

TM56FE8228 DATA SHEET Rev 0.93

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. tenx does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. tenx products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses tenx products for any such unintended or unauthorized application, Buyer shall indemnify and hold tenx and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that tenx was negligent regarding the design or manufacture of the part.

AMENDMENT HISTORY

Date	Description
Sep, 2020	New Release
Sep, 2020	Revise description
Sep, 2021	1. Fixed typo in the description of indirect addressing(P.17)
	2. Fixed typo in example code (P.19)
	3. Revised description and fixed typos in example code (P.21)
	4. Revised description for INT1IF(P.34)
	5. Add SFR OPTION table for the description of interrupt(P.35)
	6. Revised description of output mode example(P.37)
	7. Revised description to clear watchdog timer(P.41)
	8. Fixed typos in the table of SFR OPTION(P.42)
	9. Fixed typos in the description of CALL instruction(P.79)
	10. Fixed typos in the description of GOTO instruction(P.80)
	11. Fixed typos in the description of MOVX and MOVXW
	instructions(P.82)
	12. Fixed description of SUBLW instruction(P.85)
	13. Delete irrelative instructions in the example code and fixed
	typo in the explanation of example code(P.54)
	14. Bit4 of OPTION must be set to 1 in the example code(P.33)
	15. Bit4 of OPTION must be set to 1 in the example code(P.41)
	16. Don't change bit4 and bit5 of TM0CTL in the example code of timer mode of TM0(P.45)
	17. Delete the description about the counter mode of TM0(P.46)
	18. Fixed the reset value of bit5 of MF019(P.65)
	19. Fixed the reset value of bit5 of MF019(P.70)
	20. Delete the feature of adjustable non-overlap time durations of
	PWM0(P.6)
	21. Modify the figure of PWM0 Waveform Modes(P.55)
Feb, 2022	1. Add the description of "PWM0 clock is enabled and PWM0 is
	not hold after reset".(P.52)
	2. Add the description of "PWM1 clock is enabled and PWM1 is
	not hold after reset". (P.58)
	Sep, 2020 Sep, 2021 Sep, 2021

DS-TM56FE8228_E 2 Rev 0.93, 2022/02/21

CONTENTS

AM	ENDI	MENT HISTORY	2
CO	NTEN	VTS	3
FEA	ATUR	ES	5
		BLOCK DIAGRAM	
		GNMENT DIAGRAM	
		CRIPTIONS	
PIN	SUM	[MARY	11
FUI	NCTIO	ON DESCRIPTION	12
1	CPU	J Core	12
	1.1	Program ROM (PROM)	
		1.1.1 Reset Vector (000H)	
		1.1.2 Interrupt Vector (004H)	
	1.2	System Configuration Register (SYSCFG)	
	1.3	Data ROM (EEPROM)	
	1.4	RAM Addressing Mode	17
	1.5	Programming Counter (PC) and Stack	
		1.5.1 ALU and Working (W) Register	
		1.5.2 STATUS Register (03H/83H/103H/183H)	
2	Rese	et	24
	2.1	Power on Reset	24
	2.2	Low Voltage Reset	24
	2.3	External Pin Reset	25
	2.4	Watchdog Timer Reset	25
3	Cloc	ck Circuitry and Operation Mode	26
	3.1	System Clock	
	3.2	Dual System Clock Modes Transition	28
	3.3	System Clock Oscillator	31
4	Inter	rrupt	32
5	I/O l	Port	36
	5.1	PA0-PA4, PA7	36
6	Perij	pheral Functional Block	40
	6.1	Watchdog (WDT) /Wakeup (WKT) Timer	40
	6.2	Timer0	43
	6.3	Timer1	47
	6.4	T2:15-bit Timer	
	6.5	PWM0: (8+2) bits PWM	
	6.6	PWM1A / PWM1B / PWM1C: 16 bits PWMs	58
	6.7	Analog-to-Digital Converter	63
	6.8	Cyclic Redundancy Check (CRC)	66
ME	MOR	Y MAP	67

INS	TRUCTION SET	75
ELF	ECTRICAL CHARACTERISTICS	88
1.	Absolute Maximum Ratings	88
	DC Characteristics (TA =25°C, V _{CC} =5.0V, unless otherwise specified)	
3.	Clock Timing	89
	$\boldsymbol{\mathcal{C}}$	
5.	LVR Circuit Characteristics (TA = 25°C)	89
6.	ADC Electrical Characteristics	90
7.	EEPROM Block Characteristics	90
8.	Electrical Characteristics Graphs	91
PA(CKAGING INFORMATION	92
8-S	OP Package Dimension	93

FEATURES

1. ROM: 2K x 16 bits Flash Program Memory

- 10K erase times at least
- 10 years data retention at least
- 2. EEPROM: 128 x 8 bits
 - 50K erase times at least
 - 10 years data retention at least
- 3. RAM: 176 x 8 bits
- 4. STACK: 8 Levels
- 5. System Oscillation Sources (Fsys):
 - Fast-clock
 - FIRC (Fast Internal RC): 8 MHz
 - Slow-clock
 - SIRC (Slow Internal RC): 70 KHz @VCC=5V

6. System Clock Prescaler:

• System Oscillation Sources can be divided by 1 / 2 / 4 / 8 as System Clock (Fsys)

7. Dual System Clock:

• FIRC + SIRC

8. Power Saving Operation Mode

- FAST Mode: Slow-clock can be disabled or enabled, Fast-clock keeps CPU running
- SLOW Mode: Fast-clock can be disabled or enabled, Slow-clock keeps CPU running
- IDLE Mode: Fast-clock and CPU stop. Slow-clock, T2, or Wake-up Timer keep running
- STOP Mode: All clocks stop, T2 and Wake-up Timer stop

9. 3 Independent Timers

- Timer0
 - 8-bit timer divided by 1~32768 pre-scale option / auto-reload / counter / interrupt / stop function
- Timer1
 - 8-bit timer divided by 1~256 pre-scale option / auto-reload / interrupt / stop function
- T2
 - 15-bit timer with 4 interrupt interval time options
 - IDLE mode wake-up timer or used as one simple 15-bit time base
 - Clock source: Slow-clock (SIRC) or Fsys/128

DS-TM56FE8228_E 5 Rev 0.93, 2022/02/21

10. Interrupt

- Three External Interrupt pins
 - 1 pin is falling edge wake-up triggered & interrupts
 - 2 pins are rising or falling edge wake-up triggered & interrupt
- Timer0 / Timer1 / T2 / Wake-up Timer Interrupt
- ADC Interrupt
- PWM1 period and PWM1A / PWM1B / PWM1C duty Interrupt

11. Wake-up Timer (WKT)

- Clocked by built-in RC oscillator with 4 adjustable interrupt times
 - 16 ms / 33 ms / 65 ms / 130 ms @VCC=3V
 - 15 ms / 29 ms / 59 ms / 118 ms @VCC=5V

12. Watchdog Timer (WDT)

- Clocked by built-in RC oscillator with 4 adjustable reset times
 - 130 ms / 260 ms / 1040 ms / 2080 ms @VCC=3V
 - 118 ms / 236 ms / 944 ms / 1888 ms @VCC=5V
- Watchdog timer can be disabled / enabled in STOP mode

13. PWM x 4

- PWM0
 - 8+2 bits, duty-adjustable, period-adjustable controlled PWM
 - PWM0 clock source: Fast-clock or FIRC 8 MHz / 16MHz, with 1~8 pre-scalers
- PWM1A / PWM1B / PWM1C
 - 16-bit PWM1 with three groups independent duty-adjustable function and shared periodadjustable controlled
 - PWM1 shared clock source: System clock (Fsys) or FIRC 8 MHz / 16 MHz
 - With duty and period interrupt function

14. 12-bit ADC with 6 input channels and 1 internal reference voltage

• ADC reference voltage = VCC

15. Reset Sources

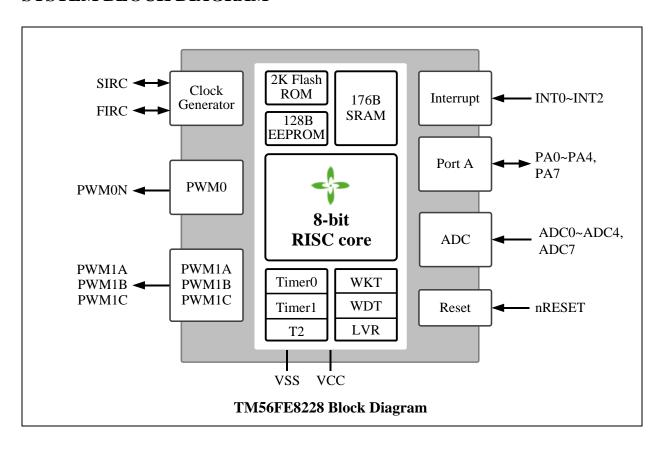
- Power On Reset
- Watchdog Reset
- Low Voltage Reset
- External Pin Reset

16. Low Voltage Reset (LVR) / Low Voltage Detection Flag (LVD)

DS-TM56FE8228_E 6 Rev 0.93, 2022/02/21

- 4-Level Low Voltage Reset: 2.2V / 2.8V / 3.6V / 4.2V
- 3-Level Low Voltage Detection Flag: 2.8V / 3.6V / 4.2V (when LVR = 2.2V)

17. Operating Voltage


- Fsys= 4 MHz, 1.6V~5.5V @LVR disable. Suggest LVR 2.2V or above at -40°C to +85°C
- Fsys=8 MHz, 2.1V~5.5V @LVR disable. Suggest LVR 2.8V or above at -40°C to +85°C Note: Power-up VCC must exceed LVR 2.2V and selected LVR level, refer to the "Electrical Characteristics Graphs" to avoid entering ROM deadzone.
- 18. Operating Temperature Range: -40°C to +85°C
- 19. Table Read Instruction: 16-bit ROM data lookup table
- 20. Integrated 16-bit Cyclic Redundancy Check function
- 21. Instruction set: 39 Instructions
- **22. I/O ports:**
 - Maximum 6 programmable I/O pins
 - Open-Drain Output
 - CMOS Push-Pull Output
 - Schmitt Trigger Input with pull-up resistor option
 - All I/O with High-Sink and High-Drive
- 23. Programming connectivity support 4-wire (ICP) or 7-wire program
- 24. Package Types:
 - 8-pin SOP (150 mil)
- 25. Supported EV board on ICE

EV board: EV8235

DS-TM56FE8228_E 7 Rev 0.93, 2022/02/21

SYSTEM BLOCK DIAGRAM

DS-TM56FE8228_E 8 Rev 0.93, 2022/02/21

PIN ASSIGNMENT DIAGRAM

TM56FE8228	8 VSS
	7 PA7 / ADC7 / PWM1B / INT2 / nRESET
SOP-8	6 PA4 / ADC4 / PWM1C
	5 PA3 / ADC3 / PWM1C
	SOP-8

DS-TM56FE8228_E 9 Rev 0.93, 2022/02/21

PIN DESCRIPTIONS

Name	In/Out	Pin Description
PA0–PA4, PA7	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or open-drain output. Pull-up resistors are assignable by software.
nRESET	I	External active low reset
VCC, VSS	P	Power Voltage input pin and ground
INT0-INT2	I	External interrupt input
PWM0N	О	(8+2) bit PWM0 negative output
PWM1A	О	16 bit PWM1 output
PWM1B	О	16 bit PWM1 output
PWM1C	О	16 bit PWM1 output
ADC0-ADC4, ADC7	I	ADC channels input

Programming pins:

Normal mode: VCC / VSS / PA0 / PA1 / PA2 / PA3 / PA4

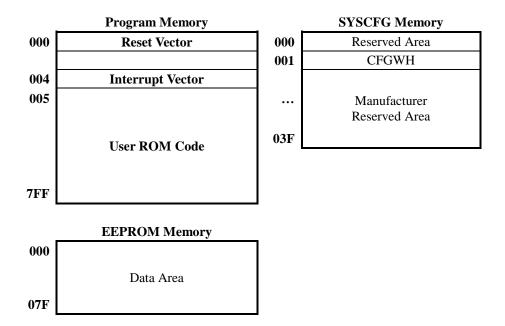
 $ICP\ mode:\ VCC\ /\ VSS\ /\ PA0\ /\ PA1\ -\ When\ using\ ICP\ (In-circuit\ Program)\ mode,\ the\ PCB\ needs\ to\ remove\ all\ components\ of\ PA0,\ PA1.$

PIN SUMMARY

Pin Number			G	PIO			Alto	ernate Fi	unction
8-SOP	Pin Name	Type	Ext. Interrupt	Out O.O	P.P.	Function AfterReset	PWM	ADC	MISC
1	VCC								
2	PA2/ADC2/PWM1B/INT0	I/O	0	0	0	PA2	0	0	
3	PA0/ADC0/PWM1A	I/O		0	0	PA0	0	0	
4	PA1/ADC1/PWM0N/INT1	I/O	0	0	0	PA1	0	0	
5	PA3/ADC3/PWM1C	I/O		0	0	PA3	0	0	
6	PA4/ADC4/PWM1C	I/O		0	0	PA4	0	0	
7	PA7/ADC7/PWM1B/INT2/nRESET	I/O	0	0	0	PA7	0	0	nRESET
8	VSS	P							

Symbol: P.P. = COM Push-Pull Output

O.D. = Open Drain Output



FUNCTION DESCRIPTION

1 CPU Core

1.1 Program ROM (PROM)

The Flash Program ROM of this device is 2K words, with an extra 64-Word INFO area to store the SYSCFG and an extra 128-Byte EEPROM. The ROM can be written multi-times and can be read as long as the PROTECT bit of SYSCFG is not set. The SYSCFG can be read no matter PROTECT bit is set or cleared, but PROTECT bit can be cleared only when User ROM Code area is erased. That is, unprotect the PROTECT bit needs to erase the corresponding ROM area. If PROTECT bit is set, the user ROM code area will not be read by writer, and the user ROM code can't be updated until the PROTECT bit is cleared.

1.1.1 Reset Vector (000H)

After reset, system will restart the program counter (PC) at the address 000h, all registers will revert to the default value.

1.1.2 Interrupt Vector (004H)

When an interrupt occurs, the program counter (PC) will be pushed onto the stack and jumps to address 004H.

DS-TM56FE8228_E 12 Rev 0.93, 2022/02/21

1.2 System Configuration Register (SYSCFG)

The System Configuration Register (SYSCFG) is located at Flash INFO area; it contains a 13 bits register (CFGWH). The SYSCFG determines the option for initial condition of CPU. It is written by PROM Writer only. User can select LVR operation Mode and chip operation mode by SYSCFG register. The 13th bit of CFGWH is code protect selection bit. If this bit is 1, the data in PROM will be protected, when user reads PROM.

Bi	t		13~0					
Default	Value		00_0000_0000_0000					
Bi	t	Description						
		PROTECT	T: Code protection selection					
	13	1	Enable					
		0	Disable					
		XRSTE:	External Pin (PA7) Reset Enable					
	12	1	Enable					
		0	Disable (PA7 as input I/O pin)					
	11-10	LVR: Low Voltage Reset Mode						
		11	4.2V					
CECTAIL		10	3.6V					
CFGWH		01	2.8V					
		00	2.2V + LVD function (LVDS 00: 3.6V 01: 2.8V 1X: 4.2V)					
		WDTE: W	DT Reset Enable					
	9-8	11	Always Enable					
	9-0	10	Enable in FAST/SLOW mode, Disable in IDLE/STOP mode					
		0X	Disable					
	7-0	tenx Reserv	ved					

DS-TM56FE8228_E 13 Rev 0.93, 2022/02/21

1.3 Data ROM (EEPROM)

The TM56FE8228 contains 128 bytes of data EEPROM memory. It is organized as a separate data space, in which single bytes can be read and written. According the physical characteristic the EEPROM need more long access time than Program ROM. The EEPROM has an endurance of at least 50K write/erase cycle.

The EEPROM Read usage is same as use Table Read instruction except EEPROM enable bit must be set to high. By writing 0xE2 to register EEPEN (18Eh) can set the EEPROM enable bit, writing other value to EEPEN (18Eh) will clear the EEPROM enable bit.

♦ Example: read EEPROM data @address 23h

MOVLW E2H ;

MOVWX EEPEN ; set EEPROM enable bit

CLRX DPH ; set DPH=0 for EEPROM write/read

MOVLW 00H

MOVWX DPH

MOVLW 23H ; set DPTR=0023h

MOVWX DPL

; Read EEPROM @Address 23h data into W by using opcode TABRL

TABRL

. . .

; Another way to read EEPROM @Address 23h data into W by using TABR

MOVLW 01H

MOVWX TABR ; TABR = 01h = opcode TABRL

. . .

The EEPROM Write usage is similar to read EEPROM expect the LVRPD must be set to 0x37 to disable LVR. When F/W writes data to the register EEPDT (18Fh), the data will also be written to EEPROM.

♦ Example: write EEPROM data A5h to address 23h

MOVLW E2H ;

MOVWX EEPEN ; set EEPROM enable bit

CLRX DPH ; set DPH=0 for EEPROM write/read

MOVLW 23H

MOVWX DPL ; set DPTR=0023h

MOVLW 00000011B

MOVWX EEPCTL ; set EEPROM write with 7.2mS time out MOVLW 37H ; set W=LVRPD=37h, force LVR disable

MOVWX LVRPD ; LVR must be disabled before EEP Write operation

MOVLW A5H

MOVWX EEPDT ; write data A5h EEPDT (18Fh)

; the data also save to EEPROM @Address 23h

BTXSC EEPTO ; check EEPROM write time-out flag

GOTO TIMEOUT

CLRX EEPEN ; protect EEPROM from abnormal write

DS-TM56FE8228_E 14 Rev 0.93, 2022/02/21

0Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCTL	_	_	_	SLOWSTP	FASTSTP	CPUCKS	CPU	PSC
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
Reset	_	_	_	0	1	0	1	1

0Fh.4 **SLOWSTP:** Stop Slow-clock in Stop mode

0: no stop

1: stop Slow-clock

0Fh.3 **FASTSTP:** Stop Fast-clock

0: Fast-clock Running

1: Fast-clock Stop

0Fh.2 **CPUCKS:** System clock selection

0: Slow Clock as system clock

1: Fast Clock as system clock

0Fh.1~0 **CPUPSC:** System clock prescaler

0: div 8 1: div 4 2: div 2 3: div 1

109h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
LVRPD		LVRPD									
R/W	W	W	W	W	W	W	W	W			
Reset	0	0	0	0	0	0	0	0			

109h.7~0 LVRPD: LVR power down register

Write 37h to force LVR disable. (LVR must be disabled before EEPROM Write operation)

18Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
TABR		TABR											
R/W													
Reset	0	0	0	0	0	0	0	0					

18Ch.7~0 1. TABR write 01h = opcode TABRL

2. TABR write 02h = opcode TABRH

3. After step.1 or step.2, read TABR to get main ROM table read value After step.1, read TABR to get EEPROM value (when EEPEN = E2h)

Table Read for ASM: TABRL/ TABRH or TABR

Table Read for C: TABR

18Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EEPCTL	_	_	_	_	_	EEPTO	EEI	ΥE
R/W	_	_	_	_	_	R	R/W	R/W
Reset	_	_	_	_	_	0	0	0

18Dh.2 **EEPTO:** EEPROM write time-Out flag

Set by H/W when EEPROM write time-out occurs

Cleared by H/W when EEPTE=0

18Dh.1~0 **EEPTE:** EEPROM write watchdog timer enable (busy wait time)

00: disable 01: 1.6ms 10: 6.4ms 11: 12.8ms

18Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
EEPEN		EEPEN									
R/W	W	W	W	W	W	W	W	W			
Reset	0	0	0	0	0	0	0	0			

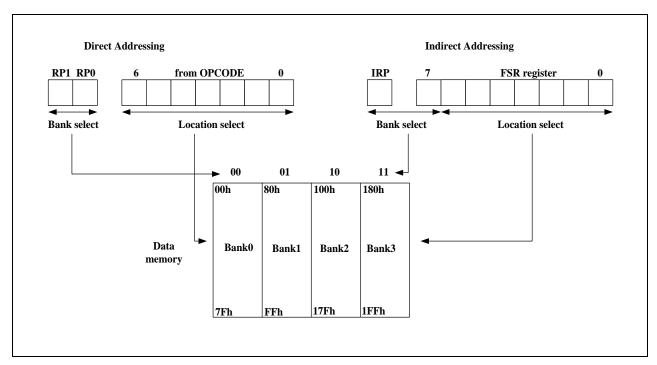
18Eh.7~0 **EEPEN**: EEPROM Access Enable

write 0xE2 to this register will enable EEPROM access write others value to this register will disable EEPROM access

18Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EEPDT				EEI	PDT			
R/W	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0

18Fh.7~0 **EEPDT:** EEPROM Data to write write data to this register will let H/W write the data to EEPROM when EEPROM access is enable

DS-TM56FE8228_E 16 Rev 0.93, 2022/02/21


1.4 RAM Addressing Mode

There is one Data Memory Plane in CPU. The Plane is partitioned into four banks. Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for Special Function Register (SFR). Above the SFR are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

Bit RP1 and RP0 (STATUS[6:5]) are the bank select bit

[RP1, RP0]	BANK
00	0
01	1
10	2
11	3

The plane can be addressed directly or indirectly. The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing. Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself, indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no operation (although status bit may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS[7]). Refer to the figure below.

Direct / Indirect Addressing

Keeping RP0=RP1=0 in the beginning of the F/W code and using the new instruction set. The advantage of using new instruction is user can ignore the bank location of registers and the code size can be saved. The new instruction is almost same as the old instruction. By replacing the "F" to "X" in the instruction set can easily use the new instruction without switching the bank.

DS-TM56FE8228_E 17 Rev 0.93, 2022/02/21

For example:

BCF	TM0IE	→	BC X	TM0IE
DEC F	CNT, 1	→	DECX	CNT, 1
INCFSZ	RAM25, 0	→	INCXSZ	RAM25, 0
MOVWF	PAMODL	→	MOVWX	PAMODL
RL F	RAMA0, 0	→	RLX	RAMA0, 0
SWAPF	ADCTL, 0	→	SWAP X	ADCTL, 0

	【BANK0】		【BANK1】		[BANK2]		[BANK3]
	00~7Fh		80h~FFh		100h~17Fh		180h~1FFh
00h	INDF	80h	INDF	100h	INDF	180h	INDF
01h	TM0	81h	OPTION	101h	TM0	181h	OPTION
02h	PCL	82h	PCL	102h	PCL	182h	PCL
03h	STATUS	83h	STATUS	103h	STATUS	183h	STATUS
04h	FSR	84h	FSR	104h	FSR	184h	FSR
05h	PAD	85h		105h		185h	DPL
06h		86h		106h		186h	DPH
07h		87h		107h		187h	CRCDL
08h		88h		108h		188h	CRCDH
09h		89h		109h	LVRPD	189h	CRCIN
0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah	PCLATH
0Bh	INTIE	8Bh	INTIE	10Bh	INTIE	18Bh	INTIE
0Ch	INTIF	8Ch	PAMODH	10Ch		18Ch	TABR
0Dh	INTIE1	8Dh	PAMODL	10Dh		18Dh	EEPCTL
0Eh	INTIF1	8Eh		10Eh		18Eh	EEPEN
0Fh	CLKCTL	8Fh		10Fh	IRCF	18Fh	EEPDT
10h	TM0RLD	90h		110h		190h	
11h	TM0CTL	91h	PWMOE	111h		191h	
12h	TM1	92h	PWM0PRD	112h		192h	
13h	TM1RLD	93h	PWM0DH	113h		193h	
14h	TM1CTL	94h	PWM0DL	114h		194h	
15h	T2CTL	95h	PWM0CTL	115h		195h	
16h	MF016	96h	PWM0CTL1	116h		196h	
17h	ADCH	97h	PWM1CTL	117h		197h	
18h	ADCTL	98h	PWM1PRDH	118h		198h	
19h	MF019	99h	PWM1PRDL	119h		199h	
1Ah		9Ah	PWM1ADH	11Ah		19Ah	
1Bh		9Bh	PWM1ADL	11Bh		19Bh	
1Ch		9Ch	PWM1BDH	11Ch		19Ch	
1Dh		9Dh	PWM1BDL	11Dh		19Dh	
1Eh		9Eh	PWM1CDH	11Eh		19Eh	
1Fh		9Fh	PWM1CDL	11Fh		19Fh	
20h		A0h		120h		1A0h	
-							
	RAM Bank0 area		RAM Bank1 area				
~		~		~		~	
	(80 Bytes)		(80 Bytes)				
6Fh	` '	DD:	• •	1 4 171-		11717h	
	000000000000000000000000000000000000000	EFh	0.000====	16Fh	0000000	1EFh_	0.0000000
70h	common area	F0h	accesses	170h	accesses	1F0h	accesses
~ 7Fh	16 Bytes	EEL	70h~7Fh	17Eh	70h~7Fh	1 EEh	70h~7Fh
/ F f1		FFh		17Fh		1FFh	

 \Diamond Example: read / write register by using direct addressing (force RP0 = RP1 = 0)

TM1 equ 12H ;SFR in Bank0 PWM0PRD equ ;SFR in Bank1 92H **IRCF** equ 10FH ;SFR in Bank2 DPL equ 185H :SFR in Bank3 ;RAM in Bank0 RAM20 equ 20H RAMA0 A0H ;RAM in Bank1 equ

MOVXW TM1 ; read TM1 (Bank0) to W
MOVXW PWM0PRD ; read PWM0PRD (Bank1) to W
MOVXW IRCF ; read IRCF (Bank2) to W
MOVXW DPL ; read DPL (Bank3) to W

MOVLW 16H

MOVWX RAM20 ; W = 16h write to RAM[0x20] MOVWX RAMA0 ; W = 16h write to RAM[0xA0]

MOVLW 37H

MOVWX LVRPD ; LVRPD = W = 37h, force LVR disable

MOVXW CLKCTL ; read SFR CLKCTL (0Fh) to W MOVXW IRCF ; read SFR IRCF (10Fh) to W

MOVLW 0BH

 $\begin{array}{ll} \text{MOVWX} & \text{CLKCTL} \\ \text{MOVWX} & \text{IRCF} \end{array} & ; \text{CLKCTL} \ (0\text{Fh}) = W = 0\text{Bh} \\ ; \text{IRCF} \ (10\text{Fh}) = W = 0\text{Bh} \\ \end{array}$

 \Diamond Example: read / write register by using indirect addressing (force RP0 = RP1 = 0)

BSX IRP $= 1 \Rightarrow Bank2/3$

MOVLW OFH ; W = OFh

MOVWX FSR ; FSR = W = 0Fh

MOVXW INDF ; read SFR IRCF (10Fh) to W

BSX IRP ; $IRP = 1 \Rightarrow Bank2/3$

 $\begin{array}{lll} \text{MOVLW} & \text{OFH} & \text{; W} = \text{OFh} \\ \text{MOVWX} & \text{FSR} & \text{; FSR} = \text{W} = \text{OFh} \\ \end{array}$

MOVLW 0BH ; W = 0Bh

MOVWX INDF ; IRCF (10Fh) = W = 0Bh

BCX IRP ; IRP=0 => Bank0/1

MOVLW 0FH; W = 0Fh

MOVWX FSR ; FSR = W = 0Fh

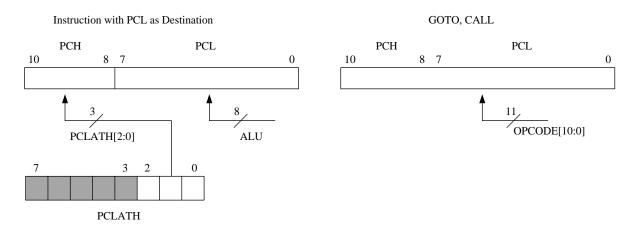
MOVXW INDF ; read SFR CLKCTL (0Fh) to W

BCX IRP ; $IRP = 0 \Rightarrow Bank0/1$

MOVLW 0FH ; W = 0Fh

MOVWX FSR ; FSR = W = 0Fh

MOVLW 0BH ; W = 0Bh


MOVWX INDF ; CLKCTL(0Fh) = W = 0Bh

DS-TM56FE8228_E 19 Rev 0.93, 2022/02/21

1.5 Programming Counter (PC) and Stack

The Programming Counter is 11-bit wide capable of addressing a 2K x 16 Flash ROM. The low byte comes from PCL register, which is readable and writable register. The upper bits (PC[10:8]) are not readable, but are indirectly writable through the PCLATH register. On any RESET, the upper bits of the PC will be cleared. As a program instruction is executed, the PC will contain the address of the next program instruction to be executed. The PC value is normally increased by one except the followings. The Reset Vector (000h) and the Interrupt Vector (004h) are provided for PC initialization and Interrupt. For CALL/GOGO instruction, PC loads 11 bit address from instruction word. For RET/RETL/RETLW instruction, PC retrieves its content from the top level STACK. Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC[10:8] bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper 3 bits to the PCLATH register. When the lower 8 bits are written to the PCL register, all 11 bits of program counter will change to the values contained in the PCLATH register and those being written to the PCL register.

The STACK is 11-bit wide and 8-level in depth. The CALL instruction and hardware interrupt will push STACK level in order. While the RET/RETL/RETLW instruction pops STACK level in order. For table lookup, the device offer the powerful table read instructions TABRL, TABRH to return the 16-bit ROM data into W register by setting DPTR={DPH, DPL} registers. It also offers another way to read the 16-bit ROM data into W register by setting TABR (18Ch) for C language.

♦ Example: To look up the PROM data located "TABLE1" and "TABLE2".

ORG 000h ; Reset Vector GOTO **START** START: 00H **MOVLW MOVWX** ; Set lookup table's address **INDEX** LOOP: **MOVLW** (TABLE1>>8) & 0xff **MOVWX** : Instruction with PCL as Destination **PCLATH MOVXW INDEX** ; Move index value to W register **CALL** TABLE1 ; To lookup data, W=55h **INCX** ; Increment the index address for next address INDEX, 1 **GOTO** LOOP ; Go to LOOP label

DS-TM56FE8228_E 20 Rev 0.93, 2022/02/21

MOVLW (TABLE2 >>8) & 0xff

MOVWX DPH ; DPH register (F186.2~0)

MOVLW (TABLE2) & 0xff

MOVWX DPL ; DPL register (F185.7~0)

; Table Read by opcode TABRL / TABRH

TABRL ; read PROM low byte data to W (W=86h)
TABRH ; read PROM high byte data to W (W=19h)

...

; Another way of Table Read by sfr TABR

MOVLW 01H ; TABR = 01H = opcode TABRL

MOVWX TABR ; read PROM low byte data to W (W=86h)

MOVLW 02H ; TABR = 02H = opcode TABRH

MOVWX TABR ; read PROM high byte data to W (W=19h)

...

TABLE1:

ADDWX PCL, 1; Add the W with PCL, the result back in PCL.

RETLW 55H ; W=55h when return RETLW 56H ; W=56h when return RETLW 57H ; W=57h when return RETLW 58H ; W=58h when return

. . .

ORG 368h

TABLE2:

.DT 0x1986 ; 16-bit ROM data

.DT 0x3719 .DT 0x2983

. . .

18Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TABR				TA	BR			
R/W								
Reset	0	0	0	0	0	0	0	0

18Ch.7~0 1. TABR write 01h = opcode TABRL

2. TABR write 02h = opcode TABRH

3. After step.1 or step.2, read TABR to get main ROM table read value After step.1, read TABR to get EEPROM value (when EEPEN = E2h)

Table Read for ASM: TABRL/ TABRH or TABR

Table Read for C: TABR

1.5.1 ALU and Working (W) Register

The ALU is 8-bit wide and capable of addition, subtraction, shift and logical operations. In two-operand instructions, typically one operand is the W register, which is an 8-bit non-addressable register used for ALU operations. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either W register or a file register. Depending on the instruction executed, the ALU may affect the values of Carry (C), Digit Carry (DC), and Zero (Z) Flags in the STATUS register. The C and DC flags operate as a /Borrow and /Digit Borrow, respectively, in subtraction.

Note: /Borrow represents inverted of Borrow register.

/Digit Borrow represents inverted of Digit Borrow register.

1.5.2 STATUS Register (03H/83H/103H/183H)

This register contains the arithmetic status of ALU and the Reset status. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. It is recommended, therefore, that only BCX, BSX and MOVWX instructions are used to alter the STATUS Register because these instructions do not affect those bits.

STATUS	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Reset Value	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W	
Bit				Descr	iption				
7	0 = Ban	RP: Register Bank Select bit (used for indirect addressing) $0 = \text{Bank } 0.1 \ (00\text{h - FFh})$ $1 = \text{Bank } 2.3 \ (100\text{h - 1FFh})$							
6:5	00 = Bar 01 = Bar 10 = Bar 11 = Bar	RP1:RP0: Register Bank Select bits (used for direct addressing) 00 = Bank 0 (00h - 7Fh) 01 = Bank 1 (80h - FFh) 10 = Bank 2 (100h - 17Fh) 11 = Bank 3 (180h - 1FFh) Each bank is 128 bytes							
4	0: after P	FO: Time Out Flag 0: after Power On Reset, LVR Reset or CLRWDT/SLEEP instruction 1: WDT time out occurs							
3	0: after P	r Down Fla ower On R LEEP instr	eset, LVR l	Reset or CL	RWDT ins	truction			
2	1: the res	ult of a log ult of a log	ic operation						
1	1: the result of a logic operation is zero DC: Decimal Carry Flag or Decimal / Borrow Flag ADD instruction 0: no carry 1: a carry from the low nibble bits of the result occurs 1: no borrow						e bits of		
0	0: no car	•			0: a borre	ow occurs f	struction From the MS	SB	

DS-TM56FE8228_E 22 Rev 0.93, 2022/02/21

♦ Example: Write immediate data into STATUS register.

MOVLW 00H

MOVWX STATUS ; Clear STATUS register

♦ Example: Bit addressing set and clear STATUS register.

 $\begin{array}{lll} BSX & STATUS, 0 & ; Set C=1 \\ BCX & STATUS, 0 & ; Clear C=0 \end{array}$

♦ Example: Determine the C flag by BTXSS instruction.

BTXSS STATUS, 0 ; Check the carry flag GOTO LABEL_1 ; If C=0, goto label_1 GOTO LABEL_2 ; If C=1, goto label_2

DS-TM56FE8228_E 23 Rev 0.93, 2022/02/21

2 Reset

This device can be RESET in four ways.

- Power-On-Reset (POR)
- Low Voltage Reset (LVR)
- External Pin Reset (PA7)
- Watchdog Reset (WDT)

Resets can be caused by Power on Reset (POR), External Pin Reset (XRST), Watchdog Timer Reset (WDT), or Low Voltage Reset (LVR). The CFGWH controls the Reset functionality. After Reset, the SFRs are returned to their default value, the program counter (PC) is cleared, and the system starts running from the reset vector 000H place. The TO and PD flags at status register (STATUS) are indicate system reset status.

2.1 Power on Reset

After Power-On-Reset, all system and peripheral control registers are then set to their default hardware Reset values. The clock source, LVR level and chip operation mode are selected by the CFGWH register value.

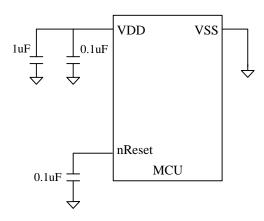
2.2 Low Voltage Reset

The Low Voltage Reset features static reset when supply voltage is below a threshold level. There are three threshold levels can be selected. The LVR's operation mode is defined by the CFGWH register. See the following LVR Selection Table; user must also consider the lowest operating voltage of operating frequency.

LVR Selection Table:

LVR level	Operating voltage
LVR2.2	5.5V > VCC > 2.2V
LVR2.8	5.5V > VCC > 2.8V
LVR3.6	5.5V > VCC > 3.6V
LVR4.2	$5.5V > VCC > 4.2V \text{ or } V_{CC} = 5.0V$

Different Fsys have different system minimum operating voltage, reference to Operating Voltage of DC characteristics, if current system voltage is low than minimum operating voltage and lower LVR is selected, then the system maybe enters dead-band and error occurs.


DS-TM56FE8228_E 24 Rev 0.93, 2022/02/21

2.3 External Pin Reset

The External Pin Reset can be disabled or enabled by the CFGWH register. It needs to keep at least 2 SIRC clock cycle long to be seen by the chip. XRST also set all the control registers to their default reset value. The TO/PD flags are not affected by these resets.

External reset pin is low level active. The system is running when reset pin is high level voltage input. The reset pin receives the low voltage and the system is reset. The external reset can reset the system during power on duration, and good external reset circuit can protect the system to avoid working at unusual power condition.

2.4 Watchdog Timer Reset

WDT overflow Reset can be disabled or enabled by the CFGWH register. It runs in Fast/Slow mode and runs or stops in IDLE/STOP mode. WDT overflow speed can be defined by WDTPSC SFR. WDT is cleared by device Reset or CLRWDT SFR bit WDT overflow Reset also set all the control registers to their default reset value. The TO/PD flags are not affected by these resets.

♦ Example: Defining Reset Vector

ORG 000H ; Reset Vector

GOTO START ; Jump to user program address.

ORG 010H ; 010H, The head of user program

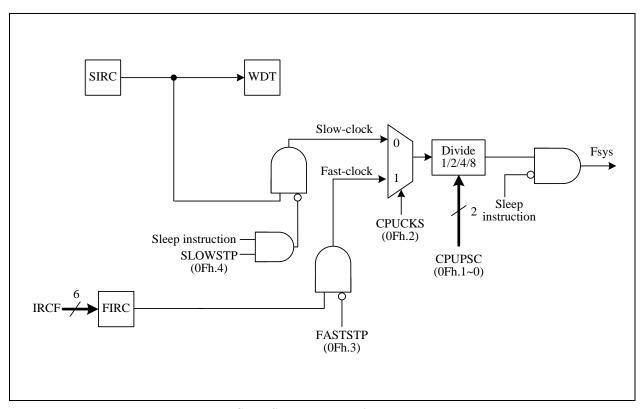
START:

. . .

• • •

GOTO START

DS-TM56FE8228_E 25 Rev 0.93, 2022/02/21


3 Clock Circuitry and Operation Mode

3.1 System Clock

The device is designed with dual-clock system. There are two kinds of clock source, i.e. SIRC (Slow Internal RC), and FIRC (Fast Internal RC). Each clock source can be applied to CPU kernel as system clock. When in IDLE mode, only Slow-clock can be configured to keep oscillating to provide clock source to T2 block. Refer to the figure below.

After Reset, the device is running at Slow mode with 70 KHz SIRC. S/W should select the proper clock rate for chip operation safety. The higher V_{CC} allows the chip to run at a higher System clock frequency. In a typical condition, a 8MHz System clock rate requires $V_{CC} > 2.1V$.

The CLKCTL (0Fh) SFR controls the System clock operating. H/W automatically blocks the S/W abnormally setting for this register. Never to write both FASTSTP=1 & CPUCKS=1. It is recommended to write this SFR bit by bit.

Clock Scheme Block Diagram

The frequency of FIRC (Fast Internal RC) can be adjusted by IRCF (10Fh). When IRCF=00h, frequency is the lowest. When IRCF=7Fh, frequency is the highest. With this function, we can adjust the frequency of FIRC after power on. Each IC may have different default value of IRCF, to make sure the frequency of FIRC=8 MHz after Power on Reset.

DS-TM56FE8228_E 26 Rev 0.93, 2022/02/21

FAST Mode:

In this mode, the program is executed using Fast-clock as CPU clock (Fsys). The Timer0, Timer1 blocks are also driven by Fast-clock, The PWM0/PWM1 block can driven by FIRC 8M, FIRC 16M or Fsys. T2 can be driven by Slow-clock or Fsys/128 by setting T2CKS (15h.2).

SLOW Mode:

After power-on or reset, device enters SLOW mode, the default Slow-clock is SIRC. In this mode, the Fast-clock can stopped (by FASTSTP=1, for power saving) or running (by FASTSTP=0), and Slow-clock is enabled. All peripheral blocks (Timer0, Timer1etc...) clock sources are Slow-clock in the SLOW mode.

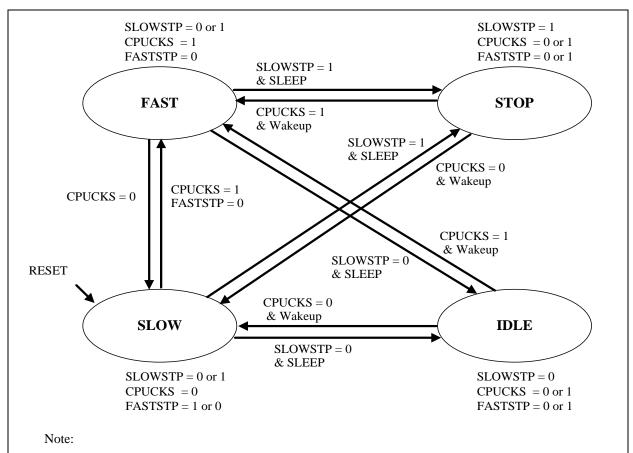
IDLE Mode:

If Slow-clock is enabled (SLOWSTP=0) and T2CKS=0 before executing the SLEEP instruction, the CPU enters the IDLE mode. In this mode, the Slow-clock source keeps T2 block running. CPU stop fetching code and all blocks are stop except T2 related circuits. Idle mode is terminated by Reset or enabled Interrupts wake up.

Another way to keep Slow-clock oscillation in IDLE mode is setting WKTIE=1 (0Bh.3) to keeping WKT running before executing the SLEEP instruction or WDTE=11 (CFGWH.9~8) to keeping WDT running. In such condition, the Slow-clock keeps working and wakes up CPU periodically no matter SLOWSTP is set or cleared.

T2 and WKT/WDT are independent and have their own control registers. It is possible to keep both T2 and WKT working and wake-up in the IDLE mode.

STOP Mode:


When SLOWSTP (0Fh.4) is set, WKTIE (0Bh.3) is cleared and WDTE=10 or 0X, all blocks will be turned off and the Chip will enter the "STOP Mode" after executing the SLEEP instruction. STOP mode is similar to IDLE mode. The difference is all clock oscillators either Fast-clock or Slow-clock are stopped and no clocks are generated.

DS-TM56FE8228_E 27 Rev 0.93, 2022/02/21

3.2 Dual System Clock Modes Transition

The device is operated in one of four modes: FAST mode, SLOW mode, IDLE mode, and STOP mode.

- 1. SLEEP denotes SLEEP instruction
- 2. Wakeup denotes wake-up events, such as External pin interrupt, WKT interrupt or T2 Interrupt.
- 3. CPUCKS (0Fh.2), FASTSTP (0Fh.3), SLOWSTP (0Fh.4)

CPU Operation Block Diagram

CPU Mode & Clock Functions Table:

Mode	Oscillator	Fsys	Fast-clock	Slow-clock	TM0/TM1	T2	Wakeup event
FAST	FIRC	Fast-clock	Run	Set by SLOWSTP	Run	Run	X
SLOW	SIRC	Slow-clock	Set by FASTSTP	Run	Run	Run	X
IDLE	SIRC	Stop	Stop	Run	Stop	Run	WKT/IO/T2
STOP	Stop	Stop	Stop	Stop	Stop	Stop	IO

DS-TM56FE8228_E 28 Rev 0.93, 2022/02/21

• FAST mode switches to SLOW mode

The following steps are suggested to be executed by order when FAST mode switches to SLOW mode:

- (1) Enable Slow-clock (SLOWSTP=0)
- (2) Switch to Slow-clock (CPUCKS=0)
- (3) Stop Fast-clock (FASTSTP=1)
- ♦ Example: Switch FAST mode to SLOW mode.

BCX SLOWSTP ; Enable Slow-clock

NOP

BCX CPUCKS ; Fsys=Slow-clock BSX FASTSTP ; Disable Fast-clock

• SLOW mode switches to FAST mode

SLOW mode can be enabled by CPUCKS=0 in CLKCTL register. The following steps are suggested to be executed by order when SLOW mode switches to FAST mode:

- (1) Enable Fast-clock (FASTSTP=0)
- (2) Switch to Fast-clock (CPUCKS=1)
- ♦ Example: Switch SLOW mode to FAST mode (The Fast-clock stop).

BCX FASTSTP ; Enable Fast-clock

NOP

BSX CPUCKS ; Fsys=Fast-clock

• IDLE mode Setting

The IDLE mode can be configured by following setting in order:

- (1) Enable Slow-clock (SLOWSTP=0) or WKT(WKTIE=1)
- (2) Switch T2 clock source to Slow-clock (T2CKS=0)
- (3) Execute SLEEP instruction

IDLE mode can be wake up by External interrupt, WKT interrupt and T2 interrupt.

♦ Example: Switch FAST/SLOW mode to IDLE mode.

BCX SLOWSTP ; Enable Slow-clock

MOVLW 00000<u>000</u>B MOVWX T2CTL

SLEEP ; Enter IDLE mode

• STOP Mode Setting

The STOP mode can be configured by following setting in order:

(1) Stop Slow-clock (SLOWSTP=1)

(2) Stop WKT/WDT (WKTIE=0, WDTE=10 or 0X)

(3) Execute SLEEP instruction

STOP mode can be woken up only by External pin interrupt.

♦ Example: Switch FAST/SLOW mode to STOP mode.

BSX SLOWSTP ; Disable Slow-clock.
MOVLW 0000**0**000B ; Disable WKT counting

MOVWX INTIE

SLEEP ; Enter STOP mode.

0Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCTL	_	_	_	SLOWSTP	FASTSTP	CPUCKS	CPU	PSC
R/W	_	_	_	R/W	R/W	R/W	R/W	
Reset	_	_	_	0	0	0	1	1

0Fh.4 **SLOWSTP**: Slow-clock stop

0: Slow-clock is running

1: Slow-clock stops running in Power-down mode

0Fh.3 **FASTSTP**: Fast-clock stop

0: Fast-clock is running

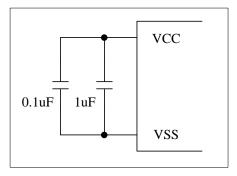
1: Fast-clock stops running

0Fh.2 **CPUCKS**: System clock source select

0: Slow-clock 1: Fast-clock

0Fh.1~0 **CPUPSC**: System clock source prescaler. System clock source

00: divided by 8 01: divided by 4 10: divided by 2


11: divided by 1

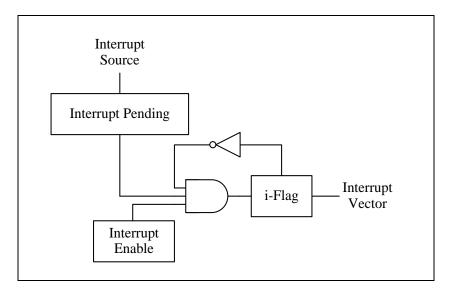
DS-TM56FE8228_E 30 Rev 0.93, 2022/02/21

3.3 System Clock Oscillator

In the Fast Internal RC (FIRC) mode, the on-chip oscillator generates 8 MHz system clock. Since power noise degrades the performance of Internal Clock Oscillator, placing power supply bypass capacitors 1 uF and 0.1 uF very close to VCC/VSS pins improves the stability of clock and the overall system.

Internal RC Mode

DS-TM56FE8228_E 31 Rev 0.93, 2022/02/21



4 Interrupt

TM56FE8228 has 1 level, 1 vector and 12 interrupt sources. Each interrupt source has its own enable control bit. An interrupt event will set its individual pending flag, no matter its enable control bit is 0 or 1.

If the corresponding interrupt enable bit (INTIE[7:0], INTIE1[3:0]) has been set, it would trigger CPU to service the interrupt. CPU accepts interrupt in the end of current executed instruction cycle. In the mean while, a "CALL 004" instruction is inserted to CPU, and i-flag is set to prevent recursive interrupt nesting.

The i-flag is cleared in the instruction after the "RETI" instruction. That is, at least one instruction in main program is executed before service the pending interrupt. The interrupt event is level triggered. F/W must clear the interrupt event register while serving the interrupt routine.

DS-TM56FE8228_E 32 Rev 0.93, 2022/02/21

♦ Example: Setup INT1 (PA1) interrupt request with rising edge trigger

ORG 000H ; Reset Vector

GOTO START ; Goto user program address

ORG 004H ; All interrupt vector

GOTO INT ; If INT1 (PA1) input occurred rising edge

ORG 005H

START:

MOVLW xxxx **00** xxB

MOVWX PAMODL ; Select INT1 Pin Mode as Mode0

; Open drain output low or input with Pull-up

MOVLW xxxxxx**1**xB

MOVWX PAD ; Release INT1, it becomes Schmitt-trigger

; input with input pull-up resistor

MOVLW $00\underline{1}1xxxxB$

MOVWX OPTION ; Set INT1 interrupt trigger as rising edge

MOVLW 1111111<u>0</u>1B

MOVWX INTIF ; Clear INT1 interrupt request flag

MOVLW 000000<u>1</u>0B

MOVWX INTIE ; Enable INT1 interrupt

MAIN:

. . .

GOTO MAIN

INT:

MOVWX 20H ; Store W data to FRAM 20H

MOVXW STATUS ; Get STATUS data

MOVWX 21H ; Store STATUS data to FRAM 21H

BTXSS INT1IF ; Check INT1IF bit

GOTO EXIT_INT ; INT1IF = 0, exit interrupt subroutine

; INT1 interrupt service routine

MOVLW 111111<u>0</u>1B

MOVWX INTIF ; Clear INT1 interrupt request flag

EXIT_INT:

MOVXW 21H ; Get FRAM 21H data MOVWX STATUS ; Restore STATUS data

SWAPX 20H,f

SWAPX 20H,w ; Restore W data

RETI ; Return from interrupt

0Bh/8Bh/10Bh/18Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

INTIE.7 **ADCIE:** ADC interrupt enable

0: disable

1: enable

INTIE.6 **T2IE:** T2 interrupt enable

0: disable 1: enable

INTIE.5 **TM1IE:** Timer1 interrupt enable

0: disable 1: enable

INTIE.4 **TM0IE:** Timer0 interrupt enable

0: disable

1: enable

INTIE.3 WKTIE: Wakeup Timer interrupt enable

0: disable 1: enable

INTIE.2 INT2 (PA7) interrupt enable

0: disable 1: enable

INTIE.1 INT1IE: INT1 (PA1) interrupt enable

0: disable 1: enable

INTIE.0 **INTOIE:** INTO (PA2) interrupt enable

0: disable 1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.7 **ADCIF:** ADC interrupt event pending flag

This bit is set by H/W after end of ADC conversion, write 0 to this bit will clear this flag

0Ch.6 **T2IF:** T2 interrupt event pending flag

This bit is set by H/W while T2 overflows, write 0 to this bit will clear this flag

OCh.5 **TM1IF:** Timer1 interrupt event pending flag

This bit is set by H/W while Timer1 overflows, write 0 to this bit will clear this flag

0Ch.4 **TM0IF:** Timer0 interrupt event pending flag

This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

0Ch.3 **WKTIF:** Wakeup Timer interrupt event pending flag

This bit is set by H/W while Wakeup Timer is timeout, write 0 to this bit will clear this flag

0Ch.2 **INT2IF:** INT2 (PA7) pin falling interrupt pending flag

This bit is set by H/W at INT2 pin's falling edge, write 0 to this bit will clear this flag

OCh.1 **INT1IF:** INT1 (PA1) pin falling/rising interrupt pending flag

This bit is set by H/W at INT1 pin's falling/rising edge, write 0 to this bit will clear this flag

0Ch.0 **INT0IF:** INT0 (PA2) pin falling/rising interrupt pending flag

This bit is set by H/W at INT0 pin's falling/rising edge, write 0 to this bit will clear this flag

0Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE1	_	_	_	_	PWM1PIE	PWM1CIE	PWM1BIE	PWM1AIE
R/W	_	_	_	_	R/W	R/W	R/W	R/W
Reset	_	_	_	_	0	0	0	0

0Dh.3 **PWM1PIE:** PWM1 period interrupt enable

0: disable 1: enable

0Dh.2 **PWM1CIE:** PWM1C duty interrupt enable

0: disable

1: enable

0Dh.1 **PWM1BIE:** PWM1B duty interrupt enable

0: disable 1: enable

0Dh.0 **PWM1AIE:** PWM1A duty interrupt enable

0: disable 1: enable

0Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF1	_	_	_	_	PWM1PIF	PWM1CIF	PWM1BIF	PWM1AIF
R/W	_	_	_	_	R/W	R/W	R/W	R/W
Reset	-	_	_	_	0	0	0	0

0Eh.3 **PWM1PIF:** PWM1 period interrupt event pending flag

This bit is set by H/W after PWM1 counter count to the set period, write 0 to this bit will clear this flag

0Eh.2 **PWM1CIF:** PWM1C duty interrupt event pending flag

This bit is set by H/W after PWM1 counter count to the set PWM1C duty, write 0 to this bit will clear this flag

0Eh.1 **PWM1BIF:** PWM1B duty interrupt event pending flag

This bit is set by H/W after PWM1 counter count to the set PWM1B duty, write 0 to this bit will clear this flag

0Eh.0 **PWM1AIF:** PWM1A duty interrupt event pending flag

This bit is set by H/W after PWM1 counter count to the set PWM1A duty, write 0 to this bit will clear this flag

81h/181h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	HWAUTO	INT0EDG	INT1EDG	Reserved	WDTPSC		WKTPSC	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	1	1	1	1

81h.6 **INT0EDG:** INT0 pin interrupt trigger edge

0: falling edge to trigger 1: rising edge to trigger

81h.5 **INT1EDG:** INT1 pin interrupt trigger edge

0: falling edge to trigger1: rising edge to trigger

81h.4 Reserved:

User must set 1

5 I/O Port

5.1 PA0-PA4, PA7

These pins can be used as Schmitt-trigger input, CMOS push-pull output. The pull-up resistor is assignable to each pin by S/W setting. To use the pin in Schmitt-trigger input mode, S/W needs to set the I/O pin to Mode0 or Mode1 and PxD=1. Reading the pin data (PxD) has different meaning. In "Read-Modify-Write" instruction, CPU actually reads the output data register. In the others instructions, CPU reads the pin state. The so-called "Read-Modify-Write" instruction includes BSX, BCX and all instructions.

These pins can operate in four different modes as below.

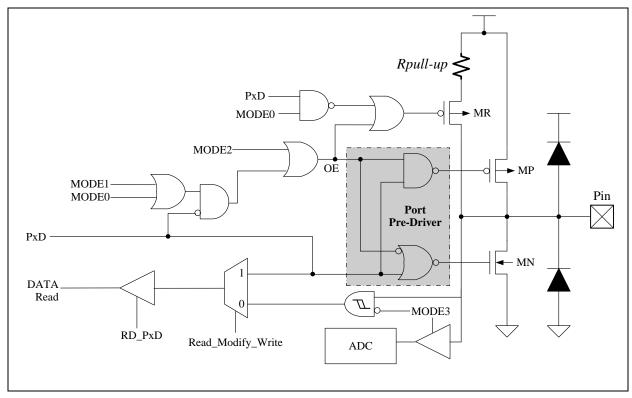
Mode	PA0~PA4, PA7 pin function	PxD SFR data	Pin State	Resistor Pull-up	Digital Input
Mode 0	Open Drain	0	Drive Low	N	N
Wiode 0	Input	1	Pull-up	Y	Y
Mode 1	Open Drein	0	Drive Low	N	N
	Open Drain	1	Hi-Z	N	Y
Mode 2	CMOS Output	0	Drive Low	N	N
	CMOS Output	1	Drive High	N	N
Mode 3	Analog input for ADC	X	_	N	N

I/O Pin Function Table

Beside I/O port function, each pin has one or more alternative functions, such as PWM and ADC.

Pin Name	Wake-up	ADC	others	Mode3
PA0		ADC0	PWM1A	ADC0
PA1	INT1	ADC1	PWM0N	ADC1
PA2	INT0	ADC2	PWM1B	ADC2
PA3		ADC3	PWM1C	ADC3
PA4		ADC4	PWM1C	ADC4
PA7	INT2	ADC7	PWM1B	ADC7

PortA multi-function Table


The necessary SFR setting for pin's alternative function is list below.

Alternative Function	Mode	PxD SFR data	Pin State		
INTO, INT1, INT2	0	1	Input with Pull-up	INTxIE	
110, 11011, 11012	1	1	Input	INTXIE	
ADC0~ADC4, ADC7	3	X	ADC Channel	ADCHS	
PWM0N	PWM0N 1		PWM Output (Open Drain)	PWMOE	
PWM1A, PWM1B, PWM1C	2	X	PWM Output (COMS Output)	F W MOE	

Mode Setting for Port Alternative Function

DS-TM56FE8228_E 36 Rev 0.93, 2022/02/21

General Pin Structure

♦ Example: Set PA0 as Schmitt-trigger input with pull-up (Mode0)

MOVLW xxxxxxx<u>1</u>B MOVWX PAD MOVLW xxxxxx<u>00</u>B

MOVWX PAMODL ; Set PA0 as Schmitt-trigger input with pull-up

♦ Example: Set PA0 as Schmitt-trigger input without pull-up (Mode1)

MOVLW XXXXXXX<u>1</u>B MOVWX PAD MOVLW XXXXXX<u>01</u>B MOVWX PAMODL

; Set PA0 as Schmitt-trigger input without pull-up

♦ Example: Set PA0 as CMOS push-pull output mode (Mode2)

MOVLW xxxxxx<u>10</u>B MOVWX PAMODL

♦ Example: Set PA0 as ADC0 analog input mode (Mode3)

MOVLW xxxxxx<u>11</u>B

MOVWX PAMODL ; Set PA0 as mode3

DS-TM56FE8228_E 37 Rev 0.93, 2022/02/21

8Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAMODH	PA71	MOD	Reserved		Reserved		PA4MOD	
R/W	R	W	R/	W	R/	W	R/	W
Reset	0	0	0	1	0	1	0	1

8Ch.7~6 **PA7MOD**: PA7 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2

11: Mode3, PA7 as ADC7 channel input

8Ch.5~4 Reserved: Note: User must setting 00 8Ch.3~2 Reserved: Note: User must setting 00 8Ch.1~0 PA4MOD: PA4 Pin Mode Control

> 00: Mode0 01: Mode1 10: Mode2

11: Mode3, PA4 as ADC4 channel input

8Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAMODL	PA31	MOD	PA2MOD		PA1MOD		PA0MOD	
R/W	R	R/W		R/W		W	R/	W
Reset	0	1	0	1	0	1	0	1

8Dh.7~6 **PA3MOD**: PA3 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2

11: Mode3, PA3 as ADC3 channel input

8Dh.5~4 PA2MOD: PA2 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2

11: Mode3, PA2 as ADC2 channel input

8Dh.3~2 **PA1MOD**: PA1 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2

11: Mode3, PA1 as ADC1 channel input

8Dh.1~0 **PA0MOD**: PA0 Pin Mode Control

00: Mode0 01: Mode1 10: Mode2

11: Mode3, PA0 as ADC0 channel input

05h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PAD		PAD								
R/W		R/W								
Reset	1	1 1 1 1 1 1 1								

05h.7~0 **PAD**: PA7~PA0 data



6 Peripheral Functional Block

6.1 Watchdog (WDT) /Wakeup (WKT) Timer

The WDT and WKT share the same built-in internal RC Oscillator and have individual own counters. The overflow period of WDT, WKT can be selected by individual prescaler (WDTPSC [1:0], WKTPSC [1:0]). The WDT timer is cleared by the CLRWDT instruction. If the Watchdog is enabled (CFGWH.9=WDTE=1), the WDT generates the chip reset signal. Set CFGWH.8 to '0' can let WDT timer stop counting after executing SLEEP instruction, i.e. CFGWH.8=1 WDT timer is always keep counting even if the SLEEP instruction is executed.

The WKT timer is an interval timer, WKT time out will generate WKT Interrupt Flag (WKTIF) . The WKT timer is cleared/stopped by WKTIE=0. Set WKTIE=1, the WKT timer will always count regardless at any CPU operating mode.

WDT/WKT Block Diagram

DS-TM56FE8228_E 40 Rev 0.93, 2022/02/21

The WDT's behavior in different Mode is shown as below table.

Mode	WDTE[1]	WDTE[0]	WDT
	0	0	Stop
Normal Mode	0	1	Stop
Normai wiode	1	0	Run
	1	1	Run
D d	0	0	Stop
Power-down Mode	0	1	Stop
(SLEEP)	1	0	Stop
(SLEET)	1	1	Run

CLRWDT instruction could clear watchdog timer.

♦ Example: Clear watchdog timer by CLRWDT instruction.

MAIN: ... ; Execute program.

CLRWDT ; Execute CLRWDT instruction.

. . .

GOTO MAIN

♦ Example: Setup WDT time and disable after executing SLEEP instruction.

MOVLW 0001<u>01</u>11B

MOVWX OPTION Select WDT Time out=256 ms @5V

. . .

SLEEP

♦ Example: Set WKT period and interrupt function.

MOVLW 000101<u>10</u>B

MOVWX OPTION ; Select WKT period=64 ms @5V.

MOVLW 1111<u>0</u>111B ; Clear WKT interrupt flag by using byte operation MOVWX INTIF ; Don't use bit operation "BCX WKTIF" to clear

MOVLW 0000<u>1</u>000B

MOVWX INTIE ; Enable WKT interrupt function

DS-TM56FE8228_E 41 Rev 0.93, 2022/02/21

03h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

03h.4 **TO:** WDT time out flag, read-only

0: after Power On Reset, LVR Reset, or CLRWDT / SLEEP instructions

1: WDT time out occurs

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.3 **WKTIF:** Wakeup Timer interrupt event pending flag

This bit is set by H/W while Wakeup Timer is timeout, write 0 to this bit will clear this flag

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Bh.3 **WKTIE:** Wakeup Timer interrupt enable

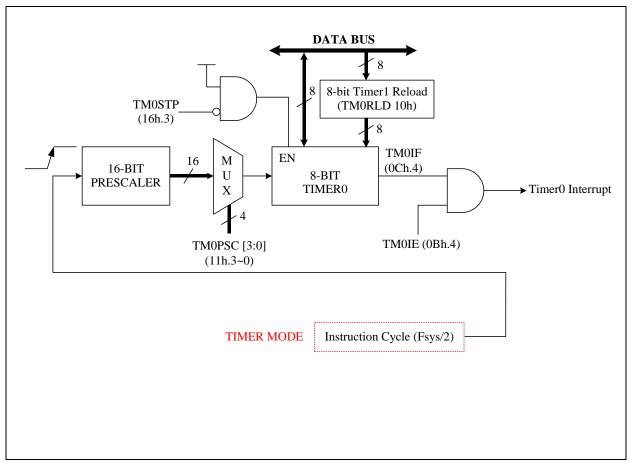
0: disable 1: enable

81h/181h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	HWAUTO	INT0EDG	INT1EDG	Reserved	WDTPSC		WKT	PSC
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	1	1	1	1

81h.3~2 **WDTPSC:** WDT period (@VCC=5V)

00: 128 ms 01: 256 ms 10: 1024 ms 11: 2048 ms

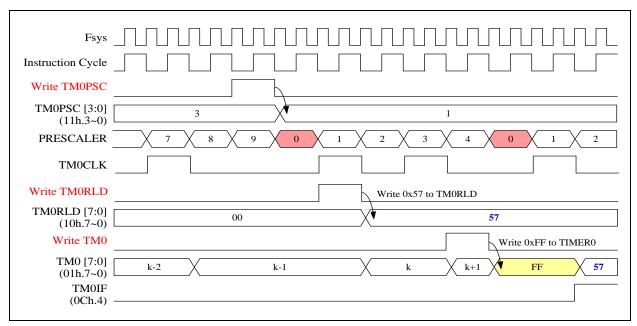
81h.1~0 **WKTPSC:** WKT period (@VCC=5V)


00: 16 ms 01: 32 ms 10: 64 ms 11: 128 ms

DS-TM56FE8228_E 42 Rev 0.93, 2022/02/21

6.2 Timer0

The Timer0 is an 8-bit wide register 01h (TM0). It can be read or written as any other register. Besides, Timer0 increases itself periodically and automatically rolls over a new "offset value" (TM0RLD) while it rolls over based on the pre-scaled clock source, which can be Fsys/2 rising/falling input. The Timer0 increase rate is determined by "Timer0 Pre-Scale" (TM0PSC) register. The Timer0 always generates TM0IF when its count rolls over. It generates Timer0 Interrupt if (TM0IE) is set. Timer0 can be stopped counting if the TM0STP bit is set.


Timer0 Block Diagram

DS-TM56FE8228_E 43 Rev 0.93, 2022/02/21

The following timing diagram describes the Timer0 works in pure Timer mode.

When the Timer0 prescaler (TM0PSC) is written, the internal 8-bit prescaler will be cleared to 0 to make the counting period correct at the first Timer0 count. TM0CLK is the internal signal that causes the Timer0 to increase by 1 at the end of TM0CLK. TM0WR is also the internal signal that indicates the Timer0 is directly written by instruction; meanwhile, the internal 8-bit prescaler will be cleared. When Timer0 counts from FFh to TM0RLD, TM0IF (Timer0 Interrupt Flag) will be set to 1 and generate interrupt if TM0IE (Timer0 Interrupt Enable) is set.

Timer0 works in Timer mode

DS-TM56FE8228_E 44 Rev 0.93, 2022/02/21

The equation of TM0 interrupt time value is as following:

TM0 interrupt interval cycle time = Fsys / 2 / TM0PSC / (256-TM0RLD)

♦ Example: Setup Timer0 work in Timer mode, if Fsys = 8 MHz

; Setup Timer0 clock source and divider

BSX CPUCKS ; Set Fast-clock as system clock MOVLW $000\underline{00101}$ B ; Timer0 clock is instruction cycle MOVWX TM0CTL ; TM0PSC = 0101b, divided by 32

; Setup Timer0 reload data

MOVLW 80H

MOVWX TM0RLD ; Set Timer0 reload data = 128

; Setup Timer0

BSX TM0STP ; Timer0 stops counting CLRX TM0 ; Clear Timer0 content

; Enable Timer0 and interrupt function

MOVLW 111<u>0</u>11111B

MOVWX INTIF ; Clear Timer0 request interrupt flag BSX TM0IE ; Enable Timer0 interrupt function

BCX TM0STP ; Enable Timer0 counting

Timer0 interrupt frequency = Fsys / 2 / TM0PSC / (256-TM0RLD),

Fsys = 8MHz, TM0PSC = div 32

Timer0 interrupt frequency = 8 MHz / 2 / 32 / (256-128) = 0.976 KHz

DS-TM56FE8228_E 45 Rev 0.93, 2022/02/21

01h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TM0		TM0							
R/W									
Reset	0	0	0	0	0	0	0	0	

01h **TM0:** Timer0 content

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Bh.4 **TM0IE:** Timer0 interrupt enable

0: disable 1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.4 **TM0IF:** Timer0 interrupt event pending flag

This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

10h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TM0RLD		TMORLD							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

10h **TM0RLD:** Timer0 Reload Data

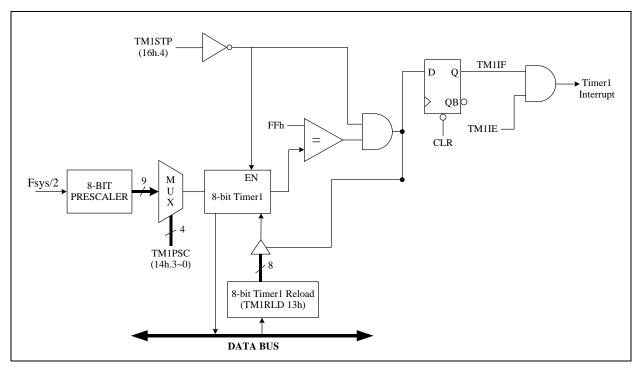
11h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0CTL	_	_	Reserved	Reserved		TM0	PSC	
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

11h.5 Reserved: Don't Change11h.4 Reserved: Don't Change

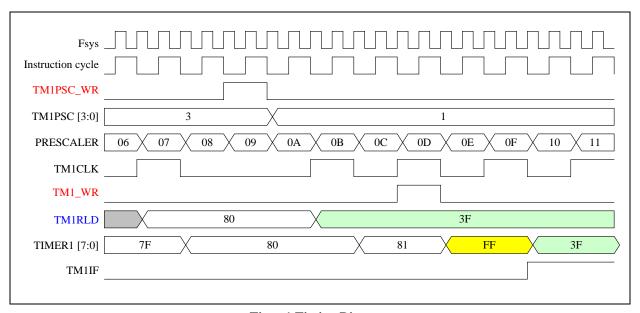
11h.3~0 **TM0PSC:** Timer0 prescaler. Timer0 prescaler clock source divided by

0001:/2 0000: /1 0010: /4 0011:/8 0100: /16 0101:/32 0110: /64 0111: /128 1001:/512 1000: /256 1010: /1024 1011: /2048 1100: /4096 1101:/8192 1110: /16384 1111:/32768

16h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF016	LVDF	LVDEN	T2CLR	TM1STP	TM0STP	LVRSAV	LV	DS
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	0	1	0	0	1	0	1

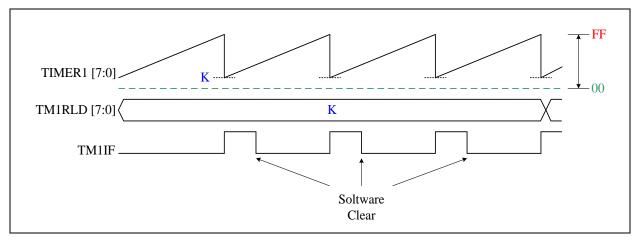

16h.3 **TM0STP:** Timer0 counter stop

0: Release 1: Stop counting



6.3 Timer1

The Timer1 is an 8-bit wide register. It can be read or written as any other register. Besides, Timer1 increases itself periodically and automatically reloads a new "offset value" (TM1RLD) while it rolls over based on the pre-scaled instruction clock (Fsys/2). The Timer1 increase rate is determined by TM1PSC register. It generates Timer1 interrupt if the TM1IE bit is set. Timer1 can be stopped counting if the TM1STP bit is set.


Timer1 Block Diagram

Timer1 Timing Diagram

DS-TM56FE8228_E 47 Rev 0.93, 2022/02/21

Timer1 Reload Diagram

♦ Example: CPU is running in SLOW mode, Fsys = Slow-clock / CPUPSC= 70 KHz / 2 = 35 KHz

; Setup Timer1 clock source and divider

MOVLW 00000<u>010</u>B ; Set Slow-clock as system clock MOVWX CLKCTL ; CPUPSC = 10b, divided by 2

MOVLW 0000**0010**B

MOVWX TM1CTL ; TM1PSC = 0010b, divided by 8

; Setup Timer1 reload data

MOVLW FFH

MOVWX TM1RLD ; Set Timer1 reload data = 255

; Setup Timer1

BSX TM1STP ; Timer1 stops counting CLRX TM1 ; Clear Timer1 content

; Enable Timer1 and interrupt function

MOVLW 11<u>0</u>11111B

MOVWX INTIF ; Clear Timer1 request interrupt flag
BSX TM1IE ; Enable Timer1 interrupt function

BCX TM1STP ; Enable Timer1 counting

Timer1 clock source is Fsys/2 = 35 KHz / 2 = 17.5 KHz, Timer1 divided by 8

Timer1 interrupt frequency = 17.5 KHz / 2 / 8 / (256-255) = 1.09 Hz

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Bh.5 **TM1IE:** Timer1 interrupt enable

0: disable 1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.5 **TM1IF:** Timer1 interrupt event pending flag

This bit is set by H/W while Timer1 overflows, write 0 to this bit will clear this flag

12h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM1				TN	И 1			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

12h **TM1:** Timer1 content

13h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM1RLD				TM1	RLD			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

13h.7~0 **TM1RLD:** Timer1 reload offset value while it rolls over

14h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM1CTL	_	_	_	_		TM1	PSC	
R/W	_	_	_	_	R/W	R/W	R/W	R/W
Reset	_	_	_	_	0	0	0	0

14h.3~0 **TM1PSC:** Timer1 prescaler. Timer1 clock source divided by

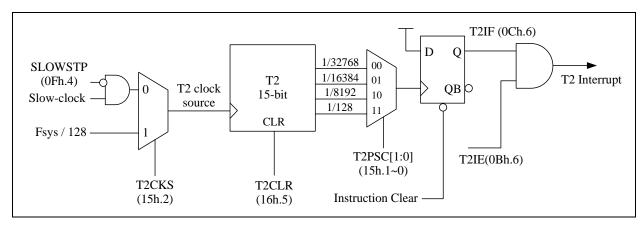
 0000: Fsys/2
 0001: Fsys/4
 0010: Fsys/8
 0011: Fsys/16

 0100: Fsys/32
 0101: Fsys/64
 0110: Fsys/128
 0111: Fsys/256

1xxx: Fsys/512

16h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF016	LVDF	LVDEN	T2CLR	TM1STP	TM0STP	LVRSAV	LV	DS
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	0	1	0	0	1	0	1

16h.4 **TM1STP:** Timer1 counter stop


0: Release

1: Stop counting

6.4 T2:15-bit Timer

The T2 is a 15-bit counter and the clock sources are from either Fsys/128 or Slow-clock. It is used to generate time base interrupt and T2 counter block clock. The T2 content cannot be read by instructions. It generates interrupt flag T2IF (0Ch.6) with the clock divided by 32768/16384/8192/128 depends on T2PSC[1:0] (15h.1~0) register bits. The following figure shows the block diagram of T2.

T2 Block Diagram

♦ Example: CPU is running at FAST mode, Fsys = Fast-clock / CPUPSC = FIRC 8 MHz,

T2 clock source is Fsys/128

; Setup FIRC frequency

MOVLW 000001<u>11</u>B

MOVWX CLKCTL ; Fsys is 8 MHz

; Setup T2 clock source and divider

MOVLW 00000101B ; T2CKS(15h.2) = 1, T2 clock source is Fsys/128

MOVWX T2CTL ; T2PSC(15h.1~0) = 1, divided by 16384

BSX T2CLR : T2CLR = 1, clear T2 counter

; Enable T2 interrupt function

MOVLW 1<u>0</u>111111B

MOVWX INTIF ; Clear T2 request interrupt flag
BSX T2IE ; Enable T2 interrupt function
BCX T2CLR ; T2CLR = 0, Enable T2 counting

T2 clock source is $F_{SYS}/128 = 8 \text{ MHz}/128 = 62500 \text{ Hz}$, $T_{2}PSC = /16384$

T2 frequency = 62500 Hz / 16384 = 3.815 Hz

DS-TM56FE8228_E 50 Rev 0.93, 2022/02/21

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Bh.6 **T2IE:** T2 interrupt enable

0: disable 1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.6 **T2IF:** T2 interrupt event pending flag

This bit is set by H/W while T2 overflows, write 0 to this bit will clear this flag

0Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCTL	-	-	-	SLOWSTP	FASTSTP	CPUCKS	CPU	PSC
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
Reset	_	_	_	0	1	0	1	1

0Fh.4 **SLOWSTP:** Stop Slow-clock in Stop Mode

0: no Stop 1: Stop

15h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T2CTL	_	_	-	_	_	T2CKS	T2F	PSC
R/W	_	-	-	-	-	R/W	R/W	R/W
Reset	_	_	-	_	_	0	0	0

15h.2 **T2CKS:** "T2 clock source" selection.

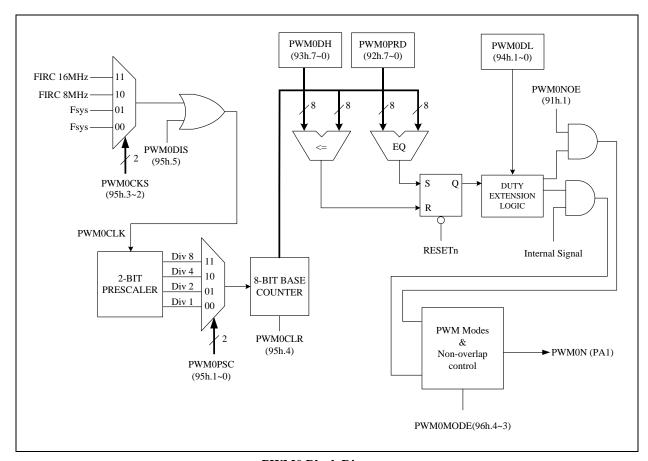
1: Fsys/128 0: Slow-clock

15h.1~0 **T2PSC:** T2 prescaler. "T2 clock source" divided by -

00: 32768 01: 16384 10: 8192 11: 128

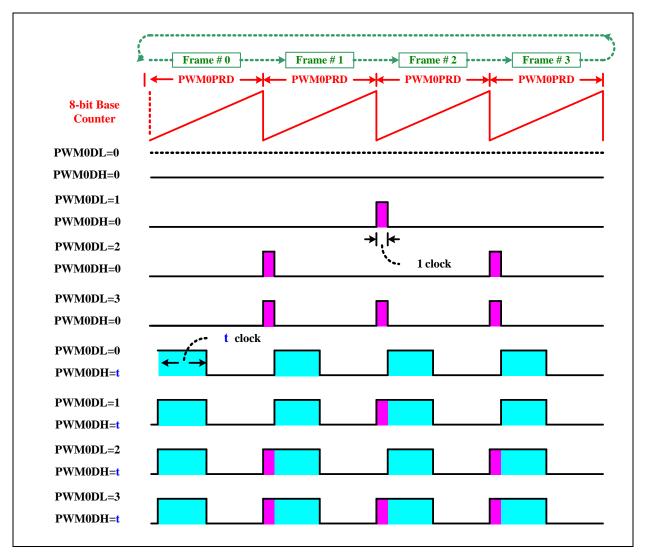
16h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF016	LVDF	LVDEN	T2CLR	TM1STP	TM0STP	LVRSAV	LV	DS
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	0	1	0	0	1	0	1

16h.5 **T2CLR:** T2 counter clear


0: Release 1: Stop counting

6.5 PWM0: (8+2) bits PWM

The PWM0 can generate various frequency waveforms with 1024 duty resolution based on PWM0CLK, which can select Fsys or FIRC 8MHz or FIRC 16MHz, decided by PWM0CKS (95h.3~2). A spread LSB technique allows PWM0 to run its frequency at "PWM0CLK divided by 256" instead of "PWM0CLK divided by 1024", which means the PWM is 4 times faster than normal. The advantage of higher PWM frequency is that the post RC filter can transform the PWM signal to more stable DC voltage level. The PWM output signal reset to low level whenever the 8-bit base counter matches the 8-bit MSB of PWM duty register PWM0DH (93h.7~0). When the base counter rolls over, the 2-bit LSB of PWM duty register PWM0DL (94h.1~0) decides whether to set the PWM output signal high immediately or set it high after one clock cycle delay. **PWM0 clock is enabled and PWM0 is not hold after reset. (cf. the description of PWM0DIS and PWM0CLR)**


The PWM0 period can be set by writing period value to PWM0PRD register (92h.7~0). Note that changing the PWM0PRD will immediately change the PWM0PRD values, which are different from PWM0DH / PWM0DL which has buffer to update the duty at the end of current period. The Programmer must pay attention to the current time to change PWM0PRD by observing the following figure. There is a digital comparator that compares the PWM0 counter and PWM0PRD, if PWM0 counter is larger than PWM0PRD after setting the PWM0PRD, a fault long PWM cycle will be generated because PWM0 counter must count to overflow then keep counting to PWM0PRD to finish the cycle.

PWM0 Block Diagram

DS-TM56FE8228_E 52 Rev 0.93, 2022/02/21

PWM0 8+2 Timing Diagram

DS-TM56FE8228_E 53 Rev 0.93, 2022/02/21

♦ Example: CPU running at Fast mode, Fsys = FIRC 8 MHz

; Setup Pin mode

MOVLW xxxx 10xB ; PA1 Pin mode = Mode2 MOVWX PAMODL ; Mode2: CMOS output

; Setup PWM0 clock prescaler

MOVLW xx01101 11B ; 95h.4 = 1, PWM0 clear and hold

MOVWX PWM0CTL ; $95h.3\sim2=2$, PWM0 clock source = FIRC 8MHz

; $95h.1\sim0 = 3$, PWM0 prescaler div 8

; Setup PWM0 mode & Non-overlap control

MOVLW $xxx_{00} = 000B$; 96h.4~3 = 0, PWM0 mode = Mode0

MOVWX PWM0CTL1

MOVLW 7FH

MOVWX PWM0PRD ; Set PWM0 period = 7FH

 $MOVLW \qquad xxxxxx\underline{\textbf{00}}B$

MOVWX PWM0DL ; Set PWM0DL duty = 00H

MOVLW 20H

MOVWX PWM0DH ; Set PWM0DH duty = 20H

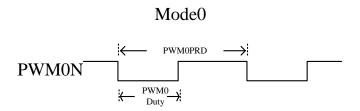
MOVLW xxxxxx**10**B ; 91h.1 = 1, Enable PWM0N output to PA1

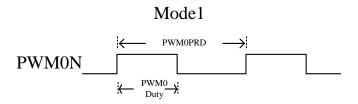
MOVWX PWMOE

BCX PWM0CLR ; 95h.4 = 0, release PWM0 clear and hold

Example:

PWM0 clock source = FIRC 8M, PWM0PSC = div 8, PWM0PRD = 7FH,


PWM0DL = 00H, PWM0DH = 20H


PWM0 output frequency = 8 MHz / 8 / (PWM0PRD+1) = 8 MHz / 8 / 128 = 7.8125 KHz.

PWM0N output duty = 32:128 = 25 %.

PWM0 can be output via PWM0N with two different modes. The default output form is Mode0. The waveforms of the two output modes are shown below.

PWM0 Waveform Modes

DS-TM56FE8228_E 55 Rev 0.93, 2022/02/21

91h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMOE	PWM1COE1	PWM1COE0	PWM1BOE1	PWM1BOE0	Reserved	PWM1AOE0	PWM0NOE	Reserved
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

91h.1 **PWM0NOE:** PWM0N output to PA1 enable

0: disable

1: enable, PWM0N output to PA1

91h.0 **Reserved:** Don't Change

92h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM0PRD				PWM	0PRD			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

92h.7~0 **PWM0PRD:** PWM0 period data

93h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM0DH				PWM	I0DH			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

93h.7~0 **PWM0DH:** PWM0 duty MSB 8bit

94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM0DL	_	_	_	_	_	_	PWN	10DL
R/W	_	_	_	_	_	_	R/W	R/W
Reset	_	_	_	_	_	_	0	0

94h.1~0 **PWM0DL:** PWM0 duty LSB 2bit

95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM0CTL	_	_	PWM0DIS	PWM0CLR	PWM	0CKS	PWM	0PSC
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

95h.5 **PWM0DIS:** PWM0 clock disable

0: clock enable

1: clock disable

95h.4 **PWM0CLR:** PWM0 clear and hold

0: PWM0 enable

1: PWM0 clear and hold

95h.3~2 **PWM0CKS:** PWM0 clock source select

0x: Fsys

10:FIRC 8MHz

11:FIRC 16MHz

95h.1~0 **PWM0PSC:** PWM0 clock source prescaler

00: divided by 1 01: divided by 2 10: divided by 4 11: divided by 8

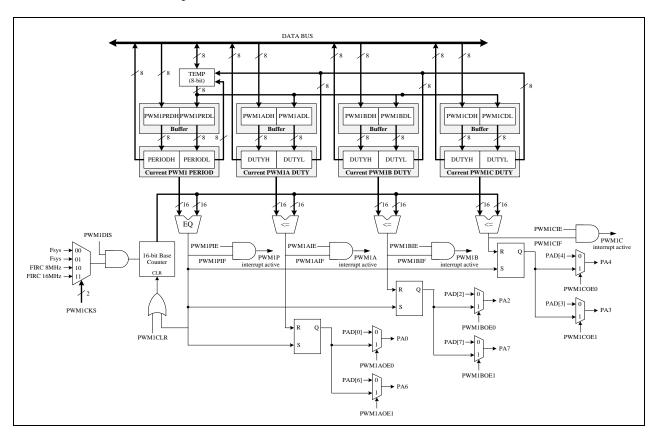
DS-TM56FE8228_E 56 Rev 0.93, 2022/02/21

96h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM0CTL1	_	_	_	PWM0	MODE		Reserved	
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
Reset	_	_	_	0	0	0	0	0

96h.4~3 **PWM0MODE:** PWM0 differential output mode

00: Mode 0 01: Mode 1

96h.2~0 **Reserved:** Don't change

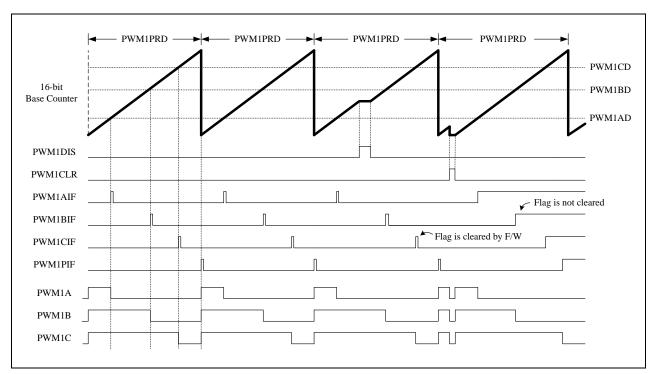

6.6 PWM1A / PWM1B / PWM1C: 16 bits PWMs

PWM1A, PWM1B and PWM1C are 3 PWMs which have independent duty and common period. The PWM1 can generate varies frequency waveform with 65536 duty resolution on the basis of the PWM1 clock. The PWM clock can select Fsys, FIRC 8 MHz or 16 MHz, decided by PWMCKS (97h.3~2). The PWM1 clock also can be stop by setting PWM1DIS (97h.5) bit. **PWM1 clock is enabled and PWM1 is not hold after reset.** (cf. the description of PWM1DIS and PWM1CLR)

The pin mode SFR controls the PWM output waveform format. Mode1 makes the PWM open drain output and Mode2 makes the PWM CMOS push-pull output. (see section 5)

The 16-bit PWM1PRD, PWM1AD, PWM1BD, PWM1CD registers all have a low byte and high byte structure. The high bytes can be directly accessed, but the low bytes can only be accessed via an internal 8-bit buffer, reading or writing to these register pairs must be carried out in a specific way. The important point to notes is that data transfer to and from the 8-bit buffer and its related low byte only takes place when write or read operation to its corresponding high bytes is executed. Briefly speaking, write low byte first and then high byte; read high byte first and then low byte.

The PWM1 structure is shown as follow. When PWM1CLR (97h.4) bit is set, the PWM1 will be cleared and held, otherwise the PWM1 is running. The PWM1 duty cycle can be changed by writing to PWM1DH and PWM1DL. The PWM1 output signal resets to a low level whenever the 16-bit base counter matches the 16-bit PWM1 duty register {PWM1DH, PWM1DL}. The PWM1 period can be set by writing the period value to the PWM1PRDH and PWM1PRDL registers. After writing the PWM1D or PWM1PRD register, the new values will immediately save to their own buffer. H/W will update these values at the end of current period or while PWM1 is cleared.


PWM1 Block Diagram

DS-TM56FE8228_E 58 Rev 0.93, 2022/02/21

PWM1A, PWM1B and PWM1C have a corresponding interrupt flag PWM1AIF (0Eh.0), PWM1BIF (0Eh.1) and PWM1CIF (0Eh.2), and those interrupt flags are generated while PWM1 16-bit base counter count to the setting duties. The PWM1 also has a corresponding period interrupt flag PWM1PIF (0Eh.3), and an interrupt flag is generated at the end of the period. Setting their corresponding interrupt enable bit PWM1AIE (0Dh.0), PWM1BIE (0Dh.1), PWM1CIE (0Dh.2) and PWM1PIE (0Dh.3) can generate the corresponding interrupt.

The PWM1xOEn (91h.7~2) bits are used to select the related PWM output to I/O. No matter PWMOE is set or not, PWM1 can keep running in the background as a timer.

PWM1 Timing Diagram

0Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE1	_	_	_	_	PWM1PIE	PWM1CIE	PWM1BIE	PWM1AIE
R/W	_	_	_	_	R/W	R/W	R/W	R/W
Reset	_	-	-	_	0	0	0	0

0Dh.3 **PWM1PIE:** PWM1 period interrupt enable

0: disable

1: enable

0Dh.2 **PWM1CIE:** PWM1C duty interrupt enable

0: disable

1: enable

0Dh.1 **PWM1BIE:** PWM1B duty interrupt enable

0: disable 1: enable

0Dh.0 **PWM1AIE:** PWM1A duty interrupt enable

0: disable 1: enable

0Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF1	_	_	_	_	PWM1PIF	PWM1CIF	PWM1BIF	PWM1AIF
R/W	_	_	_	_	R/W	R/W	R/W	R/W
Reset	_	_	_	_	0	0	0	0

0Eh.3 **PWM1PIF:** PWM1 period interrupt event pending flag

This bit is set by H/W after PWM1 counter count to the set period, write 0 to this bit will clear this flag

0Eh.2 **PWM1CIF:** PWM1C duty interrupt event pending flag

This bit is set by H/W after PWM1 counter count to the set PWM1C duty, write 0 to this bit will clear this flag

0Eh.1 **PWM1BIF:** PWM1B duty interrupt event pending flag

This bit is set by H/W after PWM1 counter count to the set PWM1B duty, write 0 to this bit will clear this flag

0Eh.0 **PWM1AIF:** PWM1A duty interrupt event pending flag

This bit is set by H/W after PWM1 counter count to the set PWM1A duty, write 0 to this bit will clear this flag

91h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMOE	PWM1COE1	PWM1COE0	PWM1BOE1	PWM1BOE0	Reserved	PWM1AOE0	PWM0NOE	Reserved
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

91h.7 **PWM1COE1:** PWM1C output to PA3 enable

0: disable 1: enable, PWM1C output to PA3

91h.6 **PWM1COE0:** PWM1C output to PA4 enable

0: disable 1: enable, PWM1C output to PA4

91h.5 **PWM1BOE1:** PWM1B output to PA7 enable

0: disable 1: enable, PWM1B output to PA7

91h.4 **PWM1BOE0:** PWM1B output to PA2 enable

0: disable 1: enable, PWM1B output to PA2

91h.3 **Reserved:** Don't Change

91h.2 **PWM1AOE0:** PWM1A output to PA0 enable

0: disable 1: enable, PWM1A output to PA0

97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM1CTL	_	_	PWM1DIS	PWM1CLR	PWM	1CKS	_	_
R/W	_	_	R/W	R/W	R/W	R/W	_	_
Reset	_	_	0	0	0	0	_	_

97h.5 **PWM1DIS:** PWM1 clock disable

0: clock enable1: clock disable

97h.4 **PWM1CLR:** PWM1 clear and hold

0: PWM1 enable

1: PWM1 clear and hold

97h.3~2 **PWM1CKS:** PWM1 clock source select

0x: Fsys

10:FIRC 8MHz 11:FIRC 16MHz

98h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM1PRDH				PWM1	PRDH			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

98h.7~0 **PWM1PRDH:** PWM1 (PWM1A / PWM1B / PWM1C) period data MSB 8bit

99h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM1PRDL				PWM1	PRDL			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

99h.7~0 **PWM1PRDL:** PWM1 (PWM1A / PWM1B / PWM1C) period data LSB 8bit About 16-bit data write: Write PWM1PRDL first, then PWM1PRDH About 16-bit data read: Read PWM1PRDH first, then PWM1PRDL

9Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM1ADH				PWM	1ADH			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	0	0	0	0	0	0	0

9Ah.7~0 **PWM1ADH:** PWM1A duty MSB 8bit

9Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM1ADL				PWM	1ADL			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

9Bh.7~0 **PWM1ADL:** PWM1A duty LSB 8bit

About 16-bit data write: Write PWM1ADL first, then PWM1ADH About 16-bit data read: Read PWM1ADH first, then PWM1ADL

9Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM1BDH				PWM	1BDH			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	0	0	0	0	0	0	0

9Ch.7~0 **PWM1BDH:** PWM1B duty MSB 8bit

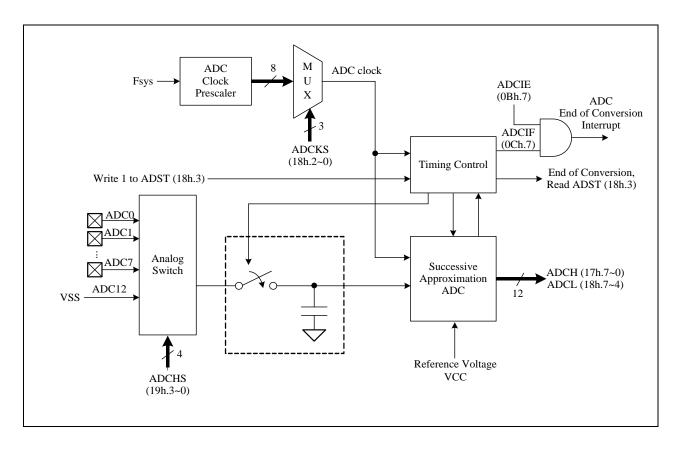
9Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM1BDL		PWM1BDL						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

9Dh.7~0 **PWM1BDL:** PWM1B duty LSB 8bit

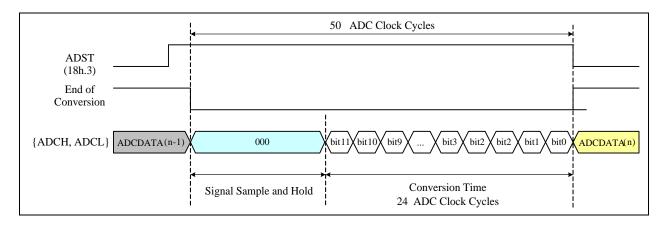
About 16-bit data write: Write PWM1BDL first, then PWM1BDH About 16-bit data read: Read PWM1BDH first, then PWM1BDL

9Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM1CDH				PWM	1CDH			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	0	0	0	0	0	0	0

9Eh.7~0 **PWM1CDH:** PWM1Cduty MSB 8bit


9Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM1CDL		PWM1CDL							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

9Fh.7~0 **PWM1CDL:** PWM1C duty LSB 8bit


About 16-bit data write: Write PWM1CDL first, then PWM1CDH About 16-bit data read: Read PWM1CDH first, then PWM1CDL

6.7 Analog-to-Digital Converter

The 12-bit ADC (Analog to Digital Converter) consists of a 16-channel analog input multiplexer, control register, clock generator, 12-bit successive approximation register, and output data register. To use the ADC, user needs to set ADCKS (18h.2~0) to choose a proper ADC clock frequency, which must be less than 1 MHz. User then launches the ADC conversion by setting the ADST (18h.3) control bit. After end of conversion, H/W automatic clears the ADST (18h.3) bit. User can poll this bit to know the conversion status. The PAMODH and PAMODL control registers are used for ADC pin configuration, user must set the Pin Mode=3 when the pin is used as an ADC input. The setting can disable the pin logical input path to save power consumption. User needs to set ADCHS (19h.3~0) to choose the input channel of ADC. Besides, there are another reference input channel can be selected, ADC12 is VSS. ADC reference voltage only select VCC.

Example:

[CPU running at FAST mode, Fsys = FIRC 8MHz]
ADC clock frequency = 1 MHz, ADC channel = ADC2 (PA2).

♦ Example:

MOVLW 00000111B ; Fsys = 8 MHz

MOVWX CLKCTL ;

MOVLW $01\underline{11}0101B$; ADC2 (PA2) Pin Mode = 3 = ADC input

MOVWX PAMODL;

MOVLW 00000101B ; $18h.2\sim0$ (ADCKS) = Fsys/8, ADC clock = 1MHz

MOVWX ADCTL

MOVLW 00000010B ; $19h.3\sim0 = 2$, ADC input channel select ADC2

MOVWX MF019

BSX ADST ; 18h.3 (ADST), ADC start conversion.

WAIT_ADC:

BTXSC ADST ; Wait ADC conversion finish.

GOTO WAIT ADC

MOVXW ADCH ; 17h.7~0, Read ADC result [11:4] into W MOVXW ADCTL ; 18h.7~4, Read ADC result [3:0] into W

. . .

0Bh/8Bh/10Bh/18Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

INTIE.7 **ADCIE:** ADC interrupt enable

0: disable 1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.7 **ADCIF:** ADC interrupt event pending flag

This bit is set by H/W after end of ADC conversion, write 0 to this bit will clear this flag

17h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCH				AD	СН			
R/W	R	R	R	R	R	R	R	R
Reset	_	_	_	_	_	_	_	_

17h.7~0 **ADCH:** ADC output data MSB, ADQ [11:4]

18h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCTL		AD	CL		ADST		ADCKS	
R/W	R	R	R	R	R/W	R/W	R/W	R/W
Reset	_	_	_	_	0	0	0	0

18h.7~4 **ADCL:** ADC output data LSB, ADQ [3:0]

18h.3 **ADST:** ADC start bit.

0: H/W clear after end of conversion

1: ADC start conversion

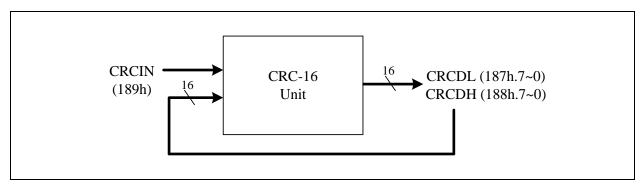
18h.2~0 **ADCKS:** ADC clock frequency selection:

000: Fsys/256 100: Fsys/16 001: Fsys/128 101: Fsys/8 010: Fsys/64 110: Fsys/4 011: Fsys/32 111: Fsys/2

19h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF019	-	-	Reserved	Reserved	ADCHS			
R/W	-	-	R/W	R/W	R/W			
Reset	-	-	1	1	0	0	0	0

19h.5 **Reserved:** Don't Change

19h.4 Reserved: Note: User must setting 0


19h.3~0 **ADCHS:** ADC channel select

0000: ADC0 (PA0) 1000: Reserved 0001: ADC1 (PA1) 1001: Reserved 0010: ADC2 (PA2) 1010: Reserved 0011: ADC3 (PA3) 1011: Reserved 0100: ADC4 (PA4) 1100: VSS 0101: Reserved 1101: Reserved 0110: Reserved 1110: Reserved 0111: ADC7 (PA7) 1111: Reserved

6.8 Cyclic Redundancy Check (CRC)

The chip supports an integrated 16-bit Cyclic Redundancy Check function. The Cyclic Redundancy Check (CRC) calculation unit is an error detection technique test algorithm and uses to verify data transmission or storage data correctness. The CRC calculation takes a 8-bit data stream or a block of data as input and generates a 16-bit output remainder. The data stream is calculated by the same generator polynomial.

CRC16 Block Diagram

The CRC generator provides the 16-bit CRC result calculation based on the CRC-16-IBM polynomial. In this CRC generator, there is only one polynomial available for the numeric values calculation. It can't support the 16-bit CRC calculations based on any other polynomials. Each write operation to the CRCIN register creates a combination of the previous CRC value stored in the CRCDH and CRCDL registers. It will take one MCU instruction cycle to calculate.

CRC-16-IBM (Modbus) Polynomial representation: $X^{16} + X^{15} + X^2 + 1$

187h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CRCDL		CRCDL						
R/W		R/W						
Reset	1	1	1	1	1	1	1	1

187h.7~0 CRCDL: 16-bit CRC checksum data bit 7~0

188h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
CRCDH		CRCDH							
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	

188h.7~0 **CRCDL:** 16-bit CRC checksum data bit 15~8

189h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
CRCIN		CRCIN							
W		W							
Reset	_	_	_	_	_	_	_	_	

189h.7~0 **CRCIN:** write this register to start CRC calculation

DS-TM56FE8228_E 66 Rev 0.93, 2022/02/21

MEMORY MAP

Name	Address	R/W	Rst	Description
INDF (00h	/80h/100h/180	0h)		Function related to: RAM W/R
INDF	00.7~0	R/W	-	Not a physical register, addressing INDF actually point to the register whose address is contained in the FSR register
TM0 (01h/	101h)			Function related to: Timer0
TM0	01.7~0	R/W	0	Timer0 content
PCL (02h/	82h/105h/182l	h)		Function related to: PROGRAM COUNT
PCL	02.7~0	R/W	0	Programming Counter LSB [7~0]
STATUS (03h/83h/103h	/183h)		Function related to: STATUS
IRP	03.7	R/W	0	Register Bank Select bit (used for indirect addressing)
RP1	03.6	R/W	0	Register Bank Select bit 1 (assembly keep this bit is 0)
RP0	03.5	R/W	0	Register Bank Select bit 0 (assembly keep this bit is 0)
ТО	03.4	R	0	WDT timeout flag, cleared by PWRST, 'SLEEP' or 'CLRWDT' instruction
PD	03.3	R	0	Power down flag, set by 'SLEEP', cleared by 'CLRWDT' instruction
Z	03.2	R/W	0	Zero flag
DC	03.1	R/W	0	Decimal Carry flag
С	03.0	R/W	0	Carry flag
FSR (04h/8	84h/104h/184l	h)		Function related to: RAM W/R
FSR	04.7~0	R/W	-	File Select Register, indirect address mode pointer
PAD (05h)				Function related to: Port A
PAD	05.7~0	R	-	Port A pin or "data register" state
FAD	03.7~0	W	FF	Port A output data register
PCLATH ((0Ah/8Ah/10A	h/18A	h)	Function related to: PROGRAM COUNT
PCLATH	0A.2~0	R/W	0	Write Buffer for the upper 3 bits of the Program Counter
INTIE (0Bl	h/8Bh/10Bh/1	8Bh)		Function related to: Interrupt Enable
ADCIE	0B.7	R/W	0	ADC interrupt enable 0: disable 1: enable
T2IE	0B.6	R/W	0	T2 interrupt enable 0: disable 1: enable
TM1IE	0B.5	R/W	0	Timer1 interrupt enable 0: disable 1: enable
TM0IE	0B.4	R/W	0	Timer0 interrupt enable 0: disable 1: enable
WKTIE	0B.3	R/W	0	Wakeup Timer interrupt enable, set 0 to clear & disable WKT timer 0: disable 1: enable
INT2IE	0B.2	R/W	0	INT2 pin (PA7) interrupt enable 0: disable 1: enable
INT1IE	0B.1	R/W	0	INT1 pin (PA1) interrupt enable 0: disable 1: enable
INT0IE	0B.0	R/W	0	INT0 pin (PA2) interrupt enable 0: disable 1: enable

INTIF (0Ch)				Function related to: Interrupt Flag		
ADCIE	00.7	R	-	ADC interrupt flag, set by H/W after end of ADC conversion		
ADCIF	0C.7	W	0	write 0: clear this flag; write 1: no action		
TOTE	00.6	R	-	T2 interrupt event pending flag, set by H/W while T2 overflows		
T2IF	0C.6	W	0	write 0: clear this flag; write 1: no action		
TMILE	00.5	R	-	Timer1 interrupt event pending flag, set by H/W while Timer1 overflows		
TM1IF	0C.5	W	0	write 0: clear this flag; write 1: no action		
TMOIL	00.4	R	-	Timer0 interrupt event pending flag, set by H/W while Timer0 overflows		
TM0IF	0C.4	W	0	write 0: clear this flag; write 1: no action		
WETE	0C.3	R	-	WKT interrupt event pending flag, set by H/W while WKT time out		
WKTIF	00.3	W	0	write 0: clear this flag; write 1: no action		
INT2IF	0C.2	R	-	INT2 (PA7) interrupt event pending flag, set by H/W at INT2 pin's falling edge		
		W	0	write 0: clear this flag; write 1: no action		
INT1IF	0C.1	R	-	INT1 (PA1) interrupt event pending flag, set by H/W at INT1 pin's falling/rising edge		
		W	0	write 0: clear this flag; write 1: no action		
INT0IF	0C.0	R	-	INTO (PA2) interrupt event pending flag, set by H/W at INTO pin's falling/rising edge		
		W	0	write 0: clear this flag; write 1: no action		
INTIE1 (0Dh) Function related to: Interrupt Enable						
PWM1PIE	0D.3	R/W	0	PWM1 period interrupt enable		
PWM1CIE	0D.2	R/W	0	0: disable 1: enable PWM1C duty interrupt enable		
		10 11		0: disable 1: enable PWM1B duty interrupt enable		
PWM1BIE	0D.1	R/W	0	0: disable 1: enable		
PWM1AIE	0D.0	R/W	0	PWM1A duty interrupt enable 0: disable 1: enable		
INTIF1 (0Eh)				Function related to: Interrupt Flag		
PWM1PIF	0E.3	R	-	PWM1 period interrupt event pending flag, set by H/W while PWM1 counter count to the set period		
		W	0	write 0: clear this flag; write 1: no action		
PWM1CIF	0E.2	R	-	PWM1C duty interrupt event pending flag, set by H/W while PWM1 counter count to the set PWM1C duty		
		W	0	write 0: clear this flag; write 1: no action		
PWM1BIF	0E.1	R	-	PWM1B duty interrupt event pending flag, set by H/W while PWM1 counter count to the set PWM1B duty		
		W	0	write 0: clear this flag; write 1: no action		
PWM1AIF	0E.0	R	-	PWM1A duty interrupt event pending flag, set by H/W while PWM1 counter count to the set PWM1A duty		
		W	0	write 0: clear this flag; write 1: no action		
CLKCTL (0F	h)			Function related to: Fsys		
SLOWSTP	0F.4	R/W	0	Stop Slow-clock in Stop Mode 0: no Stop 1: Stop		
FASTSTP	0F.3	R/W	1	Stop Fast-clock 0:no Stop 1:Stop		
CPUCKS	0F.2	R/W	0	Select Fast-clock 0: Fsys=Slow-clock 1: Fsys=Fast-clock		
CPUPSC	0F.1~0	R/W	11	Fsys Prescaler, 00: div 8 01: div 4 10: div 2 11: div 1		

TM0RLD (10	h)			Function related to: TM0
TM0RLD	10.7~0	R/W	0	Timer0 reload Data
TM0CTL (11)	h)			Function related to: TM0
Reserved	11.5	R/W	0	Don't Change
Reserved	11.4	R/W	0	Don't Change
TM0PSC	11.3~0	R/W	0	Timer0 prescaler. Timer0 prescaler clock source divided by 0000: /1 0100: /16 1000: /256 1100: /4096 0001: /2 0101: /32 1001: /512 1101: /8192 0010: /4 0110: /64 1010: /1024 1110: /16384 0011: /8 0111: /128 1011: /2048 1111: /32768
TM1 (12h)				Function related to: Timer1
TM1	12.7~0	R/W	0	Timer1 content
TM1RLD (13	h)			Function related to: Timer1
TM1RLD	13.7~0	R/W	0	Timer1 reload Data
TM1CTL (14)	h)			Function related to: Timer1
TM1PSC	14.3~0	R/W	0	Timer1 prescaler. Timer1 clock source 0000: Fsys/2 0100: Fsys/32 1xxx: Fsys/512 0001: Fsys/4 0101: Fsys/64 0010: Fsys/8 0110: Fsys/128 0011: Fsys/16 0111: Fsys/256
T2CTL (15h)				Function related to: T2
T2CKS	15.2	R/W	0	T2 clock source 0: Slow-clock 1: Fsys/128
T2PSC	15.1~0	R/W	0	T2 prescaler. T2 clock source divided by - 00: 32768 01: 16384 10: 8192 11: 128
MF016 (16h)				Function related to: T2/TM1/TM0/LVR/LVD
LVDF	16.7	R	-	Low voltage detection flag, set by H/W while VCC ≤ LVD
LVDEN	16.6	R/W	0	Low voltage detection function enable, (When LVR=2.2V only) 0: disable 1: enable
T2CLR	16.5	R/W	1	T2 counter clear 0: Release 1: Stop counting
TM1STP	16.4	R/W	0	Timer1 counter stop 0: Release 1: Stop counting
TM0STP	16.3	R/W	0	Timer0 counter stop 0: Releas 1: Stop counting
LVRSAV	16.2	R/W	1	LVR/LVD power save 0: LVR/LVD enable in in STOP/IDLE mode 1: LVR/LVD auto power off in STOP/IDLE mode
LVDS	16.1~0	R/W	01	LVD select (when LVR=2.2V) 00: 3.6V 01: 2.8V 1x: 4.2V

ADCH (17h)				Function related to: ADC	
ADCH	17.7~0	R	-	ADC output data MSB, ADQ [11:4]	
ADCTL (18h)				Function related to: ADC	
ADCL	18.7~4	R	-	ADC output data LSB, ADQ [3:0]	
ADST	18.3	R/W	0	ADC start bit. 0: H/W clear after end of conversion 1: ADC start conversion	
ADCKS	18.2~0	R/W	0	ADC clock frequency selection: 000: Fsys/256 100: Fsys/16 001: Fsys/128 101: Fsys/8 010: Fsys/64 110: Fsys/4 011: Fsys/32 111: Fsys/2	
MF019 (19h)	,	1		Function related to: ADC	
Reserved	19.5	R/W	1	Don't Change	
Reserved	19.4	R/W	1	Note: User must setting 0	
ADCHS	19.3~0	R/W	0	ADC channel select 0000: ADC0 (PA0)	
RESERVED ((1Ah)	1			
Reserved	1A.7	R/W	0	Note: User must setting 1	
Reserved	1A.6	R/W	1	Don't Change	
Reserved	1A.5	R/W	1	Don't Change	
Reserved	1A.4~0	R/W	-	Don't Change	
RESERVED ((1Bh)				
Reserved	1B.7	R/W	0	Note: User must setting 1	
Reserved	1B.6	R/W	1	Don't Change	
Reserved	1B.5	R/W	1	Don't Change	
Reserved	1B.4~0	R/W	-	Don't Change	
RESERVED ((1Ch)				
Reserved	1C.1~0	R/W	00	Don't Change	
RESERVED ((1Dh)				
Reserved	1D.7~0	R/W	40	Don't Change	
RESERVED ((1Eh)				
Reserved	1E.1~0	R/W	03	Don't Change	
RESERVED ((1Fh)				
Reserved	1F.7~0	R/W	39	Don't Change	
User Data Mer	nory				
RAM	20~6F	R/W	-	RAM Bank0 area (80 Bytes)	
RAM	70~7F	R/W	ı	RAM common area (16 Bytes)	

OPTION (81h	n/181h)			Function related to: STATUS/INT0/INT1/WDT/WKT
				Enter interrupt vector, HW auto save/restore WREG and STATUS
HWAUTO	81.7	R/W	0	w/o TO,PD
				0:disable 1: enable
INTOEDC	01.6	D/W	0	INT0 pin edge interrupt event 0: falling edge to trigger
INT0EDG	81.6	R/W	0	1: rising edge to trigger
				INT1 pin edge interrupt event
INT1EDG	81.5	R/W	0	0: falling edge to trigger
				1: rising edge to trigger
Reserved	81.4	R/W	0	Note: User must setting 1
				WDT pre-scale selections:
				00: 128mS
WDTPSC	81.3~2	R/W	11	01: 256mS
				10: 1024mS
				11: 2048mS WKT pre-scale selections:
				00: 16mS
WKTPSC	81.1~0	R/W	11	01: 32mS
				10: 64mS
				11: 128mS
PAMODH (80	Ch)			Function related to: Port A
				PA7 I/O mode control
D. 51.60D	00.5	D 777	0.0	00: Mode0
PA7MOD	8C.7~6	R/W	00	01: Mode1
				10: Mode2 11: Mode3
Reserved	8C.5~4	R/W	01	Note: User must setting 00
Reserved	8C.3~2	R/W	01	Note: User must setting 00
Reserved	00.3 2	10 11	01	PA4 I/O mode control
				00: Mode0
PA4MOD	8C.1~0	R/W	01	01: Mode1
				10: Mode2
				11: Mode3
PAMODL (81	-			Function related to: Port A
PA3MOD	8D.7~6	R/W	01	PA3~PA0 I/O mode control
PA2MOD	8D.5~4	R/W	01	00: Mode0 01: Mode1
PA1MOD	8D.3~2	R/W	01	10: Mode2
PA0MOD	8D.1~0	R/W	01	11: Mode3
PWMOE (911	h)	1		Function related to: PWM0 / PWM1A / PWM1B / PWM1C
		D/337	0	PWM1C output to PA3 enable
PWM1COE1	91.7	R/W	0	0: disable 1:enable
PWM1COE0	91.6	R/W	0	PWM1C output to PA4 enable
1 WMICOLO	91.0	10/ 44	U	0: disable 1:enable
PWM1BOE1	91.5	R/W	0	PWM1B output to PA7 enable
	7 - 12		_	0: disable 1:enable
PWM1BOE0	91.4	R/W	0	PWM1B output to PA2 enable 0: disable 1:enable
Reserved	91.3	R/W	0	Don't Change
				PWM1A output to PA0 enable
PWM1AOE0	91.2	R/W	0	0: disable 1:enable
DWATONOS	01.1	D ATT		PWM0N output to PA1 enable
PWM0NOE	91.1	R/W	0	0: disable 1:enable
	91.0	R/W	0	Don't Change

PWM0PRD (9	02h)			Function related to: PWM0
PWM0PRD	92.7~0	R/W	FF	PWM0 period data
PWM0DH (93	h)			Function related to: PWM0
PWM0DH	93.7~0	R/W	00	PWM0 Duty MSB 8bit
PWM0DL (94	h)			Function related to: PWM0
PWM0DL	94.1~0	R/W	0	PWM0 Duty LSB 2bit
PWM0CTL (9	95h)			Function related to: PWM0
				PWM0 clock disable
PWM0DIS	95.5	R/W	0	0: clock enable
				1: clock disable
DITH TO CL D	05.4	D ATT	0	PWM0 clear and hold
PWM0CLR	95.4	R/W	0	0: PWM0 enable 1: PWM0 clear and hold
				PWM0 clock source select
DWMOCKS	05.2.2	D/W	0	0x: Fsys
PWM0CKS	95.3~2	R/W	0	10:FIRC 8MHz
				11:FIRC 16MHz
PWM0PSC	95.1~0	R/W	0	PWM0 clock source prescaler 00: div1 01: div2 10: div4 11: div8
PWM0CTL1	(06h)			Function related to: PWM0
FWMUCILI	(9011)			PWM0 differential output mode
PWM0MODE	96.4~3	R/W	0	00: Mode 0
1 WMOMODE				01: Mode 1
Reserved	96.2~0	R/W	0	Don't Change
PWM1CTL (9	7h)			Function related to: PWM1A / PWM1B / PWM1C
				PWM1 (PWM1A/PWM1B/PWM1C) clock disable
PWM1DIS	97.5	R/W	0	0: clock enable
				1: clock disable
PWM1CLR	97.4	R/W	0	PWM1 (PWM1A/PWM1B/PWM1C) clear and hold 0: PWM1 enable
I WMICLK	77. 4	IX/ VV	U	1: PWM1 clear and hold
				PWM1 (PWM1A/PWM1B/PWM1C) clock source select
PWM1CKS	97.3~2	R/W	0	0x: Fsys
I WMICKS	91.3~2	IX/ VV	U	10:FIRC 8MHz
				11:FIRC 16MHz
-	97.1~0	R/W	0	Reserved, keep the two bits are 00
PWM1PRDH				Function related to: PWM1A / PWM1B / PWM1C
	, ,	T I		
PWM1PRDH	98.7~0	R/W	FF	PWM1 (PWM1A/PWM1B/PWM1C) period data MSB 8bit
PWM1PRDH PWM1PRDL	98.7~0	R/W	FF	PWM1 (PWM1A/PWM1B/PWM1C) period data MSB 8bit Function related to: PWM1A / PWM1B / PWM1C
PWM1PRDL	98.7~0 (99h)			PWM1 (PWM1A/PWM1B/PWM1C) period data MSB 8bit Function related to: PWM1A / PWM1B / PWM1C PWM1 (PWM1A/PWM1B/PWM1C) period data LSB 8bit
	98.7~0	R/W	FF FF	PWM1 (PWM1A/PWM1B/PWM1C) period data MSB 8bit Function related to: PWM1A / PWM1B / PWM1C PWM1 (PWM1A/PWM1B/PWM1C) period data LSB 8bit About 16-bit data write: Write PWM1PRDL first, then PWM1PRDH
PWM1PRDL PWM1PRDL	98.7~0 (99h) 99.7~0			PWM1 (PWM1A/PWM1B/PWM1C) period data MSB 8bit Function related to: PWM1A / PWM1B / PWM1C PWM1 (PWM1A/PWM1B/PWM1C) period data LSB 8bit About 16-bit data write: Write PWM1PRDL first, then PWM1PRDH About 16-bit data read: Read PWM1PRDH first, then PWM1PRDL
PWM1PRDL PWM1PRDL PWM1ADH (9)	98.7~0 (99h) 99.7~0	R/W	FF	PWM1 (PWM1A/PWM1B/PWM1C) period data MSB 8bit Function related to: PWM1A / PWM1B / PWM1C PWM1 (PWM1A/PWM1B/PWM1C) period data LSB 8bit About 16-bit data write: Write PWM1PRDL first, then PWM1PRDH About 16-bit data read: Read PWM1PRDH first, then PWM1PRDL Function related to: PWM1A
PWM1PRDL PWM1PRDL PWM1ADH (9) PWM1ADH	98.7~0 (99h) 99.7~0 9Ah) 9A.7~0			PWM1 (PWM1A/PWM1B/PWM1C) period data MSB 8bit Function related to: PWM1A / PWM1B / PWM1C PWM1 (PWM1A/PWM1B/PWM1C) period data LSB 8bit About 16-bit data write: Write PWM1PRDL first, then PWM1PRDH About 16-bit data read: Read PWM1PRDH first, then PWM1PRDL Function related to: PWM1A PWM1A Duty MSB 8bit
PWM1PRDL PWM1PRDL PWM1ADH (9)	98.7~0 (99h) 99.7~0 9Ah) 9A.7~0	R/W	FF	PWM1 (PWM1A/PWM1B/PWM1C) period data MSB 8bit Function related to: PWM1A / PWM1B / PWM1C PWM1 (PWM1A/PWM1B/PWM1C) period data LSB 8bit About 16-bit data write: Write PWM1PRDL first, then PWM1PRDH About 16-bit data read: Read PWM1PRDH first, then PWM1PRDL Function related to: PWM1A PWM1A Duty MSB 8bit Function related to: PWM1A
PWM1PRDL PWM1PRDL PWM1ADH (9) PWM1ADH	98.7~0 (99h) 99.7~0 9Ah) 9A.7~0	R/W	FF	PWM1 (PWM1A/PWM1B/PWM1C) period data MSB 8bit Function related to: PWM1A / PWM1B / PWM1C PWM1 (PWM1A/PWM1B/PWM1C) period data LSB 8bit About 16-bit data write: Write PWM1PRDL first, then PWM1PRDH About 16-bit data read: Read PWM1PRDH first, then PWM1PRDL Function related to: PWM1A PWM1A Duty MSB 8bit

9C.7~0 Dh) 9D.7~0 Eh) 9E.7~0	R/W R/W	80	PWM1B Duty MSB 8bit Function related to: PWM1B
9D.7~0 Eh)	R/W	00	
Eh)	R/W	00	
		00	PWM1B Duty LSB 8bit About 16-bit data write: Write PWM1BDL first, then PWM1BDH About 16-bit data read: Read PWM1BDH first, then PWM1BDL
9E.7~0			Function related to: PWM1C
	R/W	80	PWM1C Duty MSB 8bit
Fh)		•	Function related to: PWM1C
9F.7~0	R/W	00	PWM1C Duty LSB 8bit About 16-bit data write: Write PWM1CDL first, then PWM1CDH About 16-bit data read: Read PWM1CDH first, then PWM1CDL
nory			
A0~EF	R/W	-	RAM Bank1 area (80 Bytes)
)			Function related to: LVR
109	W	-	Write 37h to force LVR disable
10Eh)			
10E.3~0	R/W	CFG	Don't Change
			Function related to: Internal RC
10F.6~0	R/W	CFG	FIRC frequency adjustment: 00h: Lowest frequency 7Fh: Highest frequency
			Function related to: Table Read
185.7~0	R/W	0	Table read low address, data ROM pointer (DPTR) low byte
			Function related to: Table Read
186.2~0	R/W	0	Table read high address, data ROM pointer (DPTR) high byte
)			Function related to: CRC16
187.7~0	R/W	FF	16-bit CRC data LSB 8bit
)			Function related to: CRC16
188.7~0	R/W	FF	16-bit CRC data MSB 8bit
			Function related to: CRC16
189.7~0	W	-	CRC data input
			Function related to: Table Read
18C.7~0	R/W	0	1. TABR write 01h = opcode TABRL 2. TABR write 02h = opcode TABRH 3. After step.1 or step.2, read TABR to get main ROM table read value After step.1, read TABR to get EEPROM value (when EEPEN = E2h) Table Read for ASM: TABRL / TABRH or TABR Table Read for C: TABR
	9F.7~0 9F.7~0 10ry A0~EF 109 0Eh) 10E.3~0 185.7~0 186.2~0 187.7~0 189.7~0	Fh) 9F.7~0 R/W 10F.6~0 R/W 10F.6~0 R/W 185.7~0 R/W 187.7~0 R/W 189.7~0 W	Fh) 9F.7~0 R/W 00 10F.6~0 R/W CFG 10F.6~0 R/W CFG 10F.6~0 R/W CFG 185.7~0 R/W 0 186.2~0 R/W 0 187.7~0 R/W FF 189.7~0 W -

EEPCTL (18I	Oh)			Function related to: EEPROM	
ЕЕРТО	18D.2	R/W	0	EEPROM write time-out flag Set by H/W when EEPROM write time-out occurs Cleared by H/W when EEPTE=0	
ЕЕРТЕ	18D.1~0	R/W	0	EEPROM write watchdog timer enable 00: disable 01: wait 1.6mS trigger watchdog time-out flag 10: wait 6.4mS trigger watchdog time-out flag 11: wait 12.8mS trigger watchdog time-out flag	
EEPEN (18Eh	EEPEN (18Eh) Function related to: EEPROM				
EEPEN	18E.7~0	W	-	EEPROM read/write enable E2h: enable EEPROM read/write others: disable EEPROM read/write	
EEPDT (18Fh	EEPDT (18Fh) Function related to: EEPROM			Function related to: EEPROM	
EEPDT	18F.7~0	W	-	EEPROM date to write	

DS-TM56FE8228_E 74 Rev 0.93, 2022/02/21

INSTRUCTION SET

Each instruction is a 16-bit word divided into an Op Code, which specifies the instruction type, and one or more operands, which further specify the operation of the instruction. The instructions can be categorized as byte-oriented, bit-oriented and literal operations list in the following table.

For byte-oriented instructions, "f" represents the address designator and "d" represents the destination designator. The address designator is used to specify which address in Program memory is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If "d" is "0", the result is placed in the W register. If "d" is "1", the result is placed in the address specified in the instruction.

For bit-oriented instructions, "b" represents a bit field designator, which selects the number of the bit affected by the operation, while "f" represents the address designator. For literal operations, "k" represents the literal or constant value.

Field/Legend	Description
f	Register File Address
b	Bit address
k	Literal. Constant data or label
d	Destination selection field, 0: Working register, 1: Register file
W	Working Register
Z	Zero Flag
С	Carry Flag or/Borrow Flag
DC	Decimal Carry Flag or Decimal/Borrow Flag
PC	Program Counter
TOS	Top Of Stack
GIE	Global Interrupt Enable Flag (i-Flag)
[]	Option Field
()	Contents
	Bit Field
В	Before
A	After
←	Assign direction

DS-TM56FE8228_E 75 Rev 0.93, 2022/02/21

Mnemonic		Op Code		Cycle	Flag Affect	Description
_		_	ister Instructio	n		
ADDWX	f, d	ff00 0111 dfff		1	C, DC, Z	Add W and "f"
ANDWX	f, d	ff00 0101 dfff		1	Z	AND W with "f"
CLRX	f	ff00 0001 1fff		1	Z	Clear "f"
CLRW		0000 0001 0100		1	Z	Clear W
COMX	f, d	ff00 1001 dfff	ffff	1	Z	Complement "f"
DECX	f, d	ff00 0011 dfff	ffff	1	Z	Decrement "f"
DECXSZ	f, d	ff00 1011 dfff	ffff	1 or 2	-	Decrement "f", skip if zero
INCX	f, d	ff00 1010 dfff	ffff	1	Z	Increment "f"
INCXSZ	f, d	ff00 1111 dfff	ffff	1 or 2	-	Increment "f", skip if zero
IORWX	f, d	ff00 0100 dfff	ffff	1	Z	OR W with "f"
MOVX	f,d	ff00 1000 dfff	ffff	1	Z	Move "f"
MOVXW	f	ff00 1000 Offf	ffff	1	Z	Move "f" to W
MOVWX	f	ff00 0000 1fff	ffff	1	-	Move W to "f"
RLX	f, d	ff00 1101 dfff	ffff	1	С	Rotate left "f" through carry
RRX	f, d	ff00 1100 dfff	ffff	1	С	Rotate right "f" through carry
SUBWX	f, d	ff00 0010 dfff	ffff	1	C, DC, Z	Subtract W from "f"
SWAPX	f, d	ff00 1110 dfff	ffff	1	ı	Swap nibbles in "f"
TSTX	f	ff00 1000 1fff	ffff	1	Z	Test if "f" is zero
XORWX	f, d	ff00 0110 dfff	ffff	1	Z	XOR W with "f"
		Bit-O	riented	File Regi	ster Instruction	1
BCX	f, b	ff11 00bb bfff	ffff	1	-	Clear "b" bit of "f"
BSX	f, b	ff11 01bb bfff	ffff	1	-	Set "b" bit of "f"
BTXSC	f, b	ff11 10bb bfff	ffff	1 or 2	-	Test "b" bit of "f", skip if clear
BTXSS	f, b	ff11 11bb bfff		1 or 2	-	Test "b" bit of "f", skip if set
		Li	teral ar	nd Contro	Instruction	
ADDLW	k	0001 1100 kkkk	kkkk	1	C, DC, Z	Add Literal "k" and W
ANDLW	k	0001 1011 kkkk	kkkk	1	Z	AND Literal "k" with W
CALL	k	0010 0kkk kkkk	kkkk	2	-	Call subroutine "k"
CLRWDT		0001 1110 0000		1	TO, PD	Clear Watch Dog Timer
GOTO	k	0010 1kkk kkkk		2	-	Jump to branch "k"
IORLW	k	0001 1010 kkkk	kkkk	1	Z	OR Literal "k" with W
MOVLW	k	0001 1001 kkkk		1	-	Move Literal "k" to W
NOP		0000 0000 0000	0000	1	-	No operation
RET		0000 0000 0100		2	-	Return from subroutine
RETI		0000 0000 0110		2	-	Return from interrupt
RETLW	k	0001 1000 kkkk	kkkk	2	-	Return with Literal in W
SLEEP		0001 1110 0000	0011	1	TO, PD	Go into Power-down mode, Clock oscillation stops
SUBLW	k	0001 1111 kkkk	kkkk	1	C, DC, Z	Subtract W from literal
TABRH		0000 0000 0101	1000	2	-	Lookup ROM high data to W
TABRL		0000 0000 0101	0000	2	-	Lookup ROM low data to W
XORLW	k	0001 1101 kkkk	kkkk	1	Z	XOR Literal "k" with W

ADDLW Add Literal "k" and W

 $\begin{array}{lll} \text{Syntax} & & \text{ADDLW k} \\ \text{Operands} & & \text{k}:00\text{h} \sim \text{FFh} \\ \text{Operation} & & (\text{W}) \leftarrow (\text{W}) + \text{k} \\ \text{Status Affected} & & \text{C, DC, Z} \\ \end{array}$

OP-Code 0001 1100 kkkk kkkk

Description The contents of the W register are added to the eight-bit literal 'k' and the result is

placed in the W register.

Cycle 1

Example ADDLW 0x15 B: W=0x10

A: W = 0x25

ADDWX Add W and "f"

SyntaxADDWX f [,d]Operands $f:00h \sim 1FFh, d:0, 1$ Operation $(destination) \leftarrow (W) + (f)$

Status Affected C, DC, Z

OP-Code ff00 0111 dfff ffff

Description Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in

the W register. If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example ADDWX FSR, 0 B: W = 0x17, FSR = 0xC2

A: W = 0xD9, FSR = 0xC2

ANDLW Logical AND Literal "k" with W

SyntaxANDLW kOperands $k:00h \sim FFh$ Operation $(W) \leftarrow (W) AND k$

Status Affected Z

OP-Code 0001 1011 kkkk kkkk

Description The contents of W register are AND'ed with the eight-bit literal 'k'. The result is

placed in the W register.

Cycle 1

Example ANDLW 0x5F B: W = 0xA3

A : W = 0x03

ANDWX AND W with "f"

 $\begin{array}{ll} \text{Syntax} & \text{ANDWX f [,d]} \\ \text{Operands} & \text{f : 00h} \sim 1\text{FFh, d : 0, 1} \\ \text{Operation} & \text{(destination)} \leftarrow \text{(W) AND (f)} \\ \end{array}$

Status Affected 2

OP-Code ff00 0101 dfff ffff

Description AND the W register with register 'f'. If 'd' is 0, the result is stored in the W

register. If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example ANDWX FSR, 1 B: W = 0x17, FSR = 0xC2

A : W = 0x17, FSR = 0x02

BCX Clear "b" bit of "f"

Syntax BCX f [,b]

Operands $f: 00h \sim 1FFh, b: 0 \sim 7$

Operation $(f.b) \leftarrow 0$

Status Affected -

OP-Code ff11 00bb bfff ffff

Description Bit 'b' in register 'f' is cleared.

Cycle

Example BCX FLAG_REG, 7 B: FLAG_REG =0xC7

 $A : FLAG_REG = 0x47$

BSX Set "b" bit of "f"

Syntax BSX f [,b]

Operands $f: 00h \sim 1FFh, b: 0 \sim 7$

Operation $(f.b) \leftarrow 1$

Status Affected -

OP-Code ff11 01bb bfff ffff
Description Bit 'b' in register 'f' is set.

Cycle

Example BSX FLAG_REG, 7 B: FLAG_REG =0x0A

 $A : FLAG_REG = 0x8A$

BTXSC Test "b" bit of "f", skip if clear(0)

Syntax BTXSC f [,b]

Operands $f: 00h \sim 1FFh, b: 0 \sim 7$

Operation Skip next instruction if (f.b) = 0

Status Affected -

OP-Code ff11 10bb bfff ffff

Description If bit 'b' in register 'f' is 1, then the next instruction is executed. If bit 'b' in register

'f' is 0, then the next instruction is discarded, and a NOP is executed instead,

making this a 2nd cycle instruction.

Cycle 1 or 2

Example LABEL1 BTXSC FLAG, 1 B: PC =LABEL1

TRUE GOTO SUB1 A: if FLAG.1 =0, PC =FALSE FALSE ... if FLAG.1 =1, PC =TRUE

BTXSS Test "b" bit of "f", skip if set(1)

Syntax BTXSS f [,b]

Operands $f: 00h \sim 1FFh, b: 0 \sim 7$ Operation Skip next instruction if (f.b) = 1

Status Affected

OP-Code ff11 11bb bfff ffff

Description If bit 'b' in register 'f' is 0, then the next instruction is executed. If bit 'b' in register

'f' is 1, then the next instruction is discarded, and a NOP is executed instead,

making this a 2nd cycle instruction.

Cycle 1 or 2

Example LABEL1 BTXSS FLAG, 1 B: PC =LABEL1

TRUE GOTO SUB1 A: if FLAG.1 =0, PC =TRUE FALSE ... A: if FLAG.1 =1, PC =FALSE

CALL Call subroutine "k"

Syntax CALL k Operands k: 000h ~ FFFh

Operation: TOS \leftarrow (PC) + 1, PC.10 \sim 0 \leftarrow k

Status Affected -

OP-Code 0010 0kkk kkkk kkkk

Description Call Subroutine. First, return address (PC+1) is pushed onto the stack. The 11-bit

immediate address is loaded into PC bits <10:0>. The upper bits of PC are loaded

from PCLATH. CALL is a two-cycle instruction.

Cycle 2

Example LABEL1 CALL SUB1 B: PC =LABEL1

A : PC = SUB1, TOS = LABEL1 + 1

CLRX Clear "f"

SyntaxCLRX fOperands $f: 00h \sim 1FFh$ Operation $(f) \leftarrow 00h, Z \leftarrow 1$

Status Affected Z

OP-Code ff00 0001 1fff ffff

Description The contents of register 'f' are cleared and the Z bit is set.

Cycle 1

Example CLRX FLAG_REG B: FLAG_REG =0x5A

A: $FLAG_REG = 0x00$, Z = 1

CLRW Clear W

Syntax CLRW Operands -

Operation $(W) \leftarrow 00h, Z \leftarrow 1$

Status Affected Z

OP-Code 0000 0001 0100 0000

Description W register is cleared and Z bit is set.

Cycle

Example CLRW B: W = 0x5A

A: W = 0x00, Z = 1

CLRWDT Clear Watchdog Timer

Syntax CLRWDT

Operands -

Operation WDT/WKT Timer ← 00h

Status Affected TO, PD

OP-Code 0001 1110 0000 0100

Description CLRWDT instruction clears the Watchdog/Wakeup Timer

Cycle 1

Example CLRWDT B: WDT counter =?

A: WDT counter =0x00

COMX	Complement "f"

SyntaxCOMX f [,d]Operands $f: 00h \sim 1FFh, d: 0, 1$ Operation(destination) \leftarrow (\bar{f})

Status Affected Z

OP-Code ff00 1001 dfff ffff

Description The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W.

If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example COMX REG1, 0 B: REG1 =0x13

A : REG1 = 0x13, W = 0xEC

DECX Decrement "f"

SyntaxDECX f [,d]Operands $f:00h \sim 1FFh, d:0, 1$ Operation $(destination) \leftarrow (f) - 1$ Status AffectedZOP-Code $ff00\ 0011\ dfff\ ffff$

Description Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the

result is stored back in register 'f'.

Cycle 1

Example DECX CNT, 1 B : CNT = 0x01, Z = 0

A : CNT = 0x00, Z = 1

DECXSZ Decrement "f", Skip if 0

Syntax DECXSZ f[,d] Operands $f: 00h \sim 1FFh, d: 0, 1$

Operation (destination) \leftarrow (f) - 1, skip next instruction if result is 0

Status Affected -

OP-Code ff00 1011 dfff ffff

Description The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next

instruction is executed. If the result is 0, then a NOP is executed instead, making

it a 2 cycle instruction.

Cycle 1 or 2

Example LABEL1 DECXSZ CNT, 1 B: PC =LABEL1

GOTO LOOP A: CNT = CNT - 1

CONTINUE if CNT =0, PC =CONTINUE if CNT \neq 0, PC =LABEL1 + 1

GOTO Unconditional Branch

 $\begin{tabular}{lll} Syntax & GOTO & $$\\ Operands & $k:000h \sim FFFh \\ Operation & PC.10 \sim 0 \leftarrow $$$\\ \end{tabular}$

Status Affected -

OP-Code 0010 1kkk kkkk kkkk

Description GOTO is an unconditional branch. The 11-bit immediate value is loaded into PC

bits <10:0>. The upper bits of PC are loaded from PCLATH. GOTO is a two-

cycle instruction.

Cycle 2

Example LABEL1 GOTO SUB1 B: PC =LABEL1

A:PC=SUB1

INCX	Increment "f"			
Syntax	INCX f [,d]			
Operands	f:00h~1FFh			
Operation	$(destination) \leftarrow (f) + 1$			
Status Affected	Z			
OP-Code	ff00 1010 dfff ffff			
Description	The contents of register 'f' are incre register. If 'd' is 1, the result is place	emented. If 'd' is 0, the result is placed in the W ed back in register 'f'.		
Cycle	1			
Example	INCX CNT, 1	B: CNT = 0xFF, Z = 0		

A : CNT = 0x00, Z = 1

INCXSZ	Increment "f"	, Skip	if 0
--------	---------------	--------	------

IIICIDE	increment 1 , bkip ii 0	
Syntax	INCXSZ f [,d]	
Operands	f:00h ~ 1FFh, d:0, 1	
Operation	$(destination) \leftarrow (f) + 1$, skip nex	t instruction if result is 0
Status Affected	-	
OP-Code	ff00 1111 dfff ffff	
Description	register. If 'd' is 1, the result is p	cremented. If 'd' is 0, the result is placed in the W laced back in register 'f'. If the result is 1, the next sult is 0, a NOP is executed instead, making it a 2
Cycle	1 or 2	
Example	LABEL1 INCXSZ CNT, 1	B : PC = LABEL1
	GOTO LOOP	A: CNT = CNT + 1
	CONTINUE	if CNT =0, PC =CONTINUE
		if CNT $\neq 0$, PC =LABEL1 + 1

IORLW Inclusive OR Literal with W

Syntax	IORLW k	
Operands	k:00h~FFh	
Operation	$(W) \leftarrow (W) OR k$	
Status Affected	Z	
OP-Code	0001 1010 kkkk kkkk	
Description	The contents of the W replaced in the W register.	gister are OR'ed with the eight-bit literal 'k'. The result is
Cycle	1	
Example	IORLW 0x35	B:W=0x9A
		A: W = 0xBF, Z = 0

IORWX Inclusive OR W with "f"

Syntax	IORWF f [,d]				
Operands	$f: 00h \sim 1FFh, d: 0, 1$				
Operation	$(destination) \leftarrow (W) OR k$				
Status Affected	Z	Ž			
OP-Code	ff00 0100 dfff ffff				
Description	Inclusive OR the W register	with register 'f'. If 'd' is 0, the result is placed in the			
	W register. If 'd' is 1, the resu	ılt is placed back in register 'f'.			
Cycle	1				
Example	IORWX RESULT, 0	B : RESULT = $0x13$, W = $0x91$			
		A: RESULT = $0x13$, W = $0x93$, Z = 0			

DS-TM56FE8228_E 81 Rev 0.93, 2022/02/21

MOVX	Move f				
Syntax	MOVX f,d				
Operands	f:00h~1FFh				
Operation	$(destination) \leftarrow (f)$				
Status Affected	Z	Ž			
OP-Code	ff00 1000 dfff ffff				
Description	The contents of register 'f' are i	noved to a destination dependent upon the status of			
	d. If d=0, destination is W regi	ster. If $d = 1$, the destination is file register f itself.			
	d=1 is useful to test a file regis	ter, since status flag Z is affected.			
Cycle	1	-			
Example	MOVX FSR,0	B: FSR = 0xC2, W = ?			

A : FSR = 0xC2, W = 0xC2

A: FSR = 0xC2, W = 0xC2

Move "f" to W				
MOVXW f				
f: 00h ~ 1FFh				
$(W) \leftarrow (f)$				
Z				
ff00 1000 0fff ffff				
The contents of register 'f' are moved to	W register.			
1				
MOVXW FSR B:I	FSR = 0xC2, W = ?			
	MOVXW f f: 00h ~ 1FFh (W) ← (f) Z ff00 1000 0fff ffff The contents of register 'f' are moved to 1			

MOVLW Move Literal to W

Syntax	MOVLW k	
Operands	k:00h~FFh	
Operation	$(W) \leftarrow k$	
Status Affected	-	
OP-Code	0001 1001 kkkk kkkk	
Description	The eight-bit literal 'k' is loaded	into W register. The don't cares will assemble as
	0's.	
Cycle	1	
Example	MOVLW 0x5A	B:W=?
_		$A \cdot W = 0x5A$

MOVWX	Move W to "f"	
Syntax	MOVWX f	
Operands	f:00h~1FFh	
Operation	$(f) \leftarrow (W)$	
Status Affected	-	
OP-Code	ff00 0000 1fff ffff	
Description	Move data from W registe	r to register 'f'.
Cycle	1	•
Example	MOVWX REG1	B : REG1 = 0xFF, W = 0x4F
-		A : REG1 = 0x4F, W = 0x4F

DS-TM56FE8228_E 82 Rev 0.93, 2022/02/21

NOP No Operation

Syntax NOP Operands -

Operation No Operation

Status Affected

OP-Code 0000 0000 0000 0000

Description No Operation

Cycle 1 Example NOP

RET Return from Subroutine

Syntax RET Operands -

Operation $PC \leftarrow TOS$

Status Affected -

OP-Code 0000 0000 0100 0000

Description Return from subroutine. The stack is POPed and the top of the stack (TOS) is

loaded into the program counter. This is a two-cycle instruction.

Cycle 2

Example RET A: PC = TOS

RETI Return from Interrupt

Syntax RETI Operands -

Operation $PC \leftarrow TOS, GIE \leftarrow 1$

Status Affected

OP-Code 0000 0000 0110 0000

Description Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the

PC. Interrupts are enabled. This is a two-cycle instruction.

Cycle 2

Example RETI A: PC =TOS, GIE =1

RETLW Return with Literal in W

 $\begin{array}{lll} \text{Syntax} & \text{RETLW } k \\ \text{Operands} & k:00h \sim FFh \end{array}$

Operation $PC \leftarrow TOS, (W) \leftarrow k$ Status Affected -

OP-Code 0001 1000 kkkk kkkk

Description The W register is loaded with the eight-bit literal 'k'. The program counter is

loaded from the top of the stack (the return address). This is a two-cycle

instruction.

Cycle 2

Example CALL TABLE B: W = 0x07

: A: W = value of k8

TABLE ADDWX PCL, 1

RETLW k1 RETLW k2

:

RETLW kn

Rotate Left "f" through Carry **RLX**

RLX f [.d] Svntax

f:00h ~ 1FFh, d:0, 1 **Operands**

Operation

Register f

Status Affected C

OP-Code ff00 1101 dfff ffff

Description The contents of register 'f' are rotated one bit to the left through the Carry Flag. If

'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in

register 'f'.

Cycle

Example RLX REG1, 0 B: REG1 =1110 0110, C=0

A: REG1 =1110 0110 W =1100 1100, C =1

RRX Rotate Right "f" through Carry

Syntax RRX f [,d]

Operands f:00h ~ 1FFh, d:0, 1

Operation

Status Affected C

OP-Code ff00 1100 dfff ffff

Description The contents of register 'f' are rotated one bit to the right through the Carry Flag.

If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back

in register 'f'.

Cycle 1

RRX REG1, 0 B: REG1 =1110 0110, C=0 Example

> A: REG1 =1110 0110 =0111 0011, C =0

SLEEP Go into Power-down mode, Clock oscillation stops

Syntax SLEEP Operands Operation TO, PD Status Affected

OP-Code

001 1110 0000 0011

Description Go into Power-down mode with the oscillator stops.

Cycle

Example SLEEP

DS-TM56FE8228_E 84 Rev 0.93, 2022/02/21

SUBLW	Subtract W from Literal	
Syntax	SUBLW k	
Operands	k: 00h ~ FFh	
Operation	$(W) \leftarrow k - (W)$	
Status Affected	C, DC, Z	
OP-Code	0001 1111 kkkk kkkk	
Description	The W register is subtracted (2	's complement method) from the eight-bit literal
	"k". The result is placed in the V	V register.
Cycle	1	
Example	SUBLW 0x15	B: W = 0x25

A:W=0xF0

SURWX	Subtract W from	''f''

SUBWA	Subtract W from 1	
Syntax	SUBWX f [,d]	
Operands	f:00h ~ 1FFh, d:0, 1	
Operation	$(destination) \leftarrow (f) - (W)$	
Status Affected	C, DC, Z	
OP-Code	ff00 0010 dfff ffff	
Description	Subtract (2's complement n	nethod) W register from register 'f'. If 'd' is 0, the result
	is stored in the W register. I	If 'd' is 1, the result is stored back in register 'f'.
Cycle	1	
Example	SUBWX REG1, 1	B: REG1 = $0x03$, W = $0x02$, C =?, Z =?
		A: REG1 = $0x01$, W = $0x02$, C = 1 , Z = 0
	SUBWX REG1, 1	B: REG1 = $0x02$, W = $0x02$, C =?, Z =?
		A: REG1 = $0x00$, W = $0x02$, C = 1 , Z = 1
	SUBWX REG1, 1	B: REG1 = $0x01$, W = $0x02$, C =?, Z =?
		A: REG1 = $0xFF$, W = $0x02$, C = 0 , Z = 0

SWAPX	Swap Nibbles in "f"

Syntax	SWAPX f [,d]	
Operands	f:00h ~ 1FFh, d:0, 1	
Operation	$(destination, 7\sim 4) \leftarrow (f.3\sim 0),$	$(destination.3\sim0) \leftarrow (f.7\sim4)$
Status Affected	-	
OP-Code	ff00 1110 dfff ffff	
Description	The upper and lower nibbles	of register 'f' are exchanged. If 'd' is 0, the result is
	placed in W register. If 'd' is	1, the result is placed in register 'f'.
Cycle	1	
Example	SWAPX REG, 0	B : REG1 = 0xA5
		A : REG1 = 0xA5, W = 0x5A

DS-TM56FE8228_E 85 Rev 0.93, 2022/02/21

Return DPTR high byte to W **TABRH**

TABRH Syntax

Operands

Operation $(W) \leftarrow ROM[DPTR]$ high byte content, Where $DPTR = \{DPH[max:8], DPL[7:0]\}$

Status Affected

OP-Code 0000 0000 0101 1000

Description The W register is loaded with high byte of ROM[DPTR]. This is a two-cycle

instruction.

Cycle 2

MOVLW Example (TAB1&0xFF)

> **MOVWX** DPL ;Where DPL is register

MOVLW (TAB1>>8)&0xFF

MOVWX DPH ;Where DPH is register

TABRL ;W = 0x89**TABRH** ;W = 0x37

ORG 0234H

TAB1:

DT 0x3789, 0x2277 ;ROM data 16 bits

TABRL Return DPTR low byte to W

Syntax **TABRL**

Operands

Operation $(W) \leftarrow ROM[DPTR]$ low byte content, Where $DPTR = \{DPH[max:8], DPL[7:0]\}$

Status Affected

OP-Code 0000 0000 0101 0000

Description The W register is loaded with low byte of ROM[DPTR]. This is a two-cycle

instruction.

Cycle

Example MOVLW (TAB1&0xFF)

> MOVWX **DPL** ;Where DPL register

MOVLW (TAB1>>8)&0xFF

MOVWX DPH ;Where DPH register

TABRL W = 0x89**TABRH** ;W = 0x37

ORG 0234H

TAB1:

DT 0x3789, 0x2277 ;ROM data 16 bits

DS-TM56FE8228_E 86 Rev 0.93, 2022/02/21

TSTX Test if "f" is zero

 $\begin{tabular}{lll} Syntax & TSTX f \\ Operands & f:00h \sim 1FFh \\ Operation & Set Z flag if (f) is 0 \end{tabular}$

Status Affected Z

OP-Code ff00 1000 1fff ffff

Description If the content of register 'f' is 0, Zero flag is set to 1.

Cycle 1

Example TSTX REG1 B : REG1 = 0, Z = ?

A : REG1 = 0, Z = 1

XORLW Exclusive OR Literal with W

SyntaxXORLW kOperands $k: 00h \sim FFh$ Operation $(W) \leftarrow (W) XOR k$

Status Affected Z

OP-Code 0001 1101 kkkk kkkk

Description The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result

is placed in the W register.

Cycle 1

Example XORLW 0xAF B: W=0xB5

A:W=0x1A

XORWX Exclusive OR W with "f"

 $\begin{array}{ll} \text{Syntax} & \text{XORWX f [,d]} \\ \text{Operands} & \text{f : 00h} \sim 1\text{FFh, d : 0, 1} \\ \text{Operation} & (\text{destination}) \leftarrow (W) \text{ XOR (f)} \\ \end{array}$

Status Affected Z

OP-Code ff00 0110 dfff ffff

Description Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is

stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example XORWX REG, 1 B: REG=0xAF, W=0xB5

A : REG = 0x1A, W = 0xB5

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings $(T_A = 25 \,^{\circ}C)$

Parameter	Rating	Unit
Supply voltage	V_{SS} -0.3 to V_{SS} +5.5	
Input voltage	V_{SS} -0.3 to V_{CC} +0.3	V
Output voltage	V_{SS} -0.3 to V_{CC} +0.3	
Output current high per 1 PIN	-25	
Output current high per all PIN	-80	A
Output current low per 1 PIN	+30	mA
Output current low per all PIN	+150	
Maximum operating voltage	5.5	V
Operating temperature	-40 to +85	°C
Storage temperature	-65 to +150	C

2. DC Characteristics (TA =25 °C, V_{CC} =5.0V, unless otherwise specified)

Parameter	Sym	Co	onditions	Min	Тур	Max	Unit
Omenating Voltage	17	Fsys = 8Mhz		2.1	_	5.5	
Operating Voltage	V_{cc}	Fsy	vs = 4Mhz	1.6	_	5.5	
Input High Voltage	V_{IH}	All Input	$V_{CC} = 3 \sim 5V$	0.6Vcc	_	Vcc	V
Input Low Voltage	$V_{\rm IL}$	All Input	$V_{CC} = 3 \sim 5V$	Vss	_	0.2Vcc	V
Output High Current	I_{OH}	All Output	$V_{\rm CC} = 5V, V_{\rm OH} = 4.5V$	6	12	_	mA
Output High Current	1OH	An Output	$V_{CC} = 3V, V_{OH} = 2.7V$	2.5	5	_	ША
Output Low Current	I_{OL}	All Output	$V_{\rm CC} = 5V, V_{\rm OL} = 0.5V$	20	40	_	mA
	1 _{OL}	An Output	$V_{CC} = 3V, V_{OL} = 0.3V$	8	16	_	ША
Input Leakage Current (pin high)	I_{ILH}	All Input	$V_{IN} = V_{CC}$	_	_	1	uA
Input Leakage Current (pin low)	I_{ILL}	All Input	$V_{IN} = 0V$	_	-	-1	uA
		FAST mode FIRC 8 MHz	$V_{CC} = 5V$	-	3.5	-	
		FAST mode FIRC 4 MHz	$V_{CC} = 5V$	_	2.7	_	
		FAST mode FIRC 2 MHz	$V_{CC} = 5V$	_	2.3	-	mA
Davisa Cramby Cramont		FAST mode	$V_{CC} = 5V$	_	2.1	_	
Power Supply Current (No Load)	I_{CC}	FIRC 1 MHz	$V_{CC} = 3V$	_	1.5	_	
(IVO Estas)		SLOW mode	$V_{\rm CC} = 5.0 V$	-	750	-	11 A
	SIRC 70KHz	$V_{CC} = 3.0V$	_	620	_	uA	
	STOP mode	$V_{\rm CC} = 5.0 V$	_	0.1	_	uA	
		LVRSAV = 1	$V_{CC} = 3.0V$	-	0.1	_	

DS-TM56FE8228_E 88 Rev 0.93, 2022/02/21

Parameter	Sym	Conditions		Min	Тур	Max	Unit
Power Supply Current	т	IDLE mode	$V_{CC} = 5.0V$	_	4.2	ı	
(No Load)	1_{CC}	SIRC 70 KHz LVRSAV= 1	$V_{CC} = 3.0V$	_	1.2	-	uA
Dull up Desister	D	$V_{IN} = 0 V$	$V_{\rm CC} = 5.0 \rm V$	_	41	ı	ΚΩ
Pull-up Resistor	R_{UP}	Ports A	$V_{CC} = 3.0V$	_	76	_	K 22

3. Clock Timing $(T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Condition	Min	Тур	Max	Unit
FIRC Frequency (*)	-40 °C ~ 85 °C, $V_{CC} = 3.0 \sim 5.0$ V	-2%	8	+1.5%	
	-40° C ~ 85° C, $V_{CC} = 4.0 \text{ V}$	-2%	8	+1.5%	
	$0^{\circ}\text{C} \sim 70^{\circ}\text{C}, V_{\text{CC}} = 4.0 \text{ V}$	-2%	8	+1.5%	MHz
	25° C, $V_{CC} = 3.0 \sim 5.0 \text{ V}$	-1.0%	8	+1.2%	
	25°C, V _{CC} =4.0 V	-0.5%	8	+0.5%	

^(*) FIRC frequency can be divided by 1/2/4/8.

4. Reset Timing Characteristics $(T_A = 25^{\circ}C)$

Parameter	Conditions	Min	Тур	Max	Unit
RESET Input Low width	Input $V_{CC} = 5 \text{ V} \pm 10 \%$	30	-	-	μs
WDT time	$V_{CC} = 3 \text{ V, WDTPSC} = 11$		1920		
WDT time	$V_{CC} = 5 \text{ V, WDTPSC} = 11$	_	1760	_	ms
WKT time	$V_{CC} = 3 \text{ V, WKTPSC} = 11$		120		me
WKI tillic	$V_{CC} = 5 \text{ V, WKTPSC} = 11$	_	108	_	ms
CPU start up time	$V_{CC} = 5 \text{ V}$	_	24	_	ms

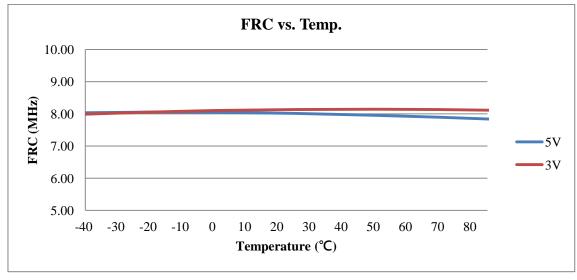
5. LVR Circuit Characteristics (TA = 25°C)

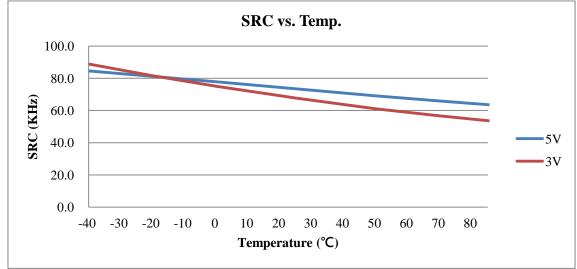
Parameter	Symbol	Min	Тур	Max	Unit
LVR Reference Voltage		1	2.2	-	V
	$\mathrm{LVR}_{\mathrm{th}}$	-	2.8	-	
	LVIC	I	3.6	_	
		1	4.2	_	
LVR Hysteresis Voltage	$ m V_{HYST}$	I	±0.1	_	V
Low Voltage Detection time	$t_{ m LVR}$	100	_	_	μs

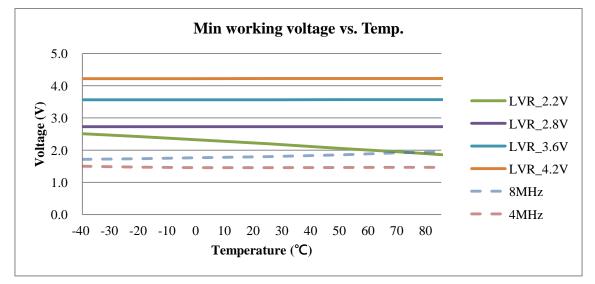
DS-TM56FE8228_E 89 Rev 0.93, 2022/02/21

6. ADC Electrical Characteristics ($T_A = 25$ °C, $V_{CC} = 3.0V$ to 5.5V, $V_{SS} = 0V$)

Parameter	Conditions	Min	Тур	Max	Units
Total Accuracy		_	±2.5	±13	
Integral Non-Linearity	$V_{CC} = 5V$, $V_{SS} = 0V$, $f_{ADC} = 1$ MHz	_	±3.2	±15	LSB
Differential Non-linearity		_	±1	±4	
Max Input Clock freq. (f _{ADC})	Source impedance (Rs<10K omh)		_	2	
	Source impedance (Rs<20K omh)	_	-	1	MHz
	Source impedance (Rs<50K omh)	_	_	0.5	
Conversion Time	$f_{ADC} = 1 \text{ MHz}$	_	50	_	μs
Input Voltage	-	V _{SS}	_	Vcc	V


7. **EEPROM Block Characteristics** $(T_A = 25 \,^{\circ}\text{C}, V_{CC} = 5\text{V}, V_{SS} = 0\text{V})$


Parameter	Conditions	Min Typ		Max	Units
Read Voltage	VCC	1.8	_	5.5	V
Write Voltage	VCC	2.7	_	5.5	V
Write Current	-	-	5	30	mA
Write Time	Byte Write Time	-	0.7	_	ms
Endurance (Byte Write)	-	_	_	50,000	cycles

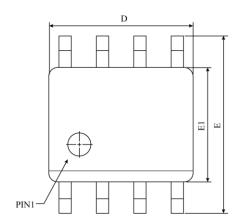

DS-TM56FE8228_E 90 Rev 0.93, 2022/02/21

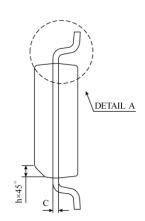
8. Electrical Characteristics Graphs

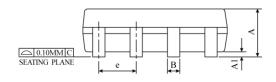
DS-TM56FE8228_E 91 Rev 0.93, 2022/02/21

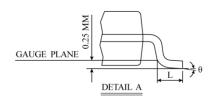
PACKAGING INFORMATION

Please note that the package information provided is for reference only. Since this information is frequently updated, users can contact Sales to consult the latest package information and stocks.


The ordering information:


Ordering number	Package
TM56FE8228-MTP-14	SOP 8-pin (150mil)


DS-TM56FE8228_E 92 Rev 0.93, 2022/02/21



8-SOP Package Dimension

SYMBOL	DIMENSION IN MM		DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX
A	1.35	1.55	1.75	0.0532	0.0610	0.0688
A1	0.10	0.18	0.25	0.0040	0.0069	0.0098
В	0.33	0.42	0.51	0.0130	0.0165	0.0200
С	0.19	0.22	0.25	0.0075	0.0087	0.0098
D	4.80	4.90	5.00	0.1890	0.1939	0.1988
Е	5.80	6.00	6.20	0.2284	0.2362	0.2440
E1	3.80	3.90	4.00	0.1497	0.1536	0.1574
e		1.27 BSC	•		0.050 BSC	
h	0.25	0.38	0.50	0.0099	0.0148	0.0196
L	0.40	0.84	1.27	0.0160	0.0330	0.0500
θ	0°	4°	8°	0°	4°	8°
JEDEC	MS-012 (AA)					

 $\$ * Notes : Dimension " D " does not include mold flash, protrusions or gate burrs. Mold flash, protrusions and gate burrs shall not exceed 0.15 Mm (0.006 inch) per side.

DS-TM56FE8228_E 93 Rev 0.93, 2022/02/21