/W	0	Slave I2C ID last 2 bits

Slave I2C interrupt pending flag This bis is set by H/W while ❖ I2CRCD0 or I2CRCD1 receive data finis I2CIF	shed	
This bis is set by H/W while \$\displaystyleq \text{I2CRCD0}\$ or \text{I2CRCD1}\$ receive data finish 12CIF 113.6 R/W 0 \$\displaystyleq \text{I2CRCD0}\$ or \text{I2CRCD1}\$ data overflow or \text{VI2CTXD0}\$ or \text{I2CTXD1}\$ data transmit fin Write 0 to clear this flag Slave \text{I2C transmitting data register 1 flag, set I2CTXD1}\$ data transmitting finished Write 0 to clear this flag	shed	
⇒ I2CRCD0 or I2CRCD1 receive data finished Position Position	shed	
I2CIF 113.6 R/W 0 \$\displaysum \text{I2CRCD0 or I2CRCD1 data overflow of } \displaysum \text{I2CTXD0 or I2CTXD1 data transmit fin } \text{Write 0 to clear this flag} TXD1F 113.5 R/W 0 \$\displaysum \text{I2CTXD1 data register 1 flag, set } \text{I2CTXD1 data transmitting finished } \text{Write 0 to clear this flag}	snea	
TXD1F T13.5 R/W Construct the strength of		
TXD1F Write 0 to clear this flag Slave I2C transmitting data register 1 flag, set 1 I2CTXD1 data transmitting finished Write 0 to clear this flag	ccurred	
TXD1F 113.5 R/W Slave I2C transmitting data register 1 flag, set 1 I2CTXD1 data transmitting finished Write 0 to clear this flag	ished.	
TXD1F 113.5 R/W Slave I2C transmitting data register 1 flag, set 1 I2CTXD1 data transmitting finished Write 0 to clear this flag		
Slave 19C transposition data resister 0 flar and	by H/W	while
TXD0F 113.4 R/W 0 Slave I2C transmitting data register 0 flag, set I2CTXD0 data transmitting finished Write 0 to clear this flag	by H/W	while
RCD1OVF 113.3 R/W 0 Slave I2C receiving data register 1 overflow, set receiving data to I2CRCD1 overflow. Write 0 to clear this flag	by H/W	while
RCD1F Slave I2C receiving data register 1 flag, set I2CRCD1 data receiving finished Write 0 to clear this flag	by H/W	while
RCD0OVF 113.1 R/W 0 Slave I2C receiving data register 0 overflow, set receiving data to I2CRCD0 overflow. Write 0 to clear this flag	by H/W	while
RCD0F 113.0 R/W 0 Slave I2C receiving data register 0 flag, set I2CRCD0 data receiving finished Write 0 to clear this flag	by H/W	while
I2CRCD0 (114h) Function related to: Slave I2C		
I2CRCD0 114.7~0 R 0 The receiving register0 of slave I2C		
I2CRCD1 (115h) Function related to: Slave I2C		
I2CRCD1 115.7~0 R 0 The receiving register1 of slave I2C		
User Data Memory		
RAM 120~16F R/W - RAM Bank2 area (80 Bytes)		
DPL (185h) Function related to: Table Read		
DPL 185.7~0 R/W 0 Table read low address, data ROM pointer (DPTR) lo	w byte	
DPH (186h) Function related to: Table Read		
DPH 186.3~0 R/W 0 Table read high address, data ROM pointer (DPTR) h	igh byte	
TABR (18Ch) Function related to: Table Read		
TABR 18C.7~0 R/W 0 1: TABR write 1 = opcode TABRL 2: TABR write 2 = opcode TABRH 3: after step1 or step2, read TABR to get main ROM table rafter step1, read TABR to get EEPROM value (when EEI		

Name	Address	R/W	Rst	Description
				Table Read for ASM: TABRL/TABRH or TABR
				Table Read for C: TABR
EEPCTL (18D)	h)			Function related to: EEPROM
EEPTO	18D.7	R	0	EEPROM Write Time-out flag
ЕЕРТЕ	18D.1~0	R/W	0	EEPROM Write Time-out enable; 00: Disable; 01: 0.9ms; 10: 3.6ms; 11: 7.2ms
EEPEN (18Eh)				Function related to: EEPROM
EEPEN	18E.7~0	W	0	EEPROM Enable 0xE2: Enable Others: Disable
EEPDT (18Fh)				Function related to: EEPROM
EEPDT (16FH)	18F.7~0	W	0	EEPROM Data to write
TKMCTL0 (1	J1U)	1		Function related to: Touch Key Module
TKM2SOC	191.6	R/W	0	STK Module2 Start of Conversion, HW clear it while end of conversion
				STK Module1 Start of Conversion,
TKM1SOC	191.5	R/W	0	HW clear it while end of conversion
TKM0SOC	191.4	R/W	0	STK Module0 Start of Conversion,
1 KWI03OC	191.4	IV/ W	U	HW clear it while end of conversion
TKM2EOC	191.2	R	-	STK Module2 End of Conversion
TKM1EOC	191.1	R	-	STK Module1 End of Conversion
TKM0EOC	191.0	R	-	STK Module0 End of Conversion
TKMCTL1 (192h)				Function related to: Touch Key Module
TKMHSEN	192.7	R/W	0	All STK Module Sensitivity 1: higher sensitivity 0: lower sensitivuty
TKM2PD	192.6	R/W	1	STK Module2 Power Down 1: Touch Key enable 0: Touch Key disable
TKM1PD	192.5	R/W	1	STK Module1 Power Down 1: Touch Key enable 0: Touch Key disable
TKM0PD	192.4	R/W	1	STK Module0 Power Down 1: Touch Key enable 0: Touch Key disable
TKIE	192.3	R/W	0	Touch Key interrupt enable 0: Disable Touch Key interrupt 1: Enable Touch Key interrupt
TKM2JMP	192.2	R/W	0	STK Module2 touch key clock mode 0: fixed frequency 1: auto-change frequency
TKM1JMP	192.1	R/W	0	STK Module1 touch key clock mode 0: fixed frequency 1: auto-change frequency
TKM0JMP	192.0	R/W	0	STK Module1 touch key clock mode 0: fixed frequency 1: auto-change frequency

Name	Address	R/W	Rst	Description
TKMCHS (193	h)			Function related to: Touch Key Module 0/1/2
TKM2CHS	193.6~4	R/W	0	STK Module2 Channel Select: 0:TK8 1:TK9 2:TK10 3:TK11 4:TK12 5:TK13 6:TK14 7:TK15
TKM1CHS	193.3~2	R/W	0	STK Module1 Channel Select: 0:TK4 1:TK5 2:TK6 3:TK7
TKM0CHS	193.1~0	R/W	0	STK Module0 Channel Select: 0:TK0 1:TK1 2:TK2 3:TK3
TKMFLG (194	h)			Function related to: Touch Key Module 0/1/2
TKM2IF	194.6	R/W	0	STK Module2 Interrupt event pending flag set by H/W at the STK module2 end of conversion S/W writes 0 to TKM2IF or sets the TKM2SOC bit to clear this flag.
TKM1IF	194.5	R/W	0	STK Module1 Interrupt event pending flag set by H/W at the STK module1 end of conversion S/W writes 0 to TKM1IF or sets the TKM1SOC bit to clear this flag.
TKM0IF	194.4	R/W	0	STK Module0 Interrupt event pending flag set by H/W at the STK module0 end of conversion S/W writes 0 to TKM0IF or sets the TKM0SOC bit to clear this flag.
TKIF	194.3	R/W	0	Touch Key interrupt event pending flag, set by H/W at the end of all Touch Key conversion S/W writes 0 to TKIF or sets the TKMxSOC bit to clear this flag.
TKM0DL (1951	1)			Function related to: Touch Key Module0
TKM0DL	195.7~0	R	-	STK Module0 Data LSB [7~0]
TKM1DL (1961	1)			Function related to: Touch Key Module1
TKM1DL	196.7~0	R	-	STK Module1 Data LSB [7~0]
TKM2DL (1971	1)			Function related to: Touch Key Module2
TKM2DL	197.7~0	R	1	STK Module2 Data LSB [7~0]
TKM10DH (19	8h)			Function related to: Touch Key Module 0/1
TKM1DH	198.7~4	R	ı	STK Module1 Data MSB [11~8]
TKM0DH	198.3~0	R	-	STK Module0 Data MSB [11~8]
TKM2DH (199)	h)			Function related to: Touch Key Module2
TKM2DH	199.3~0	R	-	STK Module2 Data MSB [11~8]
TKM0TMRH (19Ah)			Function related to: Touch Key Module0
TKM0TMRH	19A.3~0	R/W	0	STK Module0 reference counter MSB [11~8]
TKM0TMRL (19Bh)			Function related to: Touch Key Module0
TKM0TMRL	19B.7~0	R/W	0	STK Module0 reference counter LSB [7~0]
TKM1TMRH (19Ch)			Function related to: Touch Key Module1
TKM1TMRH	19C.3~0	R/W	0	STK Module1 reference counter MSB [11~8]
TKM1TMRL (19Dh)			Function related to: Touch Key Module1
TKM1TMRL	19D.7~0	R/W	0	STK Module1 reference counter LSB [7~0]
TKM2TMRH (19Eh)			Function related to: Touch Key Module2	
TKM2TMRH	19E.3~0	R/W	0	STK Module2 reference counter MSB [11~8]
TKM2TMRL (19Fh)			Function related to: Touch Key Module2
TKM2TMRL	19F.7~0	R/W	0	STK Module2 reference counter LSB [7~0]
User Data Memory				
RAM	1A0~1EF	R/W	-	RAM Bank3 area (80 Bytes)

INSTRUCTION SET

Each instruction is a 16-bit word divided into an Op Code, which specifies the instruction type, and one or more operands, which further specify the operation of the instruction. The instructions can be categorized as byte-oriented, bit-oriented and literal operations list in the following table.

For byte-oriented instructions, "f" represents the address designator and "d" represents the destination designator. The address designator is used to specify which address in Program memory is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If "d" is "0", the result is placed in the W register. If "d" is "1", the result is placed in the address specified in the instruction.

For bit-oriented instructions, "b" represents a bit field designator, which selects the number of the bit affected by the operation, while "f" represents the address designator. For literal operations, "k" represents the literal or constant value.

Field/Legend	Description
f	Register File Address
b	Bit address
k	Literal. Constant data or label
d	Destination selection field, 0: Working register, 1: Register file
W	Working Register
Z	Zero Flag
С	Carry Flag or/Borrow Flag
DC	Decimal Carry Flag or Decimal/Borrow Flag
PC	Program Counter
TOS	Top Of Stack
GIE	Global Interrupt Enable Flag (i-Flag)
	Option Field
()	Contents
	Bit Field
В	Before
A	After
←	Assign direction

DS-TM56F5412_16_12B_16B_E 85 Rev 0.94, 2022/04/11

Mnemonic		Op Code	Cycle	Flag Affect	Description
		Byte-Orient	ed File Reg	sister Instructio	on
ADDWX	f, d	ff00 0111 dfff ffff	1	C, DC, Z	Add W and "f"
ANDWX	f, d	ff00 0101 dfff fff1	1	Z	AND W with "f"
CLRX	f	ff00 0001 1fff fff1	1	Z	Clear "f"
CLRW		0000 0001 0100 0000	1	Z	Clear W
COMX	f, d	ff00 1001 dfff fff1	1	Z	Complement "f"
DECX	f, d	ff00 0011 dfff fff1	1	Z	Decrement "f"
DECXSZ	f, d	ff00 1011 dfff fff1	1 or 2	-	Decrement "f", skip if zero
INCX	f, d	ff00 1010 dfff ffff	1	Z	Increment "f"
INCXSZ	f, d	ff00 1111 dfff ffff	1 or 2	-	Increment "f", skip if zero
IORWX	f, d	ff00 0100 dfff ffff	1	Z	OR W with "f"
MOVX	f,d	ff00 1000 dfff ffff	1	Z	Move "f"
MOVXW	f	ff00 1000 Offf ffff	1	Z	Move "f" to W
MOVWX	f	ff00 0000 1fff fff1	1	-	Move W to "f"
RLX	f, d	ff00 1101 dfff fff1	1	С	Rotate left "f" through carry
RRX	f, d	ff00 1100 dfff fff1	1	С	Rotate right "f" through carry
SUBWX	f, d	ff00 0010 dfff fff1	1	C, DC, Z	Subtract W from "f"
SWAPX	f, d	ff00 1110 dfff fff1	1	-	Swap nibbles in "f"
TSTX	f	ff00 1000 1fff fff1	1	Z	Test if "f" is zero
XORWX	f, d	ff00 0110 dfff fff1	1	Z	XOR W with "f"
		Bit-Oriente	d File Regi	ster Instruction	1
BCX	f, b	ff11 00bb bfff ffff	1	-	Clear "b" bit of "f"
BSX	f, b	ff11 01bb bfff ffff	1	_	Set "b" bit of "f"
BTXSC	f, b	ff11 10bb bfff ffff	1 or 2	_	Test "b" bit of "f", skip if clear
BTXSS	f, b	ff11 11bb bfff ffff	1 or 2	-	Test "b" bit of "f", skip if set
		Literal a	and Contro	l Instruction	
ADDLW	k	0001 1100 kkkk kkkk		C, DC, Z	Add Literal "k" and W
ANDLW	k	0001 1011 kkkk kkkk	1	Z	AND Literal "k" with W
CALL	k	0010 0kkk kkkk kkkk		-	Call subroutine "k"
CLRWDT		0001 1110 0000 0100		TO, PD	Clear Watch Dog Timer
GOTO	k	0010 1kkk kkkk kkkk		-	Jump to branch "k"
IORLW	k	0001 1010 kkkk kkkk	1	Z	OR Literal "k" with W
MOVLW	k	0001 1001 kkkk kkkh		-	Move Literal "k" to W
NOP		0000 0000 0000 0000	1	-	No operation
RET		0000 0000 0100 0000		-	Return from subroutine
RETI		0000 0000 0110 0000	2	_	Return from interrupt
RETLW	k	0001 1000 kkkk kkkk	2	-	Return with Literal in W
SLEEP		0001 1110 0000 0011	1	TO, PD	Go into Power-down mode, Clock oscillation stops
SUBLW	k	0001 1111 kkkk kkk	1	C, DC, Z	Subtract W from literal
TABRH		0000 0000 0101 1000	2	-	Lookup ROM high data to W
TABRL		0000 0000 0101 0000	2	-	Lookup ROM low data to W
XORLW	k	0001 1101 kkkk kkk	1	Z	XOR Literal "k" with W

ADDLW Add Literal "k" and W

 $\begin{array}{lll} \text{Syntax} & \text{ADDLW k} \\ \text{Operands} & \text{k}: 00\text{h} \sim \text{FFh} \\ \text{Operation} & (\text{W}) \leftarrow (\text{W}) + \text{k} \\ \text{Status Affected} & \text{C, DC, Z} \\ \end{array}$

OP-Code 0001 1100 kkkk kkkk

Description The contents of the W register are added to the eight-bit literal 'k' and the result is

placed in the W register.

Cycle 1

Example ADDLW 0x15 B: W=0x10

A: W = 0x25

ADDWX Add W and "f"

 $\begin{array}{ll} Syntax & ADDWX \ f \ [,d] \\ Operands & f:00h \sim 1FFh, \ d:0, \ 1 \\ Operation & (destination) \leftarrow (W) + (f) \end{array}$

Status Affected C, DC, Z

OP-Code ff00 0111 dfff ffff

Description Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in

the W register. If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example ADDWX FSR, 0 B: W = 0x17, FSR = 0xC2

A: W = 0xD9, FSR = 0xC2

ANDLW Logical AND Literal "k" with W

Status Affected Z

OP-Code 0001 1011 kkkk kkkk

Description The contents of W register are AND'ed with the eight-bit literal 'k'. The result is

placed in the W register.

Cycle 1

Example ANDLW 0x5F B: W = 0xA3

A : W = 0x03

ANDWX AND W with "f"

 $\begin{array}{ll} \text{Syntax} & \text{ANDWX f [,d]} \\ \text{Operands} & \text{f : 00h} \sim 1\text{FFh, d : 0, 1} \\ \text{Operation} & \text{(destination)} \leftarrow \text{(W) AND (f)} \\ \end{array}$

Status Affected Z

OP-Code ff00 0101 dfff ffff

Description AND the W register with register 'f'. If 'd' is 0, the result is stored in the W

register. If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example ANDWX FSR, 1 B: W = 0x17, FSR = 0xC2

A : W = 0x17, FSR = 0x02

BCX Clear "b" bit of "f"

Syntax BCX f [,b]

Operands $f: 00h \sim 1FFh, b: 0 \sim 7$

Operation $(f.b) \leftarrow 0$

Status Affected -

OP-Code ff11 00bb bfff ffff

Description Bit 'b' in register 'f' is cleared.

Cycle 1

Example BCX FLAG_REG, 7 B: FLAG_REG = 0xC7

 $A : FLAG_REG = 0x47$

BSX Set "b" bit of "f"

Syntax BSX f [,b]

Operands $f: 00h \sim 1FFh, b: 0 \sim 7$

Operation $(f.b) \leftarrow 1$

Status Affected -

OP-Code ff11 01bb bfff ffff
Description Bit 'b' in register 'f' is set.

Cycle

Example BSX FLAG_REG, 7 B: FLAG_REG =0x0A

 $A : FLAG_REG = 0x8A$

BTXSC Test "b" bit of "f", skip if clear(0)

Syntax BTXSC f [,b] Operands f: $00h \sim 1FFh$, b: $0 \sim 7$ Operation Skip next instruction if (f.b) =0

Status Affected -

OP-Code ff11 10bb bfff ffff

Description If bit 'b' in register 'f' is 1, then the next instruction is executed. If bit 'b' in register

'f' is 0, then the next instruction is discarded, and a NOP is executed instead,

making this a 2nd cycle instruction.

Cycle 1 or 2

Example LABEL1 BTXSC FLAG, 1 B: PC = LABEL1

TRUE GOTO SUB1 A: if FLAG.1 =0, PC =FALSE FALSE ... if FLAG.1 =1, PC =TRUE

BTXSS Test "b" bit of "f", skip if set(1)

SyntaxBTXSS f [,b]Operands $f:00h \sim 1FFh, b:0 \sim 7$ OperationSkip next instruction if (f.b) =1

Status Affected -

OP-Code ff11 11bb bfff ffff

Description If bit 'b' in register 'f' is 0, then the next instruction is executed. If bit 'b' in register

'f' is 1, then the next instruction is discarded, and a NOP is executed instead,

making this a 2nd cycle instruction.

Cycle 1 or 2

Example LABEL1 BTXSS FLAG, 1 B: PC =LABEL1

TRUE GOTO SUB1 A: if FLAG.1 =0, PC =TRUE if FLAG.1 =1, PC =FALSE

CALL Call subroutine "k"

Syntax CALL k
Operands k: 000h ~ FFFh

Operation: TOS \leftarrow (PC) + 1, PC.10 \sim 0 \leftarrow k

Status Affected -

OP-Code kk10 0kkk kkkk kkkk

Description Call Subroutine. First, return address (PC+1) is pushed onto the stack. The 12-bit

immediate address is loaded into PC bits <11:0>. The upper bits of PC are loaded

from PCLATH. CALL is a two-cycle instruction.

Cycle 2

Example LABEL1 CALL SUB1 B: PC =LABEL1

A : PC = SUB1, TOS = LABEL1 + 1

CLRX Clear "f"

SyntaxCLRX fOperands $f:00h \sim 1FFh$ Operation $(f) \leftarrow 00h, Z \leftarrow 1$

Status Affected Z

OP-Code ff00 0001 1fff ffff

Description The contents of register 'f' are cleared and the Z bit is set.

Cycle 1

Example CLRX FLAG_REG B: FLAG_REG =0x5A

 $A : FLAG_REG = 0x00, Z = 1$

CLRW Clear W

Syntax CLRW Operands -

Operation (W) \leftarrow 00h, Z \leftarrow 1

Status Affected Z

OP-Code 0000 0001 0100 0000

Description W register is cleared and Z bit is set.

Cycle 1

Example CLRW B: W = 0x5A

A: W = 0x00, Z = 1

CLRWDT Clear Watchdog Timer

Syntax CLRWDT

Operands -

Operation WDT/WKT Timer ← 00h

Status Affected TO, PD

OP-Code 0001 1110 0000 0100

Description CLRWDT instruction clears the Watchdog/Wakeup Timer

Cycle 1

Example CLRWDT B: WDT counter =?

A: WDT counter =0x00

Complement "f" COMX

COMX f [,d] **Syntax** $f: 00h \sim 1FFh, d: 0, 1$ **Operands** Operation $(destination) \leftarrow (\bar{f})$

Status Affected Z

OP-Code ff00 1001 dfff ffff

Description The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W.

If 'd' is 1, the result is stored back in register 'f'.

Cycle

Example COMX REG1, 0 B : REG1 = 0x13

A : REG1 = 0x13, W = 0xEC

DECX Decrement "f"

Syntax DECX f[.d] $f: 00h \sim 1FFh, d: 0, 1$ Operands Operation $(destination) \leftarrow (f) - 1$ Status Affected Z

OP-Code ff00 0011 dfff ffff

Description Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the

result is stored back in register 'f'.

Cycle

Example DECX CNT, 1 B : CNT = 0x01, Z = 0

A : CNT = 0x00, Z = 1

DECXSZ Decrement "f", Skip if 0

DECXSZ f [,d] Syntax Operands $f: 00h \sim 1FFh, d: 0, 1$

Operation (destination) \leftarrow (f) - 1, skip next instruction if result is 0

Status Affected

OP-Code ff00 1011 dfff ffff

Description The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W

register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, then a NOP is executed instead, making

it a 2 cycle instruction.

1 or 2 Cycle

Example LABEL1 DECXSZ CNT, 1 B: PC =LABEL1

GOTO LOOP A:CNT=CNT-1

CONTINUE if CNT =0, PC =CONTINUE if CNT $\neq 0$, PC =LABEL1 + 1

GOTO Unconditional Branch

GOTO k Syntax Operands k: 000h ~ FFFh Operation PC.10~0 ← k

Status Affected

OP-Code kk10 1kkk kkkk kkkk

GOTO is an unconditional branch. The 12-bit immediate value is loaded into PC Description

bits <11:0>. The upper bits of PC are loaded from PCLATH. GOTO is a two-

cycle instruction.

Cycle 2

Example LABEL1 GOTO SUB1 B: PC =LABEL1

A: PC =SUB1

INCX Increment "f"

Syntax INCX f [,d]
Operands f: $00h \sim 1FFh$ Operation (destination) \leftarrow (f) + 1

Status Affected Z

OP-Code ff00 1010 dfff ffff

Description The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W

register. If 'd' is 1, the result is placed back in register 'f'.

Cycle 1

Example INCX CNT, 1 B: CNT = 0xFF, Z = 0

A : CNT = 0x00, Z = 1

INCXSZ Increment "f", Skip if 0

Syntax INCXSZ f[,d]Operands $f: 00h \sim 1FFh, d: 0, 1$

Operation (destination) \leftarrow (f) + 1, skip next instruction if result is 0

Status Affected -

OP-Code ff00 1111 dfff ffff

Description The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W

register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead, making it a 2

cycle instruction.

Cycle 1 or 2

Example LABEL1 INCXSZ CNT, 1 B: PC =LABEL1

GOTO LOOP A: CNT = CNT + 1

CONTINUE if CNT =0, PC =CONTINUE if CNT \neq 0, PC =LABEL1 + 1

IORLW Inclusive OR Literal with W

SyntaxIORLW kOperands $k: 00h \sim FFh$ Operation $(W) \leftarrow (W) OR k$

Status Affected Z

OP-Code 0001 1010 kkkk kkkk

Description The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is

placed in the W register.

Cycle 1

Example IORLW 0x35 B: W=0x9A

A : W = 0xBF, Z = 0

IORWX Inclusive OR W with "f"

Syntax IORWF f [,d] Operands $f: 00h \sim 1FFh, d: 0, 1$ Operation $(destination) \leftarrow (W) OR k$

Status Affected Z

OP-Code ff00 0100 dfff ffff

Description Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the

W register. If 'd' is 1, the result is placed back in register 'f'.

Cycle 1

Example IORWX RESULT, 0 B: RESULT =0x13, W =0x91

A: RESULT =0x13, W =0x93, Z =0

MOVX	Move f	
Syntax	MOVX f,d	
Operands	f:00h~1FFh	
Operation	$(destination) \leftarrow (f)$	
Status Affected	Z	
OP-Code	ff00 1000 dfff ffff	
Description	<u>e</u>	are moved to a destination dependent upon the status of register. If $d = 1$, the destination is file register f itself.
	d=1 is useful to test a file r	egister, since status flag Z is affected.
Cycle	1	
Example	MOVX FSR,0	B: FSR = 0xC2, W = ?
		A : FSR = 0xC2, W 0xC2

Move "f" to W		
MOVXW f		
f:00h~1FFh		
$(W) \leftarrow (f)$		
Z		
ff00 1000 0fff ffff		
The contents of register 'f'	are moved to W register.	
1		
MOVXW FSR	B : FSR = 0xC2, W = ?	
	f: 00h ~ 1FFh (W) \leftarrow (f) Z ff00 1000 0fff ffff The contents of register 'f' a	MOVXW f f: 00h ~ 1FFh (W) ← (f) Z ff00 1000 0fff ffff The contents of register 'f' are moved to W register. 1

A: FSR = 0xC2, W 0xC2

MOVLW Move Literal to W

1110 1211	1/10 / C Eliteral to //	
Syntax	MOVLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow k$	
Status Affected	-	
OP-Code	0001 1001 kkkk kkkk	
Description	The eight-bit literal 'k' is load	ed into W register. The don't cares will assemble as
	0's.	
Cycle	1	
Example	MOVLW 0x5A	$\mathbf{B}: \mathbf{W} = ?$
		$\Lambda \cdot W = 0 \times 5 \Lambda$

1		A:W=0x5A

MOVWX	Move W to "f"	
Syntax	MOVWX f	
Operands	f:00h~1FFh	
Operation	$(f) \leftarrow (W)$	
Status Affected	=	
OP-Code	ff00 0000 1fff ffff	
Description	Move data from W registe	r to register 'f'.
Cycle	1	
Example	MOVWX REG1	B : REG1 = 0xFF, W = 0x4F
-		A : REG1 = 0x4F, W = 0x4F

DS-TM56F5412_16_12B_16B_E 92 Rev 0.94, 2022/04/11

NOP No Operation

Syntax NOP Operands -

Operation No Operation

Status Affected -

OP-Code 0000 0000 0000 0000

Description No Operation

Cycle 1 Example NOP

RET Return from Subroutine

Syntax RET

Operands - $PC \leftarrow TOS$

Status Affected -

OP-Code 0000 0000 0100 0000

Description Return from subroutine. The stack is POPed and the top of the stack (TOS) is

loaded into the program counter. This is a two-cycle instruction.

Cycle 2

Example RET A: PC = TOS

RETI Return from Interrupt

Syntax RETI Operands -

Operation $PC \leftarrow TOS, GIE \leftarrow 1$

Status Affected

OP-Code 0000 0000 0110 0000

Description Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the

PC. Interrupts are enabled. This is a two-cycle instruction.

Cycle 2

Example RETI A: PC =TOS, GIE =1

RETLW Return with Literal in W

Syntax RETLW k Operands $k: 00h \sim FFh$

Operation $PC \leftarrow TOS, (W) \leftarrow k$

Status Affected -

OP-Code 0001 1000 kkkk kkkk

Description The W register is loaded with the eight-bit literal 'k'. The program counter is

loaded from the top of the stack (the return address). This is a two-cycle

instruction.

Cycle 2

Example CALL TABLE B: W = 0x07

: A: W = value of k8

TABLE ADDWX PCL. 1

RETLW k1 RETLW k2

:

RETLW kn

Rotate Left "f" through Carry **RLX**

RLX f [,d] Syntax **Operands** $f: 00h \sim 1FFh, d: 0, 1$

Operation

Register f

Status Affected C

OP-Code ff00 1101 dfff ffff

Description The contents of register 'f' are rotated one bit to the left through the Carry Flag. If

'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in

register 'f'.

Cycle

RLX REG1, 0 B: REG1 =1110 0110, C=0 Example

A: REG1 =1110 0110 =1100 1100, C =1 W

RRX Rotate Right "f" through Carry

Syntax RRX f [,d]

Operands f:00h ~ 1FFh, d:0, 1

Operation Register f

Status Affected C

OP-Code ff00 1100 dfff ffff

Description The contents of register 'f' are rotated one bit to the right through the Carry Flag.

If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back

in register 'f'.

Cycle

Example RRX REG1, 0 B: REG1 =1110 0110, C=0

A: REG1 =1110 0110

=0111 0011, C =0

SLEEP Go into Power-down mode, Clock oscillation stops

SLEEP Syntax Operands Operation TO, PD Status Affected

OP-Code 001 1110 0000 0011

Description Go into Power-down mode with the oscillator stops.

Cycle

Example **SLEEP**

Subtract W from Literal SUBLW Syntax SUBLW k Operands k:00h ~ FFh $(W) \leftarrow k - (W)$ C, DC, Z Operation Status Affected OP-Code 0001 1111 kkkk kkkk Description The W register is subtracted (2's complement method) from the eight-bit literal "k". The result is placed in the W register. Cycle 1 Example SUBLW 0x25 B: W = 0x15A: W = 0x10

SURWY Subtract W from "f"

SUBWX	Subtract W from "f"					
Syntax	SUBWX f [,d]					
Operands	f:00h ~ 1FFh, d:0, 1					
Operation	$(destination) \leftarrow (f) - (W)$					
Status Affected	C, DC, Z					
OP-Code	ff00 0010 dfff ffff					
Description	Subtract (2's complement m	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result				
	is stored in the W register. I	f 'd' is 1, the result is stored back in register 'f'.				
Cycle	1					
Example	SUBWX REG1, 1	B: REG1 = $0x03$, W = $0x02$, C =?, Z =?				
		A : REG1 = 0x01, W = 0x02, C = 1, Z = 0				
	SUBWX REG1, 1	B: REG1 = $0x02$, W = $0x02$, C =?, Z =?				
		A: REG1 = $0x00$, W = $0x02$, C = 1 , Z = 1				
	SUBWX REG1, 1	B: REG1 = $0x01$, W = $0x02$, C =?, Z =?				
		A: REG1 =0xFF, W =0x02, C =0, Z =0				

SWAPX Swap Nibbles in "f"

Syntax	SWAPX f [,d]					
Operands	f:00h ~ 1FFh, d:0, 1					
Operation	$(destination, 7\sim4) \leftarrow (f.3\sim0), (destination.3\sim0) \leftarrow (f.7\sim4)$					
Status Affected	- -					
OP-Code	ff00 1110 dfff ffff					
Description	The upper and lower nibb	eles of register 'f' are exchanged. If 'd' is 0, the result is				
	placed in W register. If 'd'	is 1, the result is placed in register 'f'.				
Cycle	1					
Example	SWAPX REG, 0	B : REG1 = 0xA5				

A : REG1 = 0xA5, W = 0x5A

Syntax

TABRH Return DPTR high byte to W TABRH

Operands $(W) \leftarrow ROM[DPTR]$ high byte content, Where $DPTR = \{DPH[max:8], FSR[7:0]\}$ Operation

Status Affected 0000 0000 0101 1000 OP-Code

Description The W register is loaded with high byte of ROM[DPTR]. This is a two-cycle

instruction.

Cycle 2

MOVLW Example (TAB1&0xFF)

> **MOVWX** DPL ;Where DPL is register

MOVLW (TBA1>>8)&0xFF

MOVWX ;Where DPH is register DPH

TABRL W = 0x89**TABRH** ;W = 0x37

ORG 0234H

TAB1:

;ROM data 16 bits DT 0x3789, 0x2277

TABRL Return DPTR low byte to W

Syntax TABRL

Operands

 $(W) \leftarrow ROM[DPTR]$ low byte content, Where $DPTR = \{DPH[max:8], FSR[7:0]\}$ Operation

Status Affected

OP-Code 0000 0000 0101 0000

The W register is loaded with low byte of ROM[DPTR]. This is a two-cycle Description

instruction.

Cycle

Example MOVLW (TAB1&0xFF)

> MOVWX **DPL** ;Where DPL register

MOVLW (TBA1>>8)&0xFF

MOVWX DPH ;Where DPH register

;W = 0x89**TABRL TABRH** ;W = 0x37

ORG 0234H

TAB1:

;ROM data 16 bits DT 0x3789, 0x2277

TSTX Test if "f" is zero

SyntaxTSTX fOperands $f: 00h \sim 1FFh$ OperationSet Z flag if (f) is 0

Status Affected Z

OP-Code ff00 1000 1fff ffff

Description If the content of register 'f' is 0, Zero flag is set to 1.

Cycle 1

Example TSTX REG1 B : REG1 = 0, Z = ?

A : REG1 = 0, Z = 1

XORLW Exclusive OR Literal with W

SyntaxXORLW kOperands $k: 00h \sim FFh$ Operation $(W) \leftarrow (W) XOR k$

Status Affected Z

OP-Code 0001 1101 kkkk kkkk

Description The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result

is placed in the W register.

Cycle 1

Example XORLW 0xAF B: W=0xB5

A:W=0x1A

XORWX Exclusive OR W with "f"

Syntax XORWX f [,d] Operands $f: 00h \sim 1FFh, d: 0, 1$ Operation (destination) \leftarrow (W) XOR (f)

Status Affected Z

OP-Code ff00 0110 dfff ffff

Description Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is

stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example XORWX REG, 1 B: REG =0xAF, W =0xB5

A : REG = 0x1A, W = 0xB5

Rev 0.94, 2022/04/11

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings $(T_A = 25$ °C)

Parameter	Rating	Unit
Supply voltage	V_{SS} -0.3 to V_{SS} +5.5	
Input voltage	V_{SS} -0.3 to V_{CC} +0.3	V
Output voltage	V_{SS} -0.3 to V_{CC} +0.3	
Output current high per 1 PIN	-25	
Output current high per all PIN	-80	mA
Output current low per 1 PIN	+30	IIIA
Output current low per all PIN	+150	
Maximum operating voltage	5.5	V
Operating temperature	-40 to +85	°C
Storage temperature	-65 to +150	-0

2. DC Characteristics ($T_A = 25 \,^{\circ}\text{C}$, $V_{DD} = 5.0 \,\text{V}$, unless otherwise specified)

Parameter	Sym	Co	Min	Тур	Max	Unit		
Omenating Welters	V	Fsys=16Mhz		2.8		5.5		
Operating Voltage	V_{cc}	Fsy	ys= 8Mhz	LVR		5.5		
Input High Voltage	V_{IH}	All Input	$V_{CC} = 3 \sim 5V$	0.6Vcc	_	Vcc	V	
Input Low Voltage	$V_{\rm IL}$	All Input	$V_{CC} = 3 \sim 5V$	Vss	_	0.2Vcc	V	
Output High Current	I_{OH}	All Output	$V_{CC} = 5V, V_{OH} = 4.5V$	5	12	_	mA	
Output High Current	1 _{OH}	All Output	$V_{CC} = 3V, V_{OH} = 2.7V$	2.5	4.5	_	IIIA	
Output Low Current	I_{OL}	All Output	$V_{\rm CC} = 5V, V_{\rm OL} = 0.5V$	20	39	_	mA	
	TOL	An Output	$V_{\rm CC} = 3V, V_{\rm OL} = 0.3V$	8	17	_		
Input Leakage Current (pin high)	I_{ILH}	All Input	$V_{\rm IN} = V_{\rm CC}$	_	_	1	uA	
Input Leakage Current (pin low)	I_{ILL}	All Input	$V_{IN} = 0V$	-	_	-1	uA	
		FAST mode FIRC 16 MHz	$V_{CC} = 5V$	-	4.5	-		
		FAST mode FIRC 8 MHz	$V_{\rm CC} = 5V$		3			
		FAST mode FIRC 4 MHz	$V_{\rm CC} = 5V$	-	2.3	-	mA	
Davisa Ciranly Crimont		FAST mode	$V_{CC} = 5V$	-	1.8	_		
Power Supply Current (No Load)	I_{CC}	FIRC 1 MHz	$V_{CC} = 3V$	-	1.2	_		
(Ivo Load)		SLOW mode	$V_{CC} = 5.0V$	-	850	-	A	
		SIRC 70KHz FIRC STOP	$V_{CC} = 3.0V$	-	700	-	uA	
		STOP mode LVRSAV = 1	$V_{\rm CC} = 5.0 V$	-	0.1		uA	
			$V_{CC} = 3.0V$	-	0.1	_		

Parameter	Sym	Conditions		Min	Тур	Max	Unit
Power Supply Current	т	IDLE mode	$V_{CC} = 5.0V$	-	6	-	
(No Load)	I_{CC}	SIRC 70 KHz LVRSAV= 1	$V_{CC} = 3.0V$	-	2	-	uA
Pull-up Resistor R _{UP}	$V_{IN} = 0 V$	$V_{\rm CC} = 5.0 \text{V}$	ı	39	ı	ΚΩ	
	\mathbf{K}_{UP}	Ports A/B/C/D	$V_{CC} = 3.0V$	_	70	_	18.52

3. Clock Timing $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Condition	Min	Тур	Max	Unit
FIRC Frequency (*)	-40 °C ~ 85 °C, $V_{CC} = 3.0 \sim 5.0$ V	-6.5%	16	+1.5%	
	-40 °C ~ 85 °C, $V_{CC} = 4.0 \text{ V}$	-5%	16	+1.5%	
	$0^{\circ}\text{C} \sim 70^{\circ}\text{C}, V_{\text{CC}} = 4.0 \text{ V}$	-2%	16	+1.5%	MHz
	25° C, $V_{CC} = 3.0 \sim 5.0 \text{ V}$	-1.0%	16	+1.2%	
	25°C, V _{CC} =4.0 V	-0.5%	16	+0.5%	

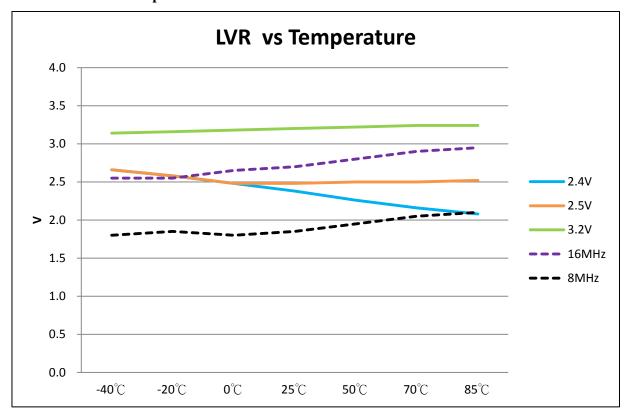
^(*) FIRC frequency can be divided by 1/2/4/16.

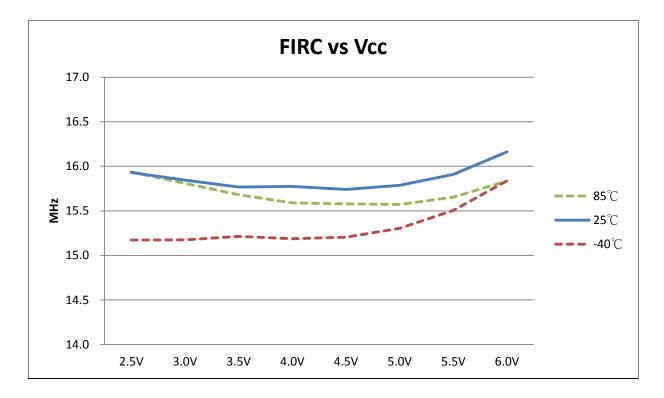
4. Reset Timing Characteristics ($T_A = -40$ °C to +85°C)

Parameter	Conditions	Min	Тур	Max	Unit
RESET Input Low width	Input $V_{CC} = 5 \text{ V} \pm 10 \%$	30	_	-	μs
WDT time	$V_{CC} = 3 \text{ V, WDTPSC} = 11$		2090		***
wD1 time	V _{CC} = 5 V, WDTPSC = 11		1870	_	ms
WKT time	$V_{CC} = 3 \text{ V, WKTPSC} = 11$		133		me
WKI time	$V_{CC} = 5 \text{ V}, \text{WKTPSC} = 11$	_	118	ı	ms
CPU start up time	$V_{CC} = 5 \text{ V}$	_	27	ı	ms

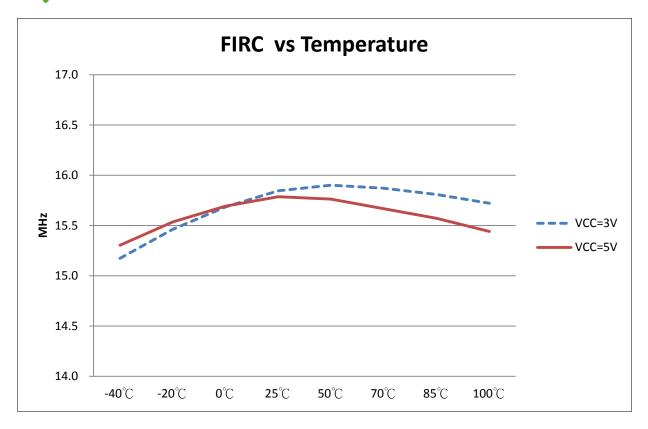
5. LVR Circuit Characteristics $(T_A = 25$ °C)

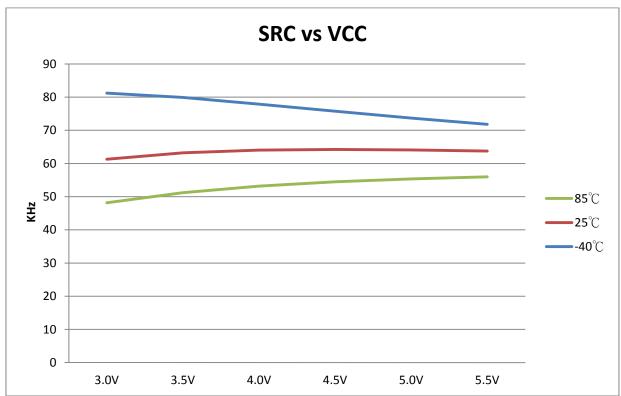
Parameter	Symbol	Min	Тур	Max	Unit
LVR Reference Voltage		-	2.4	-	
	1 7/D	_	2.5	-	V
	$\mathrm{LVR}_{\mathrm{th}}$	_	3.2	-	v
		_	3.7	-	
LVR Hysteresis Voltage	$V_{ m HYST}$	_	±0.1	-	V
Low Voltage Detection time	$t_{ m LVR}$	100	_	_	μs

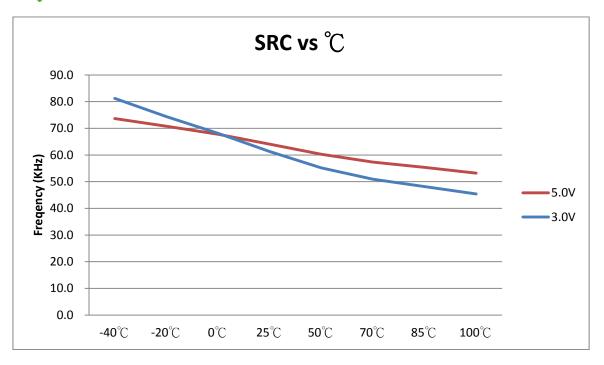

6. ADC Electrical Characteristics $(T_A = 25 \,^{\circ}\text{C}, \text{ VCC} = 3.0 \text{V to } 5.5 \text{V}, \text{ VSS} = 0 \text{V})$


Parameter	Conditions	Min	Тур	Max	Units
Total Accuracy		_	±2.5	±13	
Integral Non-Linearity	$V_{CC} = 5V, V_{SS} = 0V, f_{ADC} = 1 \text{ MHz}$	_	±3.2	±15	LSB
Differential Non-linearity		_	±1	±4	
	Source impedance (Rs<10K omh)	_	_	2	
Max Input Clock freq. (f _{ADC})	Source impedance (Rs<20K omh)	_	_	1	MHz
wax input clock freq. (I _{ADC})	Source impedance (Rs<50K omh)	_	_	0.5	MITIZ
	Source is VBG (ADCHS=1100)	_	_	2	
Conversion Time	$f_{ADC} = 1 \text{ MHz}$	_	50	_	μs
Input Voltage	ı	V _{ss}	_	Vcc	V

DS-TM56F5412_16_12B_16B_E 100 Rev 0.94, 2022/04/11



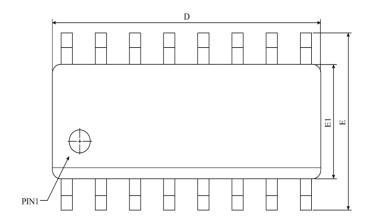

7. Characteristic Graphs

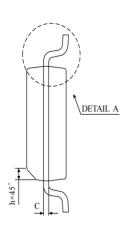


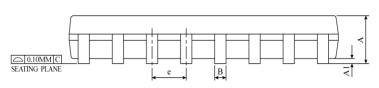
DS-TM56F5412_16_12B_16B_E 103 Rev 0.94, 2022/04/11

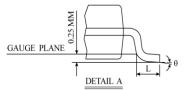
PACKAGING INFORMATION

Please note that the package information provided is for reference only. Since this information is frequently updated, users can contact Sales to consult the latest package information and stocks.

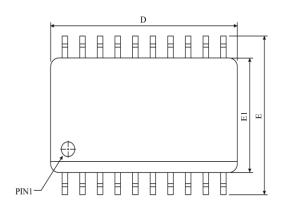

The ordering information:

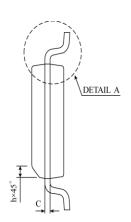

Ordering number	Package
TM56F5412/12B-MTP	Wafer/Dice blank chip
TM56F5412/12B-COD	Wafer/Dice with code
TM56F5412/12B-MTP-22	SOP 24-pin (300 mil)

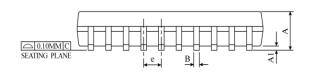

Ordering number	Package
TM56F5416/16B-MTP	Wafer/Dice blank chip
TM56F5416/16B -COD	Wafer/Dice with code
TM56F5416/16B -MTP-23	SOP 28-pin (300 mil)
TM56F5416/16B -MTP-16	SOP 20-pin (300 mil)
TM56F5416/16B -MTP-21	SOP 16-pin (150 mil)
TM56F5416/16B -MTP-D1	QFN 20-pin (3*3*0.75-0.4mm)(L=0.25mm)
TM56F5416/16B -COD-D1	Q14V 20-pin (3/3/0.73-0.4min)(L=0.23min)
TM56F5416/16B -MTP-53	MSOP 10-pin (118 mil)
TM56F5416/16B -COD-53	1 (110 min)

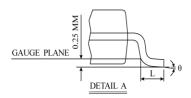


♦ SOP-16 (150mil) Package Dimension

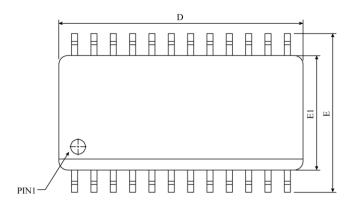

SVA (DOL	DIMENSION IN MM			DIMENSION IN INCH		
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
A	1.35	1.55	1.75	0.0532	0.0610	0.0688
A1	0.10	0.18	0.25	0.0040	0.0069	0.0098
В	0.33	0.42	0.51	0.0130	0.0165	0.0200
С	0.19	0.22	0.25	0.0075	0.0087	0.0098
D	9.80	9.90	10.00	0.3859	0.3898	0.3937
Е	5.80	6.00	6.20	0.2284	0.2362	0.2440
E1	3.80	3.90	4.00	0.1497	0.1536	0.1574
e		1.27 BSC			0.050 BSC	
h	0.25	0.38	0.50	0.0099	0.0148	0.0196
L	0.40	0.84	1.27	0.0160	0.0330	0.0500
θ	0°	4°	8°	0°	4°	8°
JEDEC		MS-012 (AC)				

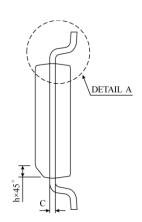

 \triangle * Notes : Dimension " D " does not include mold flash, protrusions or gate burrs. Mold flash, protrusions and gate burrs shall not exceed 0.15 MM (0.006 inch) Per Side.

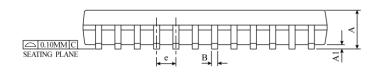

DS-TM56F5412_16_12B_16B_E 105 Rev 0.94, 2022/04/11

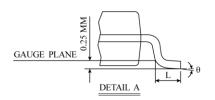


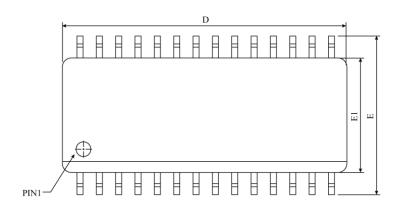
♦ SOP-20 (300mil) Package Dimension

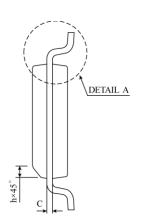

CVMDOI	DIMENSION IN MM			DIMENSION IN INCH		
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
A	2.35	2.50	2.65	0.0926	0.0985	0.1043
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118
В	0.33	0.42	0.51	0.0130	0.0165	0.0200
С	0.23	0.28	0.32	0.0091	0.0108	0.0125
D	12.60	12.80	13.00	0.4961	0.5040	0.5118
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992
e		1.27 BSC			0.050 BSC	
h	0.25	0.50	0.75	0.0100	0.0195	0.0290
L	0.40	0.84	1.27	0.0160	0.0330	0.0500
θ	0°	4°	8°	0°	4°	8°
JEDEC	MS-013 (AC)					

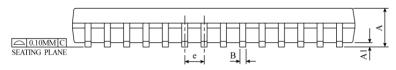

 $\underline{\mathbb{A}}$ * Notes : dimension " d " does not include mold flash, protrusions or gate burrs. Mold flash, protrusions and gate burrs shall not exceed 0.15 MM (0.006 inch) per side.

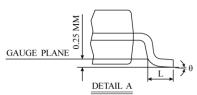

♦ SOP-24 (300mil) Package Dimension


DS-TM56F5412_16_12B_16B_E 106 Rev 0.94, 2022/04/11

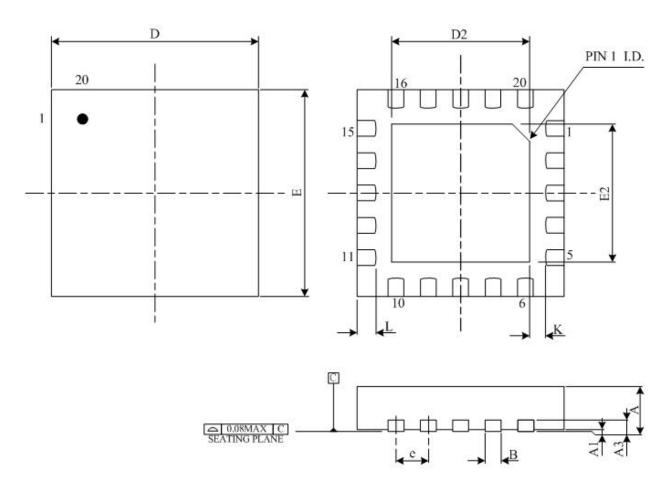



SYMBOL	DIMENSION IN MM			DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	2.35	2.50	2.65	0.0926	0.0985	0.1043	
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.23	0.28	0.32	0.0091	0.0108	0.0125	
D	15.20	15.40	15.60	0.5985	0.6063	0.6141	
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910	
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992	
e	1.27 BSC			0.050 BSC			
h	0.25	0.50	0.75	0.0100	0.0195	0.0290	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	MS-013 (AD)						


 $\underline{\mathbb{A}}$ * NOTES : DIMENSION " D " DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.



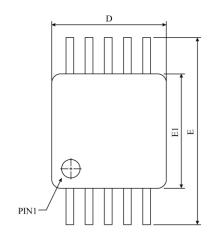
♦ SOP-28 (300mil) Package Dimension

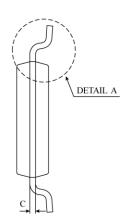


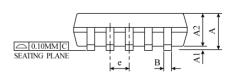
SYMBOL	DIMENSION IN MM			DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	2.35	2.50	2.65	0.0926	0.0985	0.1043	
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.23	0.28	0.32	0.0091	0.0108	0.0125	
D	17.70	17.90	18.10	0.6969	0.7047	0.7125	
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910	
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992	
e	1.27 BSC			0.050 BSC			
h	0.25	0.50	0.75	0.0100	0.0195	0.0290	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	MS-013 (AE)						

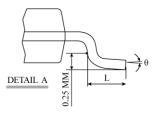
DS-TM56F5412_16_12B_16B_E 108 Rev 0.94, 2022/04/11

 \Leftrightarrow QFN-20 (3x3x0.75-0.4mm) (L=0.25mm) Package Dimension




SYMBOL.	DIMENSION IN MM			DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.70	0.75	0.80	0.028	0.030	0.031	
A1	0.00	0.02	0.05	0.00	0.001	0.002	
A3		0.203 REF			0.008 REF		
В	0.15	0.20	0.25	0,006	0.008	0.010	
D	3 BSC			0.118 BSC			
E		3 BSC			0.118 BSC		
D2	1.80	1.90	2.00	0.071	0.075	0.079	
E2	1.80	1.90	2.00	0.071	0.075	0.079	
e	0.40 BSC			0.016 BSC			
L	0.15	0.25	0.35	0.006	0.010	0.014	
K	0.30 REF			0.012 REF			
JEDEC	MO-220						


DS-TM56F5412_16_12B_16B_E 109 Rev 0.94, 2022/04/11



♦ MSOP-10 (118mil) Package Dimension

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX	
A	0.81	0.96	1.10	0.032	0.038	0.043	
A1	0.05	0.10	0.15	0.002	0.004	0.006	
A2	0.75	0.85	0.95	0.030	0.034	0.037	
В	0.17	0.22	0.27	0.007	0.009	0.011	
С	0.13	0.18	0.23	0.005	0.007	0.009	
D	2.90	3.00	3.10	0.114	0.118	0.122	
Е	4.75	4.90	5.05	0.187	0.193	0.199	
E1	2.90	3.00	3.10	0.114	0.118	0.122	
e	0.50 BSC			0.020 BSC			
L	0.40	0.55	0.70	0.016	0.022	0.028	
θ	0°	3°	6°	0°	3°	6°	
JEDEC							

⚠ * NOTES : DIMENSION " D " DOES NOT INCLUDE MOLD PROTRUSIONS OR GATE BURRS.

MOLD PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.12 MM (0.005 INCH) PER SIDE.

DIMENSION "E1" DOES NOT INCLUDE MOLD PROTRUSIONS

MOLD PROTRUSIONS SHALL NOT EXCEED 0.25 MM (0.010 INCH) PER SIDE.