

TM55M8428/8428T/8228 DATA SHEET Rev 0.93

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. **tenx** does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. **tenx** products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses tenx products for any such unintended or unauthorized application, Buyer shall indemnify and hold tenx and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that tenx was negligent regarding the design or manufacture of the part.

AMENDMENT HISTORY

Version	Date	Description
0.90	2019/04/16	New release.
0.91	2019/06/13	 P26,28,37,73,76,81 : Added restrictions on the use of SLEEP/CLRWDT instructions P17: Added example of BANKSEL/BANKISEL P15: Modify spelling errors
0.92	2019/07/15	1. P53,56,70: Added priority description for PWM output enable
0.93	2019/12/09	 P10,12: Add SOP-16 Pin Assignment and Pin Summary P92, 95: Add Package Information for SOP-16

CONTENTS

AM	ENDMENT HISTORY	2
CON	NTENTS	3
FEA	ATURES	5
BLC	OCK DIAGRAM	8
PIN	ASSIGNMENT	9
	DESCRIPTIONS	
	SUMMARY	
	SUMMARY	
1.	CPU Core	
	1.1 Program ROM (PROM)	
	1.2 System Configuration Register (SYSCFG)	
	1.3 Page Locker Function	
	1.4 RAM Addressing Mode	
	1.5 Programming Counter (PC) and Stack	
2.	Reset	
	2.1 Power on Reset	
	2.2 Low Voltage Reset	
	2.3 External Pin Reset	
	2.4 Watchdog Timer Reset	
3.	Clock Circuitry and Operation Mode	
	3.1 System Clock	
	3.2 Dual System Clock Modes Transition	
	3.3 System Clock Oscillator	
4.	Interrupt	
5.	I/O Port	
	5.1 PA0-6, PB0-1, PD0-7	
	5.2 PA7	
6.	Peripheral Functional Block	
	6.1 Watchdog (WDT) /Wakeup (WKT) Timer	
	6.2 Timer0	
	6.3 Timer1	
	6.4 T2:15-bit Timer	
	6.5 PWM0: (8+2) bits PWM	
	6.6 PWM1A/PWM1B/PWM1C: 8 bits PWMs	
	6.7 Analog-to-Digital Converter	
	6.8 Touch Key	

	73
INSTRUCTION SET	
ELECTRICAL CHARACTERISTICS	
1. Absolute Maximum Ratings	
2. DC Characteristics	
3. Clock Timing	
4. Reset Timing Characteristics	
5. LVR Circuit Characteristics	
6. ADC Electrical Characteristics	
7. Characteristic Graphs	
PACKAGING INFORMATION	92

FEATURES

- 1. ROM: 2K x 14 bits MTP (Multi Time Programmable ROM) with Page Locker function
- 2. RAM: 256 x 8 bits
- 3. STACK: 8 Levels
- 4. System Oscillation Sources (Fsys) :
 - Fast-clock
 - FIRC (Fast Internal RC) : 16 MHz
 - Slow-clock
 - SIRC (Slow Internal RC) : 65 KHz @VCC=5V (EV8230: 108K@5V)
- 5. System Clock Prescaler:
 - System Oscillation Sources can be divided by 1/2/4/8 as System Clock (Fsys)
- 6. Dual System Clock:
 - FIRC+SIRC

7. Power Saving Operation Mode

- FAST Mode: Slow-clock can be disabled or enabled, Fast-clock keeps CPU running
- SLOW Mode: Fast-clock can be disabled or enabled, Slow-clock keeps CPU running
- IDLE Mode: Fast-clock and CPU stop. Slow-clock, T2, or Wake-up Timer keep running
- STOP Mode: All clocks stop, T2 and Wake-up Timer stop

8. 3 Independent Timers

- Timer0
 - 8-bit timer divided by 1~256 pre-scaler option, Reload/Interrupt/Stop function
- Timer1
 - 8-bit timer divided by 1~256 pre-scaler option, Reload/Interrupt/Stop function
 - Overflow and Toggle out
- T2
 - 15-bit timer with 4 interrupt interval time options
 - IDLE mode wake-up timer or used as one simple 15-bit time base
 - Clock source: Slow-clock (SIRC), Fsys/128

9. Interrupt

- Three External Interrupt pins
 - 1 pin are falling edge wake-up triggered & interrupts
 - 2 pins is rising or falling edge wake-up triggered & interrupt
- Timer0/Timer1/T2/WKT (wake-up) Interrupts
- TK (Touch Key) /ADC Interrupt
- Individual Interrupt Vector

10. Wake-up (WKT) Timer

• Clocked by built-in RC oscillator with 4 adjustable interrupt times

17 ms/34 ms/68 ms/136 ms @VCC=3V, 16 ms/32 ms/64 ms/128 ms @VCC=5V (EV8230: 11 ms/22 ms/43 ms/86 ms @VCC=3V, 10ms/19 ms/39 ms/77 ms @VCC=5V)

11. Watchdog Timer

• Clocked by built-in RC oscillator with 4 adjustable reset times

140 ms/280 ms/1120 ms/2240 ms @VCC=3V, 128 ms/256 ms/1024 ms/2048 ms @VCC=5V (EV8230: 90 ms/179 ms/719 ms/1440 ms @ 3V, 77 ms/154 ms/616 ms/1232 ms @5V)

• Watchdog timer can be disabled/enabled in STOP mode

12. PWMx4

- PWM0:
 - 8+2 bits, duty-adjustable, period-adjustable controlled PWM
 - PWM0 clock source: Fast-clock or FIRC 16 MHz/32MHz, with 1~64 pre-scalers
 - Complementary PWM output (PWM0P, PWM0N)
 - Non-overlap time durations adjustable: (0~8)*(PWMCLK)
- PWM1A/PWM1B/PWM1C:
 - 8 bits, duty-adjustable (Independent), period-adjustable controlled (Shared) PWM x3
 - PWM1A/1B/1C clock source (Shared) : Fast-clock or FIRC 16 MHz/32MHz, with 1~64 prescalers

13. 12-bit ADC Converter with 14 input channels and 1 internal reference voltage

- Internal Bandgap reference voltage1.25V ±3% @25°C, VCC=3V~5V
- ADC reference voltage=VCC

14. Reset Sources

• Power On Reset/Watchdog Reset/Low Voltage Reset/External Pin Reset

15. Low Voltage Reset (LVR) /Low Voltage Detection Flag (LVD) Option:

- 4-Level Low Voltage Reset: 2.3V/2.8V/3.6V/4.2V
- 3-Level Low Voltage Detection Flag: 2.8V/3.6V/4.2V (when LVR = 2.3V)

16. 8-Channel Touch Key

- Interrupt/Wake-up CPU while key is pressed
- 3-bit TK reference clock capacitor adjustment
- 12-bit TK scan length adjustment

17. Operating Voltage:

- Fsys= 2 MHz, LVR ~5.5V
- Fsys=16 MHz, 2.8V~5.5V
- **18.** Operating Temperature Range : -40°C to + 85°C

19. Table Read Instruction: 14-bit ROM data lookup table

20. Instruction set: 39 Instructions

21. Instruction Execution Time

• 2 system clocks (Fsys) per instruction except branch

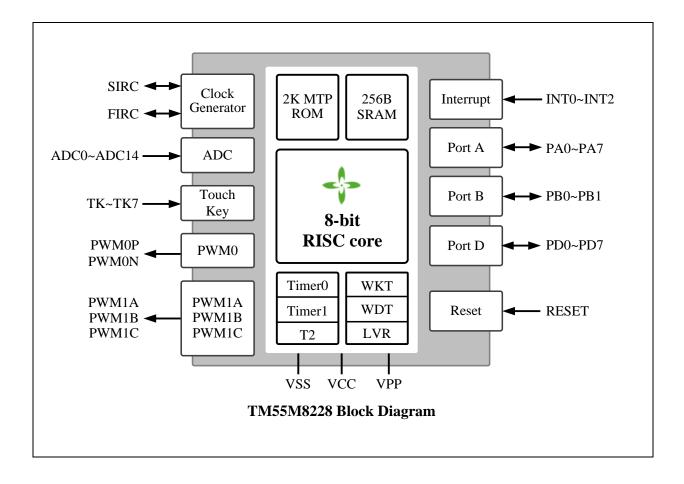
22. I/O ports: Maximum 18 programmable I/O pins

- Open-Drain Output
- CMOS Push-Pull Output
- Schmitt Trigger Input with pull-up resistor option

23. Programming connectivity support 5-wire (ICP) or 8-wire program

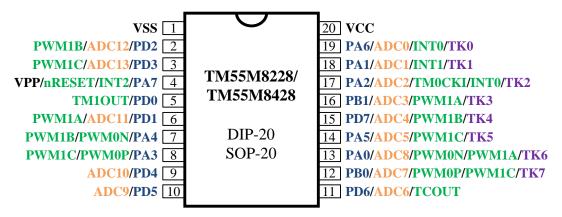
24. Page Locker Size: 512W/640W/768W/1920W by 125 words step

25. Package Types:

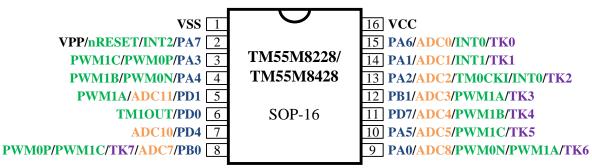

• SOP-20/DIP-20/SOP-16/DIP-16/SOP-8

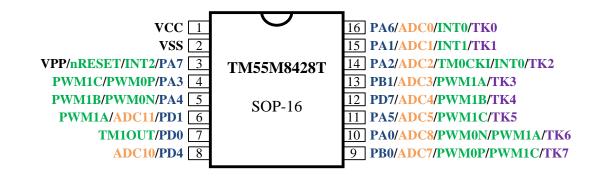
26. Supported EV board on ICE

EV board: EV8230



BLOCK DIAGRAM


PIN ASSIGNMENT


TKx : Only TM55M8428 supports this feature

TKx : Only TM55M8428 supports this feature

PIN DESCRIPTIONS

Name	In/Out	Pin Description
PA0-PA6 PB0-PB1 PD0-PD7	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS " push-pull " output or " open-drain " output. Pull-up resistors are assignable by software.
PA7	I/O	Bit-programmable I/O port for Schmitt-trigger input, or " open-drain " output. Schmitt-trigger input with pull-high
nRESET	Ι	External active low reset, internal pull-high
VCC, VSS	Р	Power Voltage input pin and ground
VPP	Ι	PROM programming high voltage input
INT0-INT2	Ι	External interrupt input
TM0CKI	Ι	Timer0's input in counter mode
TM1OUT	0	Timer1 match output, TM1OUT toggles when Timer1 overflow occurs.
PWM0P,PWMN	0	(8+2) bit PWM0 output
PWM1A	0	8 bit PWM1A output
PWM1B	0	8 bit PWM1B output
PWM1C	0	8 bit PWM1C output
ADC14~ADC0	Ι	A/D channels input
TK0-TK7	Ι	Touch key input (M8428 only)
TCOUT	0	Post-prescaler Instruction Cycle (Fsys/2) output

Programming pins:

Normal mode: VCC/VSS/PA0/PA1/PA2/PA3/PA4/PA7 (VPP)

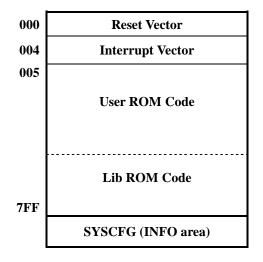
ICP mode: VCC/VSS/PA0/PA1/PA7(VPP) -When using ICP (In-circuit Program) mode, the PCB needs to remove all components of PA0, PA1, PA7.

PIN SUMMARY

20-	Pin	16-	Pin				GF	OI				Alternate Function		
8		8			Input Output		Reset							
TM55M8428/8228	TM55M8428T	TM55M8428/8228	TM55M8428T	Pin Name	Туре	Wake up	Ext. Interrupt	0'D	P.P	Function After Reset	MMA	ЛК	ADC	MISC
20	1	16	1	VCC	Р									
1	2	1	2	VSS	Р									
2	3			PWM1B/ADC12/PD2	I/O			0	0	PD2			0	
3	4			PWM1C/ADC13/PD3	I/O			0	0	PD3			0	
4	5	2	3	VPP/nRESET/INT2/PA7	I/O	0	0	0		PA7				nRESET
5	6	6	7	TM1OUT/PD0	I/O			0	0	PD0				TM1OUT
6	7	5	6	PWM1A/ADC11/PD1	I/O			0	0	PD1			0	
7	8	4	5	PWM1B/PWM0N/PA4	I/O			0	0	PA4				
8	9	3	4	PWM1C/PWM0P/PA3	I/O			0	0	PA3				
9	10	7	8	ADC10/PD4	I/O			0	0	PD4	0		0	
10	11			ADC9/PD5	I/O			0	0	PD5			0	
11	12			PD6/ADC6/TCOUT	I/O			0	0	PD6			0	TCOUT
12	13	8	9	PB0/ADC7 /PWM0P/PWM1C/TK7	I/O			0	0	PB0	0	0	0	
13	14	9	10	PA0/ADC8 /PWM0N/PWM1A/TK6	I/O			0	0	PA0	0	0	0	
14	15	10	11	PA5/ADC5/PWM1C/TK5	I/O			0	0	PA5		0	0	
15	16	11	12	PD7/ADC4/PWM1B/TK4	I/O			0	0	PD7		0	0	
16	17	12	13	PB1/ADC3/PWM1A/TK3	I/O			0	0	PB1		0	0	
17	18	13	14	PA2/ADC2 /TM0CKI/INT0/TK2	I/O	0	0	0	0	PA2		0	0	TM0CKI
18	19	14	15	PA1/ADC1/INT1/TK1	I/O	0	0	0	0	PA1		0	0	
19	20	15	16	PA6/ADC0/INT0/TK0	I/O	0	0	0	0	PA6		0	0	

Symbol : P.P. = Push-Pull Output

= Open Drain = by SYSCFG bit 0.D. SYS



FUNCTIONAL DESCRIPTION

1. CPU Core

1.1 Program ROM (PROM)

The MTP Program ROM of this device is 2K words, with an extra INFO area to store the SYSCFG. The ROM can be written multi-times and can be read as long as the PROTECT and LPROT bits of SYSCFG are not set. The SYSCFG can be read no matter PROTECT or LPROT is set, but PROTECT bit can be cleared only when the User ROM Code area is erased, and LPROT bit can be cleared only when the Lib ROM Code area is erased. That is, unprotect the PROTECT or LPROT bit needs to erase the corresponding ROM area. If LPROT bit is set, The ROM can still be written multi-times in the User ROM Code area to update user ROM code again by writer, but the Lib ROM Code area will not be read or written again by writer until the LPROT bit is cleared. On the other hand, if PORTECT bit is set, the user ROM code area will not be read by writer, and the user ROM code can't be updated until the PORTECT bit is cleared.

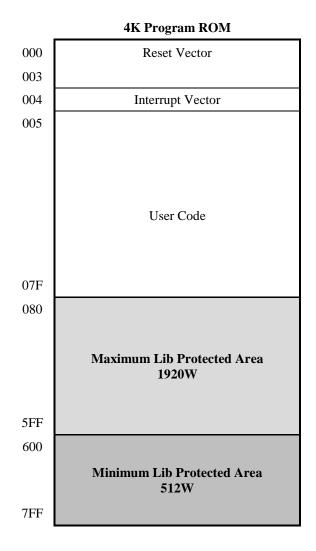
1.1.1 Reset Vector (000H)

After reset, system will restart the program counter (PC) at the address 000h, all registers will revert to the default value

1.1.2 Interrupt Vector (004H)

When an interrupt occurs, the program counter (PC) will be pushed onto the stack and jumps to address 004H.

1.2 System Configuration Register (SYSCFG)


The System Configuration Register (SYSCFG) is located at MTP INFO area, it contains two 13bits registers (CFGWL/CFGWH). The SYSCFG determines the option for initial condition of MCU. It is written by PROM Writer only. User can select LVR operation Mode and chip operation mode by SYSCFG register. The 13th bit of CFGWH is code protection selection bit. If this bit is 1, the data in PROM will be protected, when user reads PROM.

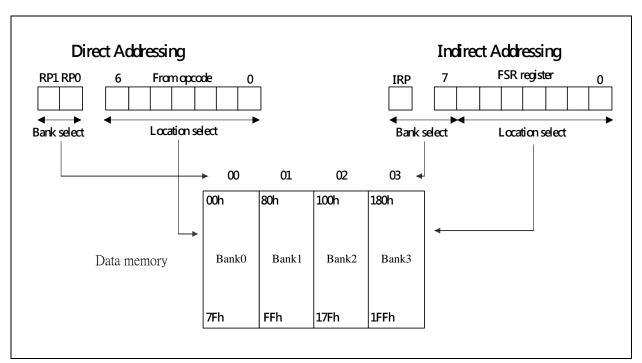
Bit		13~0					
Default	Default Value		11111111111				
Bi	Bit		Description				
		LPROT: Lib Code protection selection					
	13	1	Enable				
		0	Disable				
		LSIZE: Lit	o Size selection				
CFGWL		1100	1920W				
	12~9						
		0001	512W				
		0000	No use Page locker function				
	8~0	Tenx Rese	erved				
		PROTECT	: Code protection selection				
	13	1	Enable				
		0	Disable				
		XRSTE:	External Pin (PA7) Reset Enable				
	12	1	Enable				
		0	Disable (PA7 as input I/O pin)				
		LVR: Low	Voltage Reset Mode				
		11	LVR 4.2V (without LVD function)				
CFGWH	11-10	10	LVR 3.6V (without LVD function)				
		01	LVR 2.8V (without LVD function)				
		00	LVR 2.3V (with LVD function)				
		WDTE: W	DT Reset Enable				
	0.8	11	Always Enable				
	9-8	10	Enable in FAST/SLOW mode, Disable in IDLE/STOP mode				
		0X	Disable				
	7-0	Tenx Reserved					

1.3 Page Locker Function

TM55M8228/8428 support Page Locker function. By setting LPROT (CFGWL.13), user can choose whether to turn it on. If the user A (library code provider) turns this function on, the user A (library code provider) can select different size (512~2304W) of lib protected area by LSIZE (CFGWL.12~9). In lib protected area, the user B (firmware developer) can't read ROM code by TABRL/TABRH instruction or in any other way. By using the TICE99IDE tool, the user A can provide a protected lib code for the user B to use, but the user B does not know its details, and the user B still can continue to complete the main code in the unprotected area.

LSIZE	Lib Protected Area
1920	(80H~7FFH)
1792	(100H~7FFH)
1664	(180H~7FFH)
1536	(200H~7FFH)
1408	(280H~7FFH)
1280	(300H~7FFH)
1152	(380H~7FFH)
1024	(400H~7FFH)
896	(480H~7FFH)
768	(500H~7FFH)
640	(580H~7FFH)
512	(600H~7FFH)

DS-TM55M8428_8428T_8228_E


1.4 RAM Addressing Mode

There are one Data Memory Plane in CPU, F-Plane. The F-Plane is partitioned into four banks. Each bank extends up to 7Fh (128bytes). The lower locations of each bank are reserved for Special Function Registers (SFR). Above the SFR are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

Bits RP1 and RP0 (STATUS[6:5]) are the bank select bits.

RP1 : RP0	BANK
00	0
01	1
10	2
11	3

F-Plane can be addressed directly or indirectly. The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing. Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself, indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>). Refer to the figure below.

Direct / Indirec addressing

	BANK0		BANK1
-	00~7Fh	_	80h~FFh
00h	INDF	80h	INDF
01h	TM0	81h	OPTION
02h	PCL	82h	PCL
03h	STATUS	83h	STATUS
04h	FSR	84h	FSR
05h	PAD	85h	
06h	PBD	86h	
07h	PDD	87h	
08h		88h	
09h		89h	
0Ah	PCLATH	8Ah	PCLATH
0Bh	INTIE	8Bh	INTIE
0Ch	INTIF	8Ch	PAMODH
0Dh		8Dh	PAMODL
0Eh		8Eh	
0Fh	CLKCTL	8Fh	PBMODL
10h	TMORLD	90h	PDMODH
11h	TM0CTL	91h	PDMODL
12h	TM1	92h	PWM0PRD
13h	TM1RLD	93h	PWM0DH
14h	TM1CTL	94h	PWM0DL
15h	T2CTL	95h	PWM0CTL
16h	MF016	96h	PWMCTL
17h	ADH	97h	PWM1PRD
18h	ADCTL	98h	PWM1AD
19h	MF019	99h	PWM1BD
1Ah	TKDL	9Ah	PWM1CD
1Bh	TKDH	9Bh	MF09B
1Ch	TKTMRL	9Ch	MF09C
1Dh	TKTMRH	9Dh	
1Eh	TKCON0	9Eh	
1Fh	TKCON1	9Fh	
20h		A0h	
~		~	
	RAM Bank0		RAM Bank1
_	area		area
~	(80 Bytes)	~	(80 Bytes)
	(OU Dytes)		
6Fh		EFh	
70h	common area	F0h	accesses
~	16 Bytes	~	70h~7Fh
7Fh		FFh	
· · · · ·		· · · · · L	

	BANK2		BANK3
-	100h~17Fh	. –	180h~1FFh
100		180h	INDF
101		181h	OPTION
102	n PCL	182h	PCL
103		183h	STATUS
104		184h	FSR
105ł	n TESTREG	185h	DPL
106		186h	DPH
107		187h	
108		188h	
109		189h	
10Ał		18Ah	PCLATH
10Bł		18Bh	INTIE
10Cł		18Ch	
10Dł		18Dh	
10Eł		18Eh	
10Fł		18Fh	IRCF
110		190h	
1111		191h	
112		192h	
113		193h	
114		194h	
115ł		195h	
116		196h	
117		197h	
118		198h	
119		199h	
11Ał		19Ah	
11Bi		19Bh	
11Cł		19Ch	
11Di		19Dh	
11Eł		19Eh	
11Fi		19Fh	
120	ו	1A0h	
-	~	~	
	DAM Darko		
	RAM Bank2 area		
		~	
	(80 Bytes)		
	(===),		
16Fi	n	1EFh	
170		1F0h	accesses
-	~ 70h~7Fh	~	70h~7Fh
17Fł	n	1FFh	

DS-TM55M8428_8428T_8228_E

♦ Example: read/write register by using direct addressing

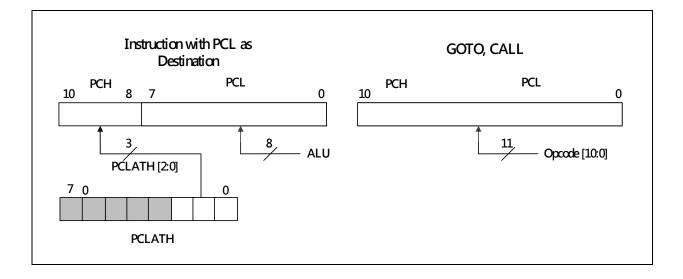
BCF BSF	RP1 RP0	; ; set RP1=0,RP0=1 =>Bank1
MOVFW	PWM1PRD	; read PWM1PRD (Bank1) to W
BSF	RP1	;
BCF	RP0	; set RP1=1,RP0=0 =>Bank2
MOVLW	037H	; W=37H
MOVWF	LVRPD	; LVRPD (Bank2) = $W = 037H$

♦ Example: read/write register by using direct addressing and BANKSEL

BANKSEL MOVFW	PWM1PRD PWM1PRD	; Set RP1/RP0 to the bank where PWM1PRD is located ; read PWM1PRD (Bank1) to W
BANKSEL MOVLW	LVRPD 037H	; Set RP1/RP0 to the bank where LVRPD is located : W=37H
MOVEW	LVRPD	; $W=37H$; LVRPD (Bank2) = W = 037H

♦ Example: read/write register by using indirect addressing

		6
BCF	RP1	; IRP=0 =>Bank0/1
MOVLW	PWM1PRD	; W=97H
MOVWF	FSR	; FSR = W =97H
MOVFW	INDF	; read SFR PWM1PRD(97h) to W
BSF	IRP	; IRP1=1 =>Bank2/3
MOVLW	09H	; W=09H
MOVWF	FSR	; FSR = W =09H
MOVLW	037H	; W=37H
MOVWF	INDF	; LVRPD $(109H) = W = 037H$


♦ Example: read/write register by using indirect addressing and BANKISEL

	8	
BANKISEL	PWM1PRD	;Set IRP to the bank where PWM1PR is located
MOVLW	PWM1PRD	; W=97H
MOVWF	FSR	; $FSR = W = 97H$
MOVFW	INDF	; read SFR PWM1PRD(97h) to W
BANKISEL	LVRPD	; Set IRP to the bank where LVRPD is located
MOVLW	09H	; W=09H
MOVWF	FSR	; $FSR = W = 09H$
MOVLW	037H	; W=37H
MOVWF	INDF	; LVRPD $(109H) = W = 037H$

1.5 Programming Counter (PC) and Stack

The Programming Counter is 11-bit wide capable of addressing a 2Kx14 MTP ROM. The low byte comes from the PCL register, which is a readable and writable register. The upper bits (PC[10:8]) are not readable, but are indirectly writable through the PCLATH register. On any RESET, the upper bits of the PC will be cleared. As a program instruction is executed, the PC will contain the address of the next program instruction to be executed. The PC value is normally increased by one except the followings. The Reset Vector (000h) and the Interrupt Vector (004h) are provided for PC initialization and Interrupt. For CALL/GOTO instructions, PC loads 11 bits address from instruction word. For RET/RETI/RETLW instructions, PC retrieves its content from the top level STACK. Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC[10:8] bits (PCH) to be replaced by writing the desired upper 3 bits to the PCLATH register. When the lower 8 bits are written to the PCL register, all 11 bits of the program counter will change to the values contained in the PCLATH register.

The STACK is 11-bit wide and 8-level in depth. The CALL instruction and hardware interrupt will push STACK level in order. While the RET/RETI/RETLW instruction pops the STACK level in order.

For table lookup, the device offer the powerful table read instructions TABRL, TABRH to return the 14-bit ROM data into W by setting the DPTR= { DPH, DPL } F-Plane registers. \diamond Example: To look up the PROM data located "TABLE" & "TABLE2".

	ORG GOTO	000H START	; Reset Vector
START:	MOVLW MOVWF	00H INDEX	; Set lookup table's address.
LOOP:	MOVFW CALL	INDEX TABLE	; Move index value to W register. ; To lookup data, W=55H.
	INCF	INDEX, 1	; Increment the index address for next address
	GOTO	LOOP	; Go to LOOP label.
	 BANKSEL MOVLW MOVWF MOVLW MOVWF TABRL TABRH 	DPH (TABLE2 >>8) & 0xff DPH (TABLE2) & 0xff DPL	; DPH register (F186.2~0) ; DPL register (F185.7~0) ; W=86H ; W=19H
TABLE:	ADDWF RETLW RETLW RETLW ORG	PCL, 1 55H 56H 58H 368H	; Add the W with PCL, the result back in PCL. ; W=55h when return ; W=56H when return ; W=58H when return
TABLE2		, 0x3719, 0x2983	; 14-bit ROM data

1.5.1 ALU and Working (W) Register

The ALU is 8-bit wide and capable of addition, subtraction, shift and logical operations. In two-operand instructions, typically one operand is the W register, which is an 8-bit non-addressable register used for ALU operations. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either W register or a file register. Depending on the instruction executed, the ALU may affect the values of Carry (C), Digit Carry (DC), and Zero (Z) Flags in the STATUS register. The C and DC flags operate as a/Borrow and/Digit Borrow, respectively, in subtraction.

Note: /Borrow represents inverted of Borrow register.

/Digit Borrow represents inverted of Digit Borrow register.

1.5.2 STATUS Register (F-Plane 03H/83H/103H/183H)

This register contains the arithmetic status of ALU and the reset status. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. It is recommended, therefore, that only BCF, BSF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect those bits.

STATUS	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Reset Value	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W	
Bit Description									
7	IRP: Register Bank Select bit (used for indirect addressing) 0 = Bank 0,1 (00h - FFh) 1 = Bank 2,3 (100h - 1FFh)								
$6-5 \qquad \begin{array}{ c c c } \textbf{RP1:RP0:} & \text{Register Bank Select bits (used for direct addressing)} \\ 00 &= \text{Bank 0 (00h - 7Fh)} \\ 01 &= \text{Bank 1 (80h - FFh)} \\ 10 &= \text{Bank 2 (100h - 17Fh)} \\ 11 &= \text{Bank 3 (180h - 1FFh)} \\ \text{Each bank is 128 bytes} \end{array}$									
4	4 TO : Time Out Flag 4 0: after Power On Reset, LVR Reset, or CLRWDT/SLEEP instruction 1: WDT time out occurs								
3 PD: Power Down Flag 0: after Power On Reset, LVR Reset, or CLRWDT instruction 1: after SLEEP instruction 2 0: the result of a logic operation is not zero 1: the result of a logic operation is zero					tion				
DC: Decimal Carry Flag or Decimal / Borrow Flag									
1		ADD in	struction				struction		
1	0: no carry 1: a carry front occurs	rom the low	nibble bits o	of the result	0: a borrow result oc 1: no borro	curs	w nibble bits	s of the	
	C: Carry F	lag or/Borro	w Flag						
0		ADD in	struction			SUB ins	struction		
U	0: no carry 1: a carry o	occurs from t	he MSB		0: a borrow 1: no borro	v occurs fron w	n the MSB		

 \bigcirc Example: Write immediate data into STATUS register.

MOVLW	00H	
MOVWF	STATUS	; Clear STATUS register.

 \diamondsuit Example: Bit addressing set and clear STATUS register.

BSF	STATUS, 0	; Set C=1.
BSF	RP1	
BSF	RP0	; Selection Bank3
BCF	STATUS, 0	; Clear C=0.
BCF	RP1	
BCF	RP0	; Selection Bank0

 \diamondsuit Example: Determine the C flag by BTFSS instruction.

BTFSS	STATUS, 0	; Check the carry flag
GOTO	LABEL_1	; If C=0, goto label_1
GOTO	LABEL_2	; If C=1, goto label_2

2. Reset

This device can be RESET in four ways.

- Power-On-Reset (POR)
- Low Voltage Reset (LVR)
- External Pin Reset (PA7)
- Watchdog Reset (WDT)

Resets can be caused by Power on Reset (POR), External Pin Reset (XRST), Watchdog Timer Reset (WDTR), or Low Voltage Reset (LVR). The CFGWH controls the Reset functionality. After Reset, the SFRs are returned to their default value, the program counter (PC) is cleared , and the system starts The running from the reset vector 000H place. TO and PD flags at status register (STATUS) are indicate system reset status.

2.1 Power on Reset

After Power-On-Reset, all system and peripheral control registers are then set to their default hardware Reset values. The clock source, LVR level and chip operation mode are selected by the SYSCFG register value.

2.2 Low Voltage Reset

The Low Voltage Reset features static reset when supply voltage is below a threshold level. There are three threshold levels can be selected. The LVR's operation mode is defined by the SYSCFG register. See the following LVR Selection Table; user must also consider the lowest operating voltage of operating frequency.

LVR level	Operating voltage
LVR2.3	5.5V > VCC > 2.3V
LVR2.8	5.5V > VCC > 2.8V
LVR3.6	5.5V > VCC > 3.6V
LVR4.2	$5.5V > VCC > 4.2V$ or $V_{CC} = 5.0V$

LVR Selection Table:

Different Fsys have different system minimum operating voltage, reference to Operating Voltage of DC characteristics, if current system voltage is low than minimum operating voltage and lower LVR is selected, then the system maybe enter dead-band and error occur.

2.3 External Pin Reset

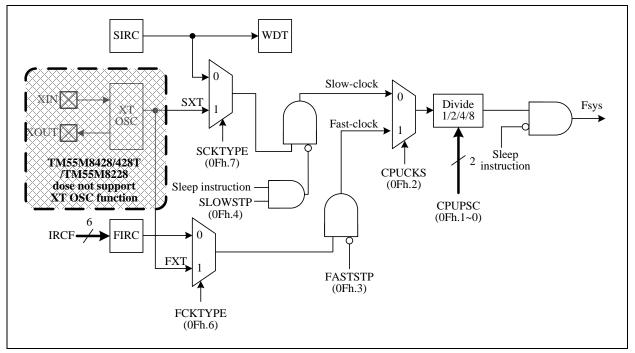
The External Pin Reset can be disabled or enabled by the SYSCFG register. It needs to keep at least 2 SIRC clock cycle long to be seen by the chip. XRST also set all the control registers to their default reset value. The TO/PD flags are not affected by these resets.

2.4 Watchdog Timer Reset

WDT overflow Reset can be disabled or enabled by the SYSCFG register. It runs in Fast/Slow mode and runs or stops in IDLE/STOP mode. WDT overflow speed can be defined by WDTPSC SFR. WDT is cleared by device Reset or CLRWDT SFR bit WDT overflow Reset also set all the control registers to their default reset value. The TO/PD flags are not affected by these resets.

♦ Example: Defining Reset Vector

	ORG GOTO	000H START	; Jump to user program address.
	ORG	010H	
START:			; 010H, The head of user program
	 GOTO	START	


3. Clock Circuitry and Operation Mode

3.1 System Clock

The device is designed with dual-clock system. There are two kinds of clock source, i.e. SIRC (Slow Internal RC), and FIRC (Fast Internal RC). Each clock source can be applied to CPU kernel as system clock. When in IDLE mode, only Slow-clock can be configured to keep oscillating to provide clock source to T2 block. Refer to the figure below.

After Reset, the device is running at Slow mode with 80 KHz SIRC. S/W should select the proper clock rate for chip operation safety. The higher V_{CC} allows the chip to run at a higher System clock frequency. In a typical condition, an 16 MHz System clock rate requires $V_{CC} > 2.8V$.

The CLKCTL (0B) SFR controls the System clock operating. H/W automatically blocks the S/W abnormally setting for this register. S/W can only change the Slow-clock type in Fast mode and change the Fast-clock type in Slow mode. Never to write both FASTSTP=1 & CPUCKS=1. It is recommended to write this SFR bit by bit.

Clock Scheme Block Diagram

The frequency of FIRC (Fast Internal RC) can be adjusted by IRCF (18Fh). When IRCF=00h, frequency is the lowest. When IRCF=3Fh, frequency is the highest. With this function, we can adjust the frequency of FIRC after power on. Each IC may have different default value of IRCF, to make sure the frequency of FIRC=16 MHz after Power on Reset.

FAST Mode:

In this mode, the program is executed using Fast-clock as CPU clock (Fsys). The Timer0, Timer1 blocks are also driven by Fast-clock, The PWM0/PWM1 block can driven by FIRC16M, FIRC32M or Fsys. T2 can be driven by Slow-clock or Fsys/128 by setting T2CKS (15h.2).

SLOW Mode:

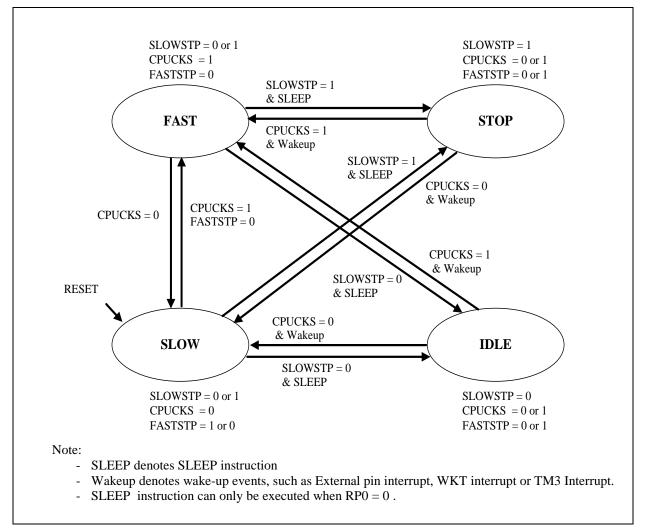
After power-on or reset, device enters SLOW mode, the default Slow-clock is SIRC. In this mode, the Fast-clock can stopped (by FASTSTP=1, for power saving) or running (by FASTSTP=0), and Slow-clock is enabled. All peripheral blocks (Timer0, Timer1etc...) clock sources are Slow-clock in the SLOW mode.

IDLE Mode:

If Slow-clock is enabled (SLOWSTP=0) and T2CKS=0 before executing the SLEEP instruction, the CPU enters the IDLE mode. In this mode, the Slow-clock source keeps T2 block running. CPU stop fetching code and all blocks are stop except T2 related circuits. Idle mode is terminated by Reset or enabled Interrupts wake up.

Another way to keep clock oscillation in IDLE mode is setting WKTIE=1 before executing the SLEEP instruction. In such condition, the WKT keeps working and wake up CPU periodically.

T2 and WKT/WDT are independent and have their own control registers. It is possible to keep both T2 and WKT working and wake-up in the IDLE mode.


STOP Mode:

If Slow-clock and WKT/WDT are disabled before executing the SLEEP instruction, every block is turned off and the device enters the STOP mode. STOP mode is similar to IDLE mode. The difference is all clock oscillators either Fast-clock or Slow-clock is power down and no clock is generated.

3.2 Dual System Clock Modes Transition

The device is operated in one of four modes: FAST mode, SLOW mode, IDLE mode, and STOP mode.

CPU Operation Block Diagram

CPU Mode & Clock Functions Table:

Mode	Oscillator	Fsys	Fast-clock	Slow-clock	TM0/TM1	T2	Wakeup event
FAST	FIRC	Fast-clock	Run	Set by SLOWSTP	Run	Run	Х
SLOW	SIRC	Slow-clock	Set by FASTSTP	Run	Run	Run	Х
IDLE	SIRC	Stop	Stop	Run	Stop	Run	WKT/IO/T2
STOP	Stop	Stop	Stop	Stop	Stop	Stop	IO

• FAST mode switches to SLOW mode

The following steps are suggested to be executed by order when FAST mode switches to SLOW mode:

- (1) Enable Slow-clock (SLOWSTP=0)
- (2) Switch to Slow-clock (CPUCKS=0)
- (3) Stop Fast-clock (FASTSTP=1)

♦ Example: Switch FAST mode to SLOW mode.

BANKSEL MOVLW	CLKCTL 00x101xxB	
	-	
MOVWF	CLKCTL	; Slow-clock type=SIRC
BCF	SLOWSTP	; Enable Slow-clock.
NOP		
BCF	CPUCKS	; Fsys=Slow-clock.
BSF	FASTSTP	; Disable Fast-clock.

• SLOW mode switches to FAST mode

SLOW mode can be enabled by CPUCKS=0 in CLKCTL register of F-plane. The following steps are suggested to be executed by order when SLOW mode switches to FAST mode:

- (1) Enable Fast-clock (FASTSTP=0)
- (2) Switch to Fast-clock (CPUCKS=1)

 \diamond Example: Switch SLOW mode to FAST mode (The Fast-clock stop).

BANKSEL	CLKCTL	
MOVLW	0 <u>0</u> 001000B	
MOVWF	CLKCTL	; Fast-clock=FIRC
BCF	FASTSTP	; Enable Fast-clock.
NOP		
BSF	CPUCKS	; Fsys=Fast-clock

• IDLE mode Setting

The IDLE mode can be configured by following setting in order:

- (1) Enable Slow-clock (SLOWSTP=0) or WKT(WKTIE=1)
- (2) Switch T2 clock source to Slow-clock (T2CKS=0)
- (3) Execute SLEEP instruction

IDLE mode can be waken up by External interrupt, WKT interrupt and TM3 interrupt.

♦ Example: Switch FAST/SLOW mode to IDLE mode.

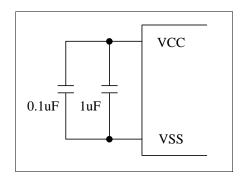
BANKSEL	CLKCTL	
BCF	SLOWSTP	; Enable Slow-clock.
MOVLW	0000 <u>0000</u> B	
MOVWF	T2CTL	; T2 Clock source=Slow-clock. T2PSC=div 32768
BCF	RP0	; SLEEP instruction can only be executed when $RP0 = 0$
SLEEP		; Enter IDLE mode.

STOP Mode Setting

The STOP mode can be configured by following setting in order:

- (1) Stop Slow-clock (SLOWSTP=1)
- (2) Stop WKT/WDT (WKTIE=0, WDTE=10 or 0X)
- (3) Execute SLEEP instruction

STOP mode can be waken up only by External pin interrupt.

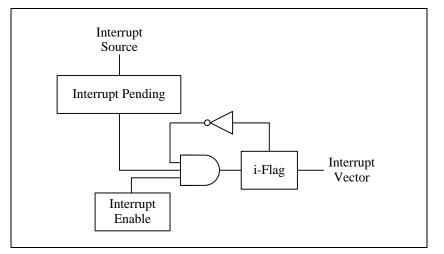

♦ Example: Switch FAST/SLOW mode to STOP mode.

BANKSEL	CLKCTL	
BSF	SLOWSTP	; Disable Slow-clock.
MOVLW	x000 <u>0</u> 000B	; Disable WKT counting
MOVWF	INTIE	
BCF	RP0	; SLEEP instruction can only be executed when $RP0 = 0$
SLEEP		; Enter STOP mode.

3.3 System Clock Oscillator

In the Fast Internal RC (FIRC) mode, the on-chip oscillator generates 16 MHz system clock. Since power noise degrades the performance of Internal Clock Oscillator, placing power supply bypass capacitors 1 uF and 0.1 uF very close to VCC/VSS pins improves the stability of clock and the overall system.

Internal RC Mode



4. Interrupt

TM55M8228 has 1 level, 1 vector and 8 interrupt sources (without Touch Key interrupt). TM55M8428 has 1 level, 1 vector and 9 interrupt sources. Each interrupt source has its own enable control bit. An interrupt event will set its individual pending flag, no matter its enable control bit is 0 or 1.

If the corresponding interrupt enable bit has been set (INTIE), it would trigger CPU to service the interrupt. CPU accepts interrupt in the end of current executed instruction cycle. In the mean while, a "CALL 004" instruction is inserted to CPU, and i-flag is set to prevent recursive interrupt nesting.

The i-flag is cleared in the instruction after the "RETI" instruction. That is, at least one instruction in main program is executed before service the pending interrupt. The interrupt event is level triggered. F/W must clear the interrupt event register while serving the interrupt routine.

0Bh/8Bh/10Bh/18Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

- INTIE.7 **ADCIE:** ADC interrupt enable 0: disable 1: enable
- INTIE.6 **T2IE:** T2 interrupt enable 0: disable 1: enable
- INTIE.5 **TM1IE:** Timer1 interrupt enable 0: disable 1: enable
- INTIE.4 **TMOIE:** Timer0 interrupt enable 0: disable 1: enable
- INTIE.3 **WKTIE:** Wakeup Timer interrupt enable 0: disable 1: enable

INTIE.2 **INT2IE:** INT2 (PA7) interrupt enable 0: disable 1: enable

- INTIE.1 **INT1IE:** INT1 (PA1) interrupt enable 0: disable 1: enable
- INTIE.0 **INTOIE:** INTO (PA6) interrupt enable 0: disable 1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
0Ch.7	0Ch.7 ADCIF: ADC interrupt event pending flag This bit is set by H/W after end of ADC conversion, write 0 to this bit will clear this flag							
0Ch.6	T2IF: T2 int This bit is s			flows, write () to this bit w	ill clear this f	flag	
0Ch.5	TM1IF: Tim This bit is s			ng flag overflows, wi	rite 0 to this b	oit will clear	this flag	
0Ch.4	TM0IF: Tim This bit is s			ng flag overflows, wi	rite 0 to this t	oit will clear	this flag	
0Ch.3	WKTIF: Wakeup Timer interrupt event pending flag This bit is set by H/W while Wakeup Timer is timeout, write 0 to this bit will clear this flag							
0Ch.2	INT2IF: INT2 (PA7) pin falling interrupt pending flag This bit is set by H/W at INT2 pin's falling edge, write 0 to this bit will clear this flag							
0Ch.1	INT1IF: INT1 (PA1) pin falling interrupt pending flag This bit is set by H/W at INT1 pin's falling/rising edge, write 0 to this bit will clear this flag							
0Ch.0	INTOIF: INTO (PA6) pin falling/rising interrupt pending flag This bit is set by H/W at INTO pin's falling/rising edge, write 0 to this bit will clear this flag							

1Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKCON1	TKIF	TKIE	TKSOC	TKEOC		TKO	CHS	
R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W
Reset	0	0	0	1	1	1	1	1

1Fh.7 **TKIF:** Touch Key interrupt event pending flag, set by H/W after end of TK conversion , write 0 to this bit or write 1 to TKSOC will clear this flag

1Fh.6 **TKIE:** Touch Key interrupt enable 0: disable 1: enable

5. I/O Port

5.1 PA0-6, PB0-1, PD0-7

These pins can be used as Schmitt-trigger input, CMOS push-pull output. The pull-up resistor is assignable to each pin by S/W setting. To use the pin in Schmitt-trigger input mode, S/W needs to set the I/O pin to Mode0 or Mode1 and PxD=1. Reading the pin data (PxD) has different meaning. In "Read-Modify-Write" instruction, CPU actually reads the output data register. In the others instructions, CPU reads the pin state. The so-called "Read-Modify-Write" instruction includes BSF, BCF and all instructions using F-Plane as destination.

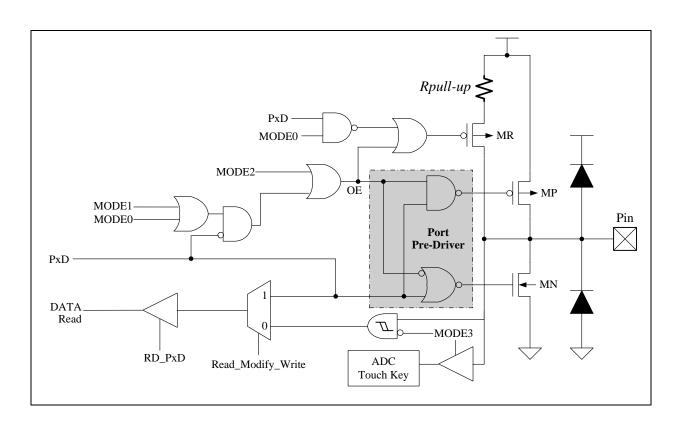
Mode	PA0~PA6, PB0~PB1, PD0~PD7 pin function	PxD SFR data	Pin State	Resistor Pull-up	Digital Input
Mode 0	Open Drain	0	Drive Low	N	Ν
Widde 0	Input	1	Pull-up	Y	Y
Mode 1	Open Drain	0	Drive Low	Ν	Ν
Mode 1	Open Drain	1	Hi-Z	Ν	Y
	CMOS Output	0	Drive Low	Ν	Ν
Mode 2	CMOS Output	1	Drive High	Ν	Ν
	Touch Key (when TKCHS)	0	TK	Ν	Ν
Mode 3	ADC	0	_	N	Ν
wide 5	-	1		Y	Y

These pins can operate in four different modes as below.

I/O Pin Function Table

Pin Name	Wake-up	СКО	ADC/TK	others	Mode3
PA0			ADC8/TK6	PWM0N/PWM1A	ADC8
PA1	INT1		ADC1/TK1		ADC1
PA2	INT0		ADC2/TK2		ADC2
PA3				PWM0P/PWM1C	
PA4				PWM0N/PWM1B	
PA5			ADC5/TK5	PWM1C	ADC5
PA6	INT0		ADC0/TK0		ADC0
PA7	INT2				
PB0			ADC7/TK7	PWM0P/PWM1C	ADC7
PB1			ADC3/TK3	PWM1A	ADC3
PD0		TM10UT			
PD1			ADC11		ADC11
PD2			ADC12	PWM1B	ADC12
PD3			ADC13	PWM1C	ADC13
PD4			ADC10		ADC10
PD5			ADC9		ADC9
PD6		TCOUT	ADC6		ADC6
PD7			ADC4/TK4	PWM1B	ADC4

Beside I/O port function, each pin has one or more alternative functions, such as ADC and Touch Key.


PortA/B/D multi-function Table

Alternative Function	Mode	PxD SFR data	Pin State	Other necessary SFR setting
INTO, INT1	0	1	Input with Pull-up	INTxIE
11110, 1111	1	1	Input	INTxIE
ТК0~ТК7	2	0	Touch Key Idling, CMOS output Low	TKCHS
	-		Touch Key Scanning	TKCHS
AD0~AD14	3	0	ADC Channel	
PWM0P, PWM0N,	1	X	PWM Output (Open Drain)	PWM0POEx PWM0NOEx PWM1AOEx
PWM1A, PWM1B, PWM1C	2	X	PWM Output (COMS Output)	PWM1AOEx PWM1BOEx PWM1COEx

The necessary SFR setting for pin's alternative function is list below.

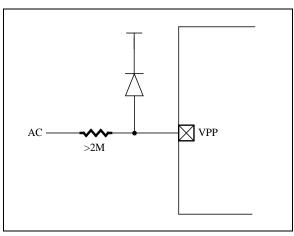
Mode Setting for Port Alternative Function

5.2 PA7

PA7 (VPP) can be only used as Schmitt-trigger input or open-drain output, with pull-up resistor. PA7 pin is shared with RSTn, INT2 and VPP function. When PA7 is set high, the IO port can be pulled to approximately $0.6V_{CC}$ and the current consumption is approximately 2uA. When PA7 is set low, PA7 will not have additional current consumption.

V _{CC}	PA7 pull-up approximately voltage
5V	3.1V
4V	2.3V
3V	1.5V

How to control PA7 status can be concluded as following list.


CFGWH[12]	PAD7	PN STATE	Pull-up	MODE
0	0	Low	No	open-drain output
0	1	High	Yes	input with pull-high
1	Х	High	Yes	reset input with pull-high

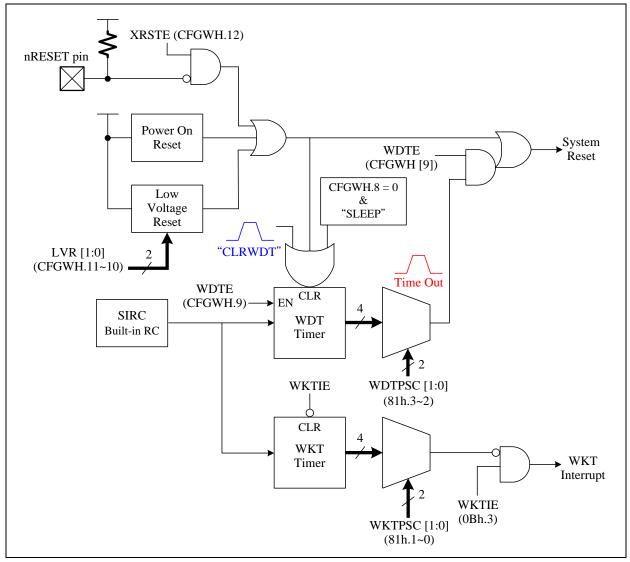
 \diamond Example: Read state from PA7.

Condition: CFGWH[12] is set to "0". If CFGWH[12] = "1", then PA7 pin is external reset pin function.

BTFSS	PAD,7	
GOTO	LOOP_A	; If PA7 =0.
GOTO	LOOP_B	; If PA7 =1.

VPP (PA7) has no high voltage protection diode, need an external diode and resistor to achiever AC zero crossing detection.

Zero crossing detector circuit for VPP pin



6. Peripheral Functional Block

6.1 Watchdog (WDT) /Wakeup (WKT) Timer

The WDT and WKT share the same built-in internal RC Oscillator and have individual own counters. The overflow period of WDT, WKT can be selected by individual prescaler (WDTPSC [1:0], WKTPSC [1:0]). The WDT timer is cleared by the CLRWDT instruction. If the Watchdog is enabled (CFGWH.9=WDTE=1), the WDT generates the chip reset signal. Set CFGWH.8 to '0' can let WDT timer stop counting after executing SLEEP instruction, i.e. CFGWH.8=1 WDT timer is always keep counting even if the SLEEP instruction is executed.

The WKT timer is an interval timer, WKT time out will generate WKT Interrupt Flag (WKTIF). The WKT timer is cleared/stopped by WKTIE=0. Set WKTIE=1, the WKT timer will always count regardless at any CPU operating mode.

WDT/WKT Block Diagram

Watchdog clear is controlled by CLRWDT instruction and moving any value into WDTCLR is to clear watchdog timer.

 \diamond Example: Clear watchdog timer by CLRWDT instruction.

MAIN:

 BCF CLRWDT	RP0	; Execute program. ; CLRWDT instruction can only be executed when RP0 = 0 ; Execute CLRWDT instruction.
 GOTO	MAIN	

Example: Clear watchdog timer by write WDTCLR register. MAIN:

 MOVWF	WDTCLR	; Execute program. ; Write any value into WDTCLR register.
 GOTO	MAIN	

 \diamond Example: Setup WDT time and disable after executing SLEEP instruction.

BANKSEL MOVLW	OPTION 0000 01 11B	
MOVWF	OPTION	; Select WDT Time out=256 ms @5V
BCF SLEEP	RP0	; SLEEP instruction can only be executed when $RP0 = 0$

♦ Example: Set WKT period and interrupt function.

BANKSEL	OPTION	
MOVLW	000001 <u>10</u> B	
MOVWF	OPTION	; Select WKT period=64 ms @5V.
BANKSEL	INTIF	
MOVLW	1111 <u>0</u> 111B	; Clear WKT interrupt request flag by using byte operation
		; Don't use bit operation "BCF WKTIF" clear interrupt flag
MOVWF	INTIF	;
MOVLW	0000 <u>1</u> 000B	; Enable WKT interrupt function
MOVWF	INTIE	

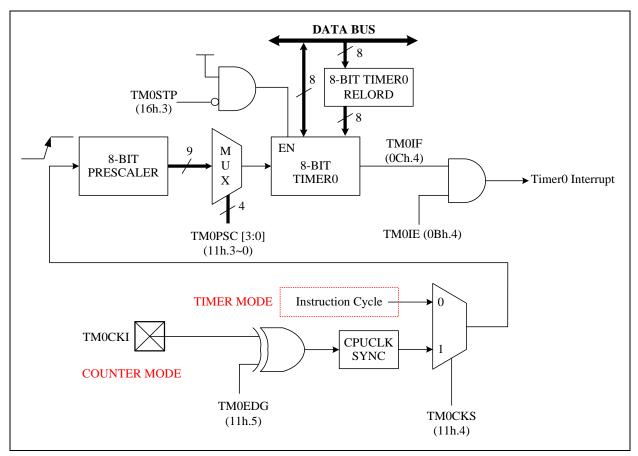
0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.3 **WKTIF:** Wakeup Timer interrupt event pending flag This bit is set by H/W while Wakeup Timer is timeout, write 0 to this bit will clear this flag

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

0Bh.3 **WKTIE:** Wakeup Timer interrupt enable 0: disable 1: enable

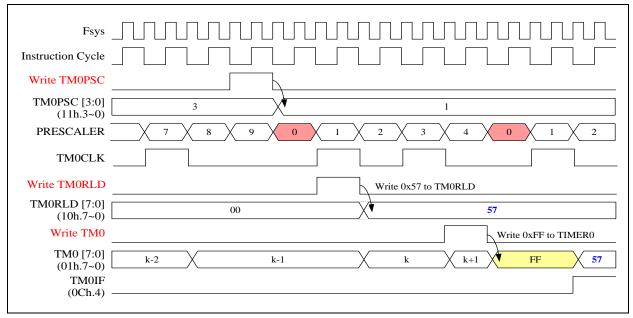
81h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTON	HWAUTO	INT0EDG	INT1EGE	INTOSEL	WDTPSC		WKTPSC	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	1	1	1	1


81h.3~2 **WDTPSC:** WDT period (@VCC=5V) 00: 128 ms 01: 256 ms 10: 1024 ms 11: 2048 ms

81h.1~0 **WKTPSC:** WKT period (@VCC=5V) 00: 16 ms 01: 32 ms 10: 64 ms 11: 128 ms

6.2 Timer0

The Timer0 is an 8-bit wide register of F-Plane 01h (TM0). It can be read or written as any other register of F-Plane. Besides, Timer0 increases itself periodically and automatically rolls over a new "offset value" (TM1RLD) while it rolls over based on the pre-scaled clock source, which can be Fsys/2 or TM0CKI (PA2) rising/falling input. The Timer0 increase rate is determined by "Timer0 Pre-Scale" (TM0PSC) register. The Timer0 always generates TM0IF when its count rolls over. It generates Timer0 Interrupt if (TM0IE) is set. Timer0 can be stopped counting if the TM0STP bit is set.



Timer0 Block Diagram

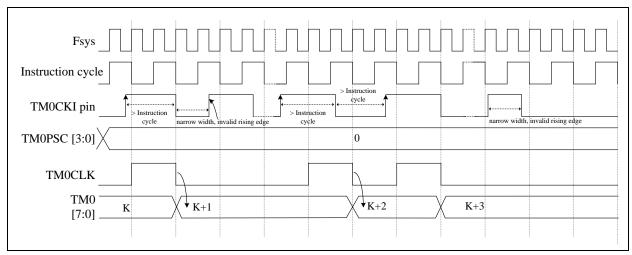
The following timing diagram describes the Timer0 works in pure Timer mode.

When the Timer0 prescaler (TM0PSC) is written, the internal 8-bit prescaler will be cleared to 0 to make the counting period correct at the first Timer0 count. TM0CLK is the internal signal that causes the Timer0 to increase by 1 at the end of TM0CLK. TM0WR is also the internal signal that indicates the Timer0 is directly written by instruction; meanwhile, the internal 8-bit prescaler will be cleared. When Timer0 counts from FFh to TM0RLD, TM0IF (Timer0 Interrupt Flag) will be set to 1 and generate interrupt if TM0IE (Timer0 Interrupt Enable) is set.

Timer0 works in Timer mode (TM0CKS=0)

The equation of TM0 interrupt time value is as following:

TM0 interrupt interval cycle time=Fsys/2/TM0PSC/ (256-TM0)


 \diamond Example: Setup TM0 work in Timer mode

; Setup T	M0 clock sourc		
	BANKSEL	TM0CTL	
	MOVLW	0000 <u>0101</u> B	; TM0CKS=0, Setup TM0 clock= Fsys/2
	MOVWF	TM0CTL	; TM0PSC=5, TM0PSC= Fsys/64
; Set TM	0 timer.		
	BSF	TM0STP	; Disable TM0 counting (Default "0").
	MOVLW	156	
	MOVWF	TM0	; Write 156 into TM0 register
	MOVLW	124	
	MOVWF	TMORLD	; Write 156 into TM0RLD register
; Enable '	TM0 timer and	interrupt function.	
,	MOVLW	111 0 1111B	; Clear TM0 request interrupt flag by byte operation
	MOVWF	INTIF	; F-Plane 0Ch
	MOVLW	000 1 0000B	; Enable TM0 interrupt function
	MOVWF	INTIE	; F-Plane 0Bh
	BCF	TM0STP	; Enable TM0 counting (Default "0").
			- · · · · · · · · · · · · · · · · · · ·

The following timing diagram describes the Timer0 works in Counter mode.

If TM0CKS=1 then Timer0 counter source clock is from TM0CKI pin. TM0CKI signal is synchronized by instruction cycle (Fsys/2) that means the high/low time durations of TM0CKI must be longer than one instruction cycle time (Fsys/2) to guarantee each TM0CKI's change will be detected correctly by the synchronizer.

Timer0 works in Counter mode for TM0CKI (TM0EDG=0), TM0CKS=1

- Example: Setup TM0 work in Counter mode and clock source from TM0CKI pin (PA2)
 - ; Setup TM0 clock source from TM0CKI pin (PA2) and divider.

-	BANKSEL	TM0CTL	
	MOVLW	00 110000 B	
	MOVWF	TMOCTL	; TM0EDG=1
			; Select TM0 prescaler counting edge=falling edge.
			; TM0CKS=1, Setup TM0 clock=TM0CKI pin (PA2)
			; TM0PSC=0
			; TM0 clock prescaler= TM0CKI divided by 1
; Set TM() timer and stop	o TM0 counting.	
	BSF	TM0STP	; Disable TM0 counting (Default "0").
	MOVLW	00H	
	MOVWF	TM0	; Write 0 into TM0 register of F-Plane 01H.
; Start TM	10 count and re	ad TM0 counter.	
	BCF	TM0STP	; Enable TM0 counting.
	NOP		
	NOP		
	NOP		
	BSF	TM0STP	; Disable TM0 counting (Default "0")
	MOVFW	TM0	

01h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0		-	-	TN	/10			-
R/W								
Reset	0	0	0	0	0	0	0	0

01h **TM0:** Timer0 content

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Bh.4 **TM0IE:** Timer0 interrupt enable

0: disable

1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.4 **TM0IF:** Timer0 interrupt event pending flag This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

10h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0RLD				TM0	RLD			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

10h **TM0RLD:** Timer0 Reload Data

11h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0CTL	Ι	-	TM0EDG	TM0CKS	TM0PSC			
R/W	_	-	R/W	R/W	R/W	R/W	R/W	R/W
Reset	-	_	0	0	0	0	0	0

11h.5**TM0EDG:** Timer0 prescaler counting edge for TM0CKI pin
0: rising edge1: falling edge

11h.4 **TM0CKS:** Timer0 prescaler clock source

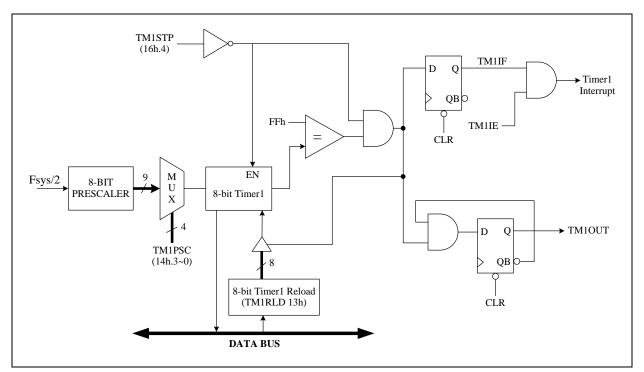
0:Fsys/2 1: TMOCKI pin (PA2 pin)

 11h.3~0
 TM0PSC: Timer0 prescaler. Timer0 prescaler clock source divided by 0000: /1
 0001: /2
 0010: /4
 0011: /8
 0100: /16

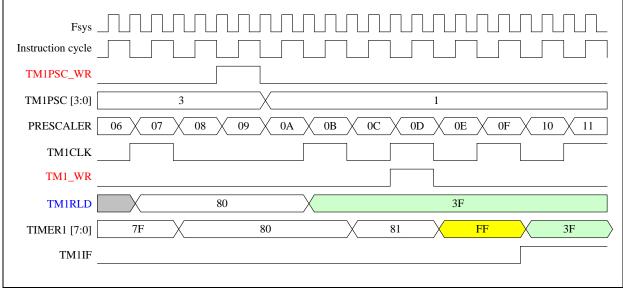
0101: /32 0110: /64 0111: /128

16h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF016	LVDF	LVDEN	T2CLR	TM1STP	TM0STP	LVRSAV	LV	DS
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	Ι	0	1	0	0	1	0	1

1xxx: /256

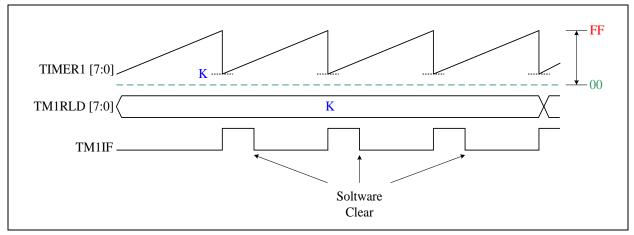

16h.3 **TM0STP:** Timer0 counter stop

0: Release 1: Stop counting



6.3 Timer1

The Timer1 is an 8-bit wide register of F-Plane. It can be read or written as any other register. Besides, Timer1 increases itself periodically and automatically reloads a new "offset value" (TM1RLD) while it rolls over based on the pre-scaled instruction clock(Fsys/2). The Timer1 increase rate is determined by TM1PSC register in R-Plane. Set the TM1STP bit will stop Timer1 counting. TM1OUT is an output signal that toggles when Timer1 overflow.



Timer1 Block Diagram

Timer1 Timing Diagram

Timer1 Reload Diagram

 \diamond Example: Setup TM0 work in Timer mode and counting overflow toggle out to TM1OUT (PD0) configuration.

; Setup TM1 clock source, divider and enable	e IMIOUT

BANKSEL	TM1CTL	
MOVLW	0000 <u>0101</u> B	
MOVWF	TM1CTL	; TM1PSC=5 , Select TM1 clock=Fsys/64.
BANKSEL	TM1OE	
BSF	TM10E	; Enable TM1OUT function pin (PD0).

; Set TM1 timer offset and stops TM1 counting

BANKSEL	TM1STP	
BSF	TM1STP	; Stop TM1 counting (Default "0").
MOVLW	F0H	
MOVWF	TM1	; Write F0H into TM1 counter

; Enable TM1 timer and interrupt function.

MOVLW MOVWF	11 <u>0</u> 11111B INTIF	; Clear TM1 request interrupt flag by byte operation ; F-Plane 09H
MOVLW MOVWF	00 <u>1</u> 00000B INTIE	; Enable TM1 interrupt function.
BCF	TM1STP	; Enable TM1 counting (Default "0").

Example:

Fsys=4 MHz, TM1PSC=1, TM1 clock source=Fsys/4=1 MHz

TM1RLD=0xF0,

TM1 interrupt time= (1/1 MHz) * (0xFF - 0xF0) = 1 us * 16 = 16 us

TM1OUT output time period=16 us *2=32 us.

TM1OUT output frequency=1/32 us=31.250 KHz.

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Bh.5 **TM1IE:** Timer1 interrupt enable 0: disable

1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INTOIF
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

0Ch.5 TM1IF: Timer1 interrupt event pending flag

This bit is set by H/W while Timer1 overflows, write 0 to this bit will clear this flag

12h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM1				TN	М1			
R/W								
Reset	0	0	0	0	0	0	0	0

12h **TM1:** Timer1 content

13h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM1RLD				TM1	RLD			
R/W	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0

13h.7~0 TM1RLD: Timer1 reload offset value while it rolls over

14h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM1CTL	_	—	—	_	TM1PSC			
R/W	_	_	_	_	W	W	W	W
Reset	-	_	_	_	0	0	0	0

14h.3~0 TM1PSC: Timer1 prescaler. Timer1 clock source divided by

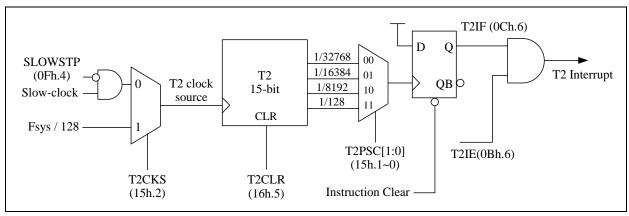
0000: Fsys/2	0101: Fsys/64
0001: Fsys/4	0110: Fsys/128
0010: Fsys/8	0111: Fsys/256
0011: Fsys/16	1xxx: Fsys/512
0100: Fsys/32	-

16h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF016	LVDF	LVDEN	T2CLR	TM1STP	TM0STP	LVRSAV	LVDS	
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	I	0	1	0	0	1	0	1

16h.4 **TM1STP:** Timer1 counter stop

0: Release

1: Stop counting


9Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF09C	TCOE	TM10E	PWM1COE3	PWM1COE2	PWM0NOE1	PWM0NOE0	PWM0POE1	PWM0POE0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F1B.5 **TM1OE:** Enable Timer1 overflow toggle output to PD0 pin (TM1OUT)

6.4 T2:15-bit Timer

The T2 is a 15-bit counter and the clock sources are from either Fsys/128 or Slow-clock. It is used to generate time base interrupt and T2 counter block clock. The T2 content cannot be read by instructions. It generates interrupt flag T2IF (0Ch.6) with the clock divided by 32768/16384/8192/128 depends on T2PSC[1:0] (15h.1~0) register bits. The following figure shows the block diagram of T2.

T2 Block Diagram

Example:

[CPU running at FAST mode, Fsys=Fast-clock= FIRC 4 MHz]

 \bigcirc Example:

; Setup T	2 clock source BANKSEL MOVLW MOVWF	and divider . T2CTL 00000 <u>101</u> B T2CTL	;15h.2 (T2CKS) = 1, T2 clock source = Fsys/128 ;15h.1~0 (T2PSC) =1, Divided by 16384
	BSF	T2CLR	;16h.5 (T2CLR)=1, Stop T2 counting.
; Enable	T2 timer and ir MOVLW MOVWF	nterrupt function. 1 <u>0</u> 111111B INTIF	; Clear T2 request interrupt flag by byte operation ;
	MOVLW MOVWF	0 <u>1</u> 000000B INTIE	; Enable T2 interrupt function.
	BCF	T2CLR	; Enable T2 counting (Default "0").

T2 clock source is Fsys/128 = 4 MHz/128 = 31250 Hz, T2PSC = /16384

T2 frequency = 31250 Hz / 16384 = 1.907 Hz

Example:

[CPU running at SLOW mode, Fsys = Slow-clock = SIRC 80Hz]

\bigcirc Example:

; Setup T	2 clock source BANKSEL MOVLW MOVWF	and divider T2CTL 00000 000 B T2CTL	; 15h.2 (T2CKS) = 0, T2 clock source = Slow-clock ; 15.1~0 (T2PSC) =0, Divided by 32768
	BSF	T2CLR	; Stop T2 counting.
; Enable	T2 timer and in MOVLW MOVWF	iterrupt function. 1 <u>0</u> 111111B INTIF	; Clear T2 request interrupt flag
	MOVLW MOVWR	0 <u>1</u> 000000B INTIE	; Enable T2 interrupt function.
	BCF	T2CLR	; Enable T2 counting (Default "0").

T2 clock source is Slow-clock = 80KHz, T2PSC = /32768,

T2 frequency = 80000Hz / $32768 \approx 2.44$ Hz

0Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	T2IE	TM1IE	TM0IE	WKTIE	INT2IE	INT1IE	INT0IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

0Bh.6 **T2IE:** T2 interrupt enable 0: disable

1: enable

0Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	T2IF	TM1IF	TM0IF	WKTIF	INT2IF	INT1IF	INT0IF
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

0Ch.6 **T2IF:** T2 interrupt event pending flag

This bit is set by H/W while T2 overflows, write 0 to this bit will clear this flag

0Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCTL	_		-	SLOWSTP	FASTSTP	CPUCKS	CPUPSC	
R/W	-	-	-	R/W	R/W	R/W	R/W	R/W
Reset	-	-	-	0	1	0	1	1

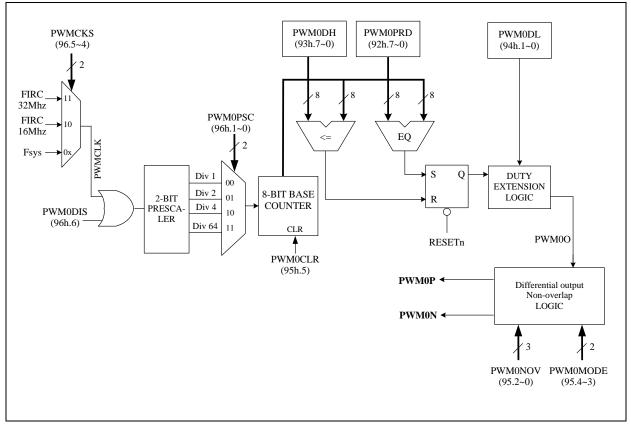
0Fh.4 **SLOWSTP:** Stop Slow-clock in Stop Mode 0: no Stop 1: Stop

15h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T2CTL		-		-	_	T2CKS	T2PSC	
R/W	-	_	_	-	_	R/W	R/W	R/W
Reset	-	-	-	_	_	0	0	0

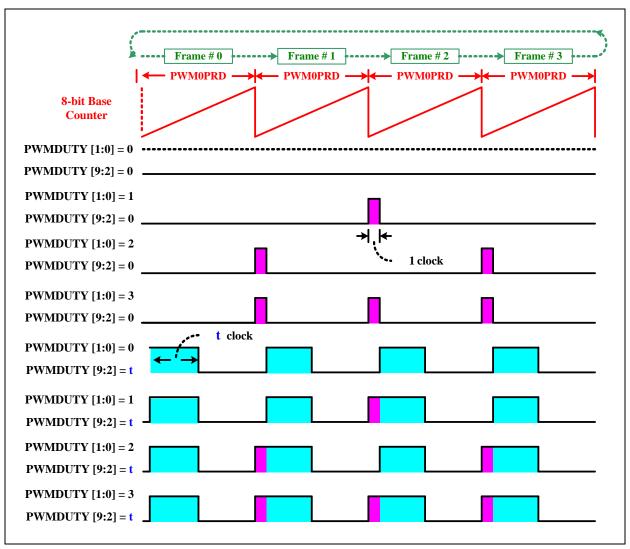
15h.2 **T2CKS:** "T2 clock source" selection. 1: Fsys/128 0: Slow-clock

15h.1~0 **T2PSC:** T2 prescaler. "T2 clock source" divided by -00: 32768 01: 16384 10: 8192 11: 128

16h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF016	LVDF	LVDEN	T2CLR	TM1STP	TM0STP	LVRSAV	LVDS	
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	I	0	1	0	0	1	0	1

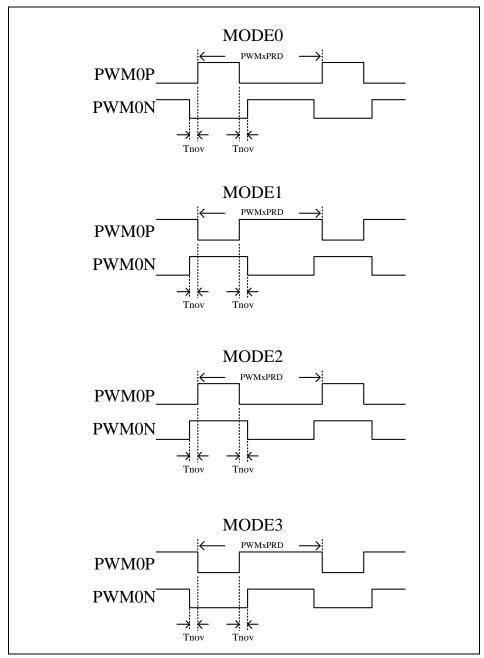

16h.5 **T2CLR:** T2 counter clear 0: Release 1: Stop counting

6.5 PWM0: (8+2) bits PWM


The PWM can generate various frequency waveform with 1024 duty resolution based on PWM0CLK, which can select Fsys or FIRC 16 MHz, decided by PWM0CKS (F17.4) . A spread LSB technique allows PWM0 to run its frequency at "PWM0CLK divided by 256" instead of "PWM0CLK divided by 1024", which means the PWM is 4 times faster than normal. The advantage of higher PWM frequency is that the post RC filter can transform the PWM signal to more stable DC voltage level. The PWM output signal reset to low level whenever the 8-bit base counter matches the 8-bit MSB of PWM duty register PWM0DH (R21.7~0) . When the base counter rolls over, the 2-bit LSB of PWM duty register PWM0DL (R22.1~0) decides whether to set the PWM output signal high immediately or set it high after one clock cycle delay.

The PWM0 period can be set by writing period value to PWM0PRD register (R20). Note that changing the PWM0PRD will immediately change the PWM0PRD values, which are different from PWM0DH/PWM0DL which has buffer to update the duty at the end of current period. The Programmer must pay attention to the current time to change PWMAPRD by observing the following figure. There is a digital comparator that compares the PWM0 counter and PWM0RD, if PWM0 counter is larger than PWM0PRD after setting the PWM0PRD, a fault long PWM cycle will be generated because PWM0 counter must count to overflow then keep counting to PWM0PRD to finish the cycle.

PWM0 Block Diagram



PWM0 8+2 Timing Diagram

PWM0 can be output via PWM0P and PWM0N with four different modes. The edges of the PWM pulse can be separated with 6 different time non-overlap clocks intervals (Tnov), 0s, 4 PWMCLKs, 5 PWMCLKs, 6 PWMCLKs, 7 PWMCLKs, and 8 PWMCLKs which are selected by PWM0CTL (95h). The default output form is MODE0. The waveforms of the four output modes are shown below.

PWM0 Waveform Modes

92h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM0PRD		PWM0PRD								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	1	1	1	1	1	1	1	1		

92h.7~0 **PWM0PRD:** PWM0 period data

93h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM0DH		PWM0DH								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

93h.7~0 PWM0DH: PWM0 duty 8-bit MSB

94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM0DL	Ι	-	-	_	_	_	PWN	10DL
R/W			-	_	_	_	R/W	R/W
Reset	I			-	-	_	0	0

94h.1~0 **PWM0DL:** PWM0 duty 2-bit LSB

95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM0CTL	_	-	PWM0CLR	PWM0	MODE		PWM0NOV	
R/W	_	-	R/W	R/W	R/W	R/W	R/W	R/W
Reset	-	-	0	0	0	0	0	0

95h.5 **PWM0CLR:** PWM0 clear and hold 0:PWM0 enable 1:PWM0 clear and hold

95h.4~3 **PWM0MODE:** PWM0 differential output mode

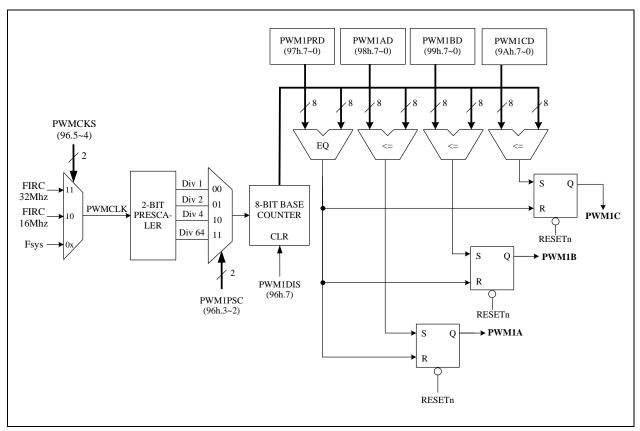
- 00 : Mode 0,
- 01 : Mode 1,
- 10 : Mode 2,
- 11 : Mode 3
- 95h2~0 **PWM0NOV:** PWM0 non-overlap control
 - 000 : original PWM0
 - 001 : non-overlap 4 PWM0CLKs
 - 010 : non-overlap 5 PWM0CLKs
 - 011 : non-overlap 6 PWM0CLKs
 - 100 : non-overlap 7 PWM0CLKs
 - 101 : non-overlap 8 PWM0CLKs

96h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCTL	PWM1DIS	PWM0DIS	PWN	ICKS	PWM	1PSC	PWM	0PSC
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

- 96h.6 **PWM0DIS:** PWM0 Clock Disable 0:Clock Enable 1:Clock Disable
- 96h.5~4 **PWM0CKS:** PWM0 Clock Source 0x: Fsys 10:FIRC16M 11:FIRC32M
- 96h.1~0 **PWM0PSC:** PWM0 Clock Source Prescaler 00: DIV1 01: DIV2 10:DIV4 11:DIV64

9Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF09C	TCOE	TM10E	PWM1COE3	PWM1COE2	PWM0NOE1	PWM0NOE0	PWM0POE1	PWM0POE0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

- 9Ch.3 **PWM0NOE1:** PWM0N Output Enable 1 (priority > PWM1A Output Enable 1) 0: Disable 1:Enable, PWM0N output to PA0
- 9Ch.2 **PWM0NOE0:** PWM0N Output Enable 0 (priority > PWM1B Output Enable 1) 0: Disable 1:Enable, PWM0N output to PA4
- 9Ch.1 **PWM0POE1:** PWM0P Output Enable 1 (priority > PWM1C Output Enable 1) 0: Disable 1:Enable, PWM0P output to PB0
- 9Ch.0 **PWM0POE1:** PWM0N Output Enable 0 (priority > PWM1C Output Enable 2) 0: Disable 1:Enable, PWM0P output to PA3


54

6.6 PWM1A/PWM1B/PWM1C: 8 bits PWMs

PWM1A/PWM1B/PWM1C are 3 PWMs which have independent duty and common period. The PWMs can generate various frequency waveform with 256 duty resolution based on PWMCLK, which can select Fsys, FIRC 16 MHz or 32Mhz, decided by PWMCKS (96h.5~4). The advantage of higher PWM frequency is that the post RC filter can transform the PWM signal to more stable DC voltage level. The PWM output signal reset to low level whenever the 8-bit base counter matches the 8-bit of PWM duty register PWM1AD/PWM1BD/PWM1CD.

The PWM1A/1B/1C common period can be set by writing period value to PWM1PRD register (97h). Note that changing the PWM0PRD will immediately change the PWM1PRD values. The Programmer must pay attention to the current time to change PWM1PRD by observing the following figure. There is a digital comparator that compares the PWM1A/1B/1C counter and PWM1RD, if PWM1A/1B/C counter is larger than PWM1PRD after setting the PWM1PRD, a fault long PWM cycle will be generated because PWM1A/1B/1C counter must count to overflow then keep counting to PWM1PRD to finish the cycle.

PWM1 Block Diagram

97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM1PRD				PWM	1PRD			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

97h.7~0 **PWM1PRD:** PWM1 period data

98h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM1AD				PWN	I1AD			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

98h.7~0 **PWM1A:** PWM1A duty 8-bit

99h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM1BD				PWN	11BD			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

99h.7~0 **PWM1B:** PWM1B duty 8-bit

9Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM1CD				PWN	11CD			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

9Ah.7~0 **PWM1C:** PWM1C duty 8-bit

96h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCTL	PWM1DIS	PWM0DIS	PWN	ICKS	PWM	1PSC	PWM	OPSC
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

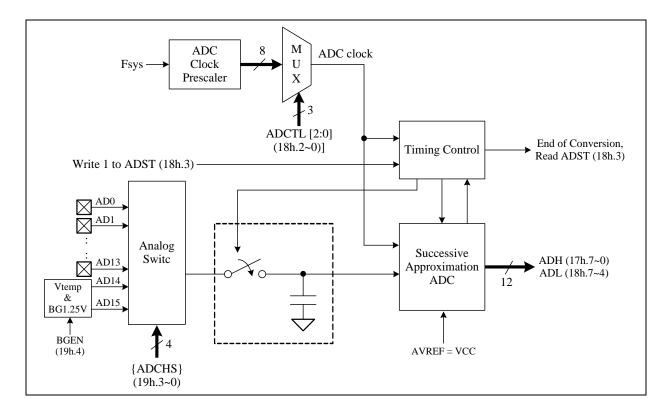
96h.7 **PWM1DIS:** PWM1 Clock Disable and PWM1 clear 0:Clock Enable 1:Clock Disable

- 96h.5~4 **PWMCKS:** PWM0 Clock Source 0x: Fsys 10:FIRC16M 11:FIRC32M
- 96h.3~2 **PWM1PSC:** PWM1 Clock Source Prescaler 00: DIV1 01: DIV2 10:DIV4 11:DIV64

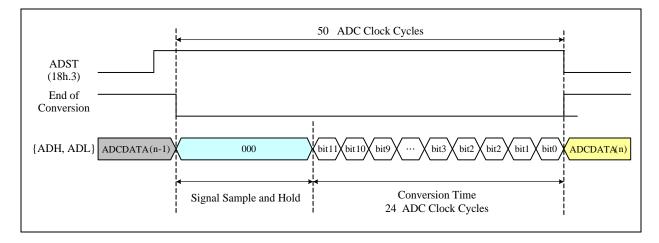
9Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF09B	PWM1COE1	PWM1COE0	PWM1BOE2	PWM1BOE1	PWM1BOE0	PWM1AOE2	PWM1AOE1	PWM1AOE0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

⁹Bh.7 **PWM1COE1:** PWM1C Output Enable 1 (priority < PWM0P Output Enable 1) 0: Disable 1:Enable, PWM1C output to PB0

- 9Bh.6 **PWM1COE0:** PWM1C Output Enable 0 0: Disable 1:Enable, PWM1C output to PA5
- 9Bh.5 **PWM1BOE2:** PWM1B Output Enable 2 0: Disable 1:Enable, PWM1B output to PD2
- 9Bh.4 **PWM1BOE1:** PWM1B Output Enable 1 (priority < PWM0N Output Enable 0) 0: Disable 1:Enable, PWM1B output to PA4
- 9Bh.3 **PWM1BOE0:** PWM1B Output Enable 0 0: Disable 1:Enable, PWM1B output to PD7
- 9Bh.2 **PWM1AOE2:** PWM1B Output Enable 2 0: Disable 1:Enable, PWM1A output to PD1
- 9Bh.1 **PWM1AOE1:** PWM1B Output Enable 1 (priority < PWM0N Output Enable 1) 0: Disable 1:Enable, PWM1A output to PA0
- 9Bh.0 **PWM1AOE0:** PWM1B Output Enable 0 0: Disable 1:Enable, PWM1A output to PB1


9Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF09C	TCOE	TM10E	PWM1COE3	PWM1COE2	PWM0NOE1	PWM0NOE0	PWM0POE1	PWM0POE0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

⁹Ch.5 **PWM1COE3:** PWM1C Output Enable 3 0: Disable 1:Enable, PWM1C output to PD3


⁹Ch.4 **PWM1COE2:** PWM1C Output Enable 2 (priority < PWM0P Output Enable 0) 0: Disable 1:Enable, PWM1C output to PA3

6.7 Analog-to-Digital Converter

The 12-bit ADC (Analog to Digital Converter) consists of a 16-channel analog input multiplexer, control register, clock generator, 12-bit successive approximation register, and output data register. To use the ADC, user needs to set ADCKS (18h.2~0) to choose a proper ADC clock frequency, which must be less than 1 MHz. User then launches the ADC conversion by setting the ADST (18h.3) control bit. After end of conversion, H/W automatic clears the ADST (18h.3) bit. User can poll this bit to know the conversion status. The PxMODE control registers are used for ADC pin configuration, user must set the Pin Mode=3 when the pin is used as an ADC input. The setting can disable the pin logical input path to save power consumption. User needs to set {ADCHS} (19h.3~0) to choose the input channel of ADC. One of them, AD15 is VBG1.25V input for ADC. Besides, AD14 is Vtemp for ADC. Both are controlled by BGEN(19h.4). ADC reference voltage is VCC.

Example:

[CPU running at FAST mode, Fsys=FIRC 16 MHz]

ADC clock frequency=1 MHz, ADC channel=ADC2 (PA2).

\diamond Example:

BANKSEL MOVLW MOVWFPAMODL 01110101B PAMODL;; ADC2 (PA2) Pin Mode=3=ADC inputBANKSEL MOVLW MOVWFADCTL 00000011B ADCTL; Fsys=16 MHz ; 18h.2~0 (ADCKS) = ADC clock=Fsys/32=500KHzMOVLW MOVWF01100010B MF019; 19h.3~0 (ADCHS [3:0]) =2, ADC select ADC2 (PA2 pin).BSFADST VAIT_ADC; 18h.3 (ADST), ADC start conversion.WAIT_ADC: BTFSC GOTOADST WAIT_ADC; Wait ADC conversion finish.MOVFW MOVFWADH ADCTL; 17h.7~0, Read ADC result [11:4] into W ; 18h.7~4, Read ADC result [3:0] into W	Ĩ	BANKSEL MOVLW MOVWF	ADCTL 00000 <u>011</u> B ADCTL	; Fsys=16 MHz ; 18h.2~0 (ADCKS) =ADC clock=Fsys/16=1 MHz
MOVLW MOVWF00000011B ADCTL; Fsys=16 MHz ; 18h.2~0 (ADCKS) =ADC clock=Fsys/32=500KHzMOVLW MOVWF01100010B MF019; 19h.3~0 (ADCHS [3:0]) =2, ADC select ADC2 (PA2 pin).BSFADST; 18h.3 (ADST) , ADC start conversion.WAIT_ADC: BTFSC GOTOADST WAIT_ADC; Wait ADC conversion finish.MOVFWADH; 17h.7~0, Read ADC result [11:4] into W		MOVLW	01 <u>11</u> 0101B	; ADC2 (PA2) Pin Mode=3=ADC input
MOVWFMF019; 19h.3~0 (ADCHS [3:0]) =2, ADC select ADC2 (PA2 pin).BSFADST; 18h.3 (ADST), ADC start conversion.WAIT_ADC: BTFSC GOTOADST WAIT_ADC; Wait ADC conversion finish.MOVFWADH; 17h.7~0, Read ADC result [11:4] into W		MOVLW	00000 <u>011</u> B	
WAIT_ADC: BTFSC ADST ; Wait ADC conversion finish. GOTO WAIT_ADC MOVFW ADH ; 17h.7~0, Read ADC result [11:4] into W				; 19h.3~0 (ADCHS [3:0]) =2, ADC select ADC2 (PA2 pin).
BTFSC GOTOADST WAIT_ADC; Wait ADC conversion finish.MOVFWADH; 17h.7~0, Read ADC result [11:4] into W		BSF	ADST	; 18h.3 (ADST), ADC start conversion.
	WAIT_A	BTFSC		; Wait ADC conversion finish.

:

17h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADH		ADH						
R/W	R	R	R	R	R	R	R	R
Reset	I	-	-	-	-	-	-	-

17h.7~0 ADH: ADC output data MSB, ADQ [11:4]

18h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCTL		ADL			ADST	ADCKS		
R/W	R	R	R	R	R/W	R/W	R/W	R/W
Reset	-	-	-	-	0	0	0	0

18h.7~4 ADL: ADC output data LSB, ADQ [3:0]

18h.3 ADST: ADC start bit.0: H/W clear after end of conversion1: ADC start conversion

 18h.2~0
 ADCKS: ADC clock frequency selection:

 000: Fsys/256
 100: Fsys/16

 001: Fsys/128
 101: Fsys/8

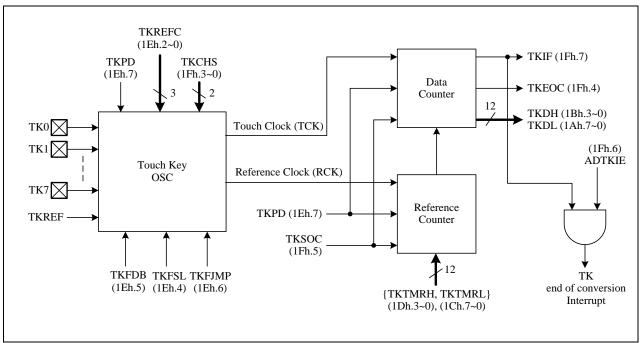
 010: Fsys/64
 110: Fsys/4

 011: Fsys/32
 111: Fsys/2

19h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF019	-	-	TEST0	BGEN		ADO	CHS	
R/W	-	-	R/W	R/W	R/W	R/W	R/W	R/W
Reset	-	_	0	1	0	0	0	0

F19.5 **TEST0:** Test bit, keep this bit = 0;

F19.4 **BGEN:** Band Gap BG1.25V & Vtemp function enable 0: Disable 1: Enable and Auto disable in STOP/IDLE mode


F19.3~0 **ADCHS:** ADC channel select

5~0	ADCHS: ADC channe	i select	
	0000: ADC0 (PA6)	0110: ADC6 (PD6)	1100: ADC12(PD2)
	0001: ADC1 (PA1)	0111: ADC7 (PB0)	1101: ADC13(PD3)
	0010: ADC2 (PA2)	1000: ADC8(PA0)	1110: Vtemp
	0011: ADC3 (PB1)	1001: ADC9(PD5)	1111: VBG 1.25V
	0100: ADC4 (PD7)	1010: ADC10(PD4)	
	0101: ADC5 (PA5)	1011: ADC11(PD1)	

6.8 Touch Key

The Touch Key offers an easy, simple and reliable method to implement finger touch detection. In most applications, it doesn't require any external component. The device support 8 channels touch key detection.

Touch Key Structure

To use the Touch Key, user must setup the Pin Mode (*see Section 6*) correctly as below table. Setting Mode2 for an Idling Touch Key pin can CMOS output Low and reduce the mutual interference between the adjacent keys.

PxMODx setting for Touch Key	TK0~TK7
Pin is Touch Key, Idling	CMOS output Low
Pin is Touch Key, Scanning	(Mode2)

In the Touch Key Module, there are two oscillators: Reference Clock (RCK) and Touch Clock (TCK). They are connected to the Reference Counter and Data Counter respectively. The frequency of RCK can be adjusted by setting TKREFC. Reference Counter is used to control conversion time. From starting touch key conversion to end, it will take 0 to 4096 RCK oscillation cycles by setting TKTMR. After end of conversion, user can get TKDATA (TKDH, TKDL) from Data counter. TKDATA is affected by finger touching. As finger touching TCK is getting slower, the value of TKDATA is smaller than the no finger touching. According to the difference of TKDATA, user can check if it is touched of not. A suitable TKTMR and TKREFC setting can adjust TKDATA to adapt the system board circumstances. To get the best TKREFC setting, user can try different TKREFC value (with TKFDB=0), then find the one which makes the TKDATA and TKTMR as close as possible. TKDATA can be doubled by setting TKFDB=1. In the other hand, user can adjust the overall operating frequency of the TK system (including TCK&RCK) by setting TKFSL (frequency select).

To start the Scanning, user assigns TKPD=0, then set the TKSOC bit to start touch key conversion, the TKSOC bit can be automatically cleared while end of conversion. However, if the SYSCLK is too slow, H/W might fail to clear TKSOC due to clock sampling rate. TKEOC=0 means conversion is in process. TKEOC=1 means the conversion is finish, and the touch key counting result is stored into the 12 bits TK Data Counter TKDH and TKDL.

TKIF will active at the first time enable Touch Key function (TKPD=0), user should clear TKIF after TKPD cleared.

\diamond Example:

•	BANKSEL	TKCON0	
	MOVLW	00011100B	; TKPD=0, TKFSL=TKFDB=0
	MOVWF	TKCON0	; TKFSEL=3,TKREFC=4h
	MOVLW	04h	
	MOVWF	TKTMRH	
	MOVLW	00H	
	MOVWF	TKTMRL	; TKTMR=400h
	MOVLW	0000000B	;
	MOVWF	TKCON1	; clear TKIF , Select TK0
	BSF	TKIE	; Enable TK interrupt
	BSF	TKSOC	
WAIT_TH	K:		
	BTFSC	TKSOC	; Wait TK conversion finish.
	GOTO	WAIT_TK	
	MOVFW	TKDH	; 1Bh.3~0, Read TK result [11:8] into W
	MOVFW	TKDL	; 1Ah.7~0, Read TK result [7:0] into W

1Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKDL				ТК	DL			
R/W	R	R	R	R	R	R	R	R
Reset	-	_	_	_	_	_	_	_

1Ah.7~0 **TKDL:** Touch Key counter data bit 7~0

1Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKDH	-	-	-	_		TK	DH	
R/W	-	-	-	_	R	R	R	R
Reset	-	-	-	-	-	-	-	-

1Bh.3~0 **TKDH:** Touch Key counter data bit 10~8

1Ch	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
TKTMRL		TKTMRL								
R/W		R/W								
Reset	1	1 1 1 1 1 1 1 1								
1Ch 7.0	1Ch 7, 0 TKTMDL Touch Kay reference counter LSP[7, 0]									

1Ch.7~0 **TKTMRL**: Touch Key reference counter LSB[7~0]

1Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKTMRH	_	_	_	_		TKT	MRH	
R/W	-	—		—		R/	W	
Reset	-	_	-	_	0	0	0	0

1Dh.3~0 **TKTMRH:** Touch Key reference counter MSB[11~8]

R/WR/WR/WR/WR/WReset100011Eh.7TKPD: Touch Key power down 0: Touch Key enable 1: Touch Key disable1Eh.6TKFJMP: TCK Frequency auto adjust option 0: Disable 1: Enable	XREFC R/W 0	R/W 0							
Reset100011Eh.7 TKPD: Touch Key power down 0: Touch Key enable 1: Touch Key disable1Eh.6 TKFJMP: TCK Frequency auto adjust option 0: Disable 1: Enable									
 1Eh.7 TKPD: Touch Key power down 0: Touch Key enable 1: Touch Key disable 1Eh.6 TKFJMP: TCK Frequency auto adjust option 0: Disable 1: Enable 	0	0							
0: Touch Key enable 1: Touch Key disable 1Eh.6 TKFJMP: TCK Frequency auto adjust option 0: Disable 1: Enable									
1Eh.6 TKFJMP: TCK Frequency auto adjust option 0: Disable 1: Enable									
0: Disable 1: Enable									
1Eb 5 TVEDD. Taugh Van geweten date dauble angele									
1Eh.5 TKFDB: Touch Key counter data double enable									
0: select normal counter data 1: select counter data double	•								
1Eh.4~3 TKFSL : Touch Key clock (RCK/TCK) frequency select									
1Eh.4~3 TKFSL: Touch Key clock (RCK/TCK) frequency select 00: Lowest frequency									
11: Highest frequency									
1Eh.2~0 TKREFC: Touch Key reference clock capacitor select									
•• •• •• •• •• •• •• •• •• •• •• •									
000: smallest (RCK frequency fastest, conversion time shortest)									
 111: biggest (RCK frequency slowest, conversion time longest)									
1FhBit 7Bit 6Bit 5Bit 4Bit 3Bit 2	Bit 1	Bit 0							
TKCON1 TKIF TKIE TKSOC TKEOC TKCH	_								
R/W R/W R/W R/W R R/W R/W	R/W	R/W							
Reset 0 0 0 1 1 1	1	1							

- 1F.6 TKIE: Touch Key interrupt enable 0: Disable Touch Key interrupt 1: Enable Touch Key interrupt
- 1F.5 **TKSOC:** Touch Key Start of Conversion Set 1 to start Touch Key conversion. If SYSCLK is fast enough, this bit will be cleared by H/W at the end of conversion. S/W can also write 0 to clear this flag.
- 1F.4 TKEOC: Touch Key end of conversion flag, TKEOC may have 3uS delay after TKSOC=1, so F/W must wait enough time before polling this Flag. 0: Indicates conversion is in progress 1: Indicates conversion is finished
- 1F.3~0 TKCHS: Touch Key channel select 0000: TK0 (PA6) 0001: TK1 (PA1) 0010: TK2 (PA2) 0011: TK3 (PB1) 0100: TK4 (PD7) 0101: TK5 (PA5) 0110: TK6 (PA0) 0111: TK7 (PB0) 1xxx: TKREF

TKIF: Touch Key interrupt event pending flag, set by H/W at the end of Touch Key conversion 1F.7 S/W writes 0 to TKIF or sets the TKSOC bit to clear this flag.

MEMORY MAP

F-Plane

Name	Address	R/W	Rst	Description		
INDF (00h/80	h/100h/18	0h)		Function related to: RAM W/R		
INDF	00.7~0	R/W	-	Not a physical register, addressing INDF actually point to the register whose address is contained in the FSR register		
TM0 (01h/101	h)			Function related to: Timer0		
TM0	01.7~0	R/W	0	Timer0 content		
PCL (02h/82h	/105h/182	h)		Function related to: PROGRAM COUNT		
PCL	02.7~0	R/W	0	Programming Counter LSB [7~0]		
STATUS (03h	/83h/103h	/ 183h)		Function related to: STATUS		
IRP	03.7	R/W	0	Register Bank Select bit (used for indirect addressing)		
RP1	03.6	R/W	0	Register Bank Select bit 1 (used for direct addressing)		
RP0	03.5	R/W	0	Register Bank Select bit 0 (used for direct addressing)		
ТО	03.4	R	0	WDT timeout flag, cleared by PWRST, 'SLEEP' or 'CLRWDT' instruction		
PD	03.3	R	0	Power down flag, set by 'SLEEP', cleared by 'CLRWDT' instruction		
Ζ	03.2	R/W	0	Zero flag		
DC	03.1	R/W	0	Decimal Carry flag		
С	03.0	R/W	0	Carry flag		
FSR (04h/84h/104h/184h) Function related to: RAM W/R				Function related to: RAM W/R		
FSR	04.7~0	R/W	-	File Select Register, indirect address mode pointer		
PAD (05h)				Function related to: Port A		
PAD	05.7~0	R	-	Port A pin or "data register" state		
PAD	03.7~0	W	FF	Port A output data register		
PBD (06h)				Function related to: Port B		
PBD	06.7~0	R	-	Port B pin or "data register" state		
FDD	00.7~0	W	FF	Port B output data register		
PDD (07h)				Function related to: Port D		
PDD	07.2~0	R	-	Port D pin or "data register" state		
FDD	07.2~0	W	FF	Port D output data register		
PCLATH (0A	h/8Ah/10#	Ah/18A	.h)	Function related to: PROGRAM COUNT		
PCLATH	0A.2~0	R/W	0	Write Buffer for the upper 3 bits of the Program Counter		
INTIE (0Bh/8	Bh/10Bh/1	8Bh)		Function related to: Interrupt Enable		
ADCIE	0B.7	R/W	0	ADC interrupt enable, 1=enable, 0=disable		
T2IE	0B.6	R/W	0	T2 interrupt enable, 1=enable, 0=disable		
TM1IE	0B.5	R/W	0	Timer1 interrupt enable, 1=enable, 0=disable		
TM0IE	0B.4	R/W	0	Timer0 interrupt enable, 1=enable, 0=disable		
WKTIE	0B.3	R/W	0	Wakeup Timer interrupt enable, 1=enable, 0=disable Set 0 to clear & disable WKT timer		
INT2IE	0B.2	R/W	0	INT2 pin (PA7) interrupt enable, 1=enable, 0=disable		
INT1IE	0B.1	R/W	0	INT1 pin (PA1) interrupt enable, 1=enable, 0=disable		
INT0IE	0B.0	R/W	0	INT0 pin (PA6 or PA2) interrupt enable, 1=enable, 0=disable		

Name	Address	R/W	Rst	Description
INTIF (0Ch)				Function related to: Interrupt Flag
	007	R	-	ADC interrupt flag, set by H/W after end of ADC conversion
ADCIF	0C.7	W	0	write 0: clear this flag; write 1: no action
TOLE	00.0	R	-	T2 interrupt event pending flag, set by H/W while T2 overflows
T2IF	0C.6	W	0	write 0: clear this flag; write 1: no action
TM1IF	0C.5	R	-	Timer1 interrupt event pending flag, set by H/W while Timer1 overflows
		W	0	write 0: clear this flag; write 1: no action
TM0IF	0C.4	R	-	Timer0 interrupt event pending flag, set by H/W while Timer0 overflows
		W	0	write 0: clear this flag; write 1: no action
WKTIF	0C.3	R	-	WKT interrupt event pending flag, set by H/W while WKT time out
WRIH	00.5	W	0	write 0: clear this flag; write 1: no action
INT2IF	0C.2	R	-	INT2 (PA7) interrupt event pending flag, set by H/W at INT2 pin's falling edge
		W	0	write 0: clear this flag; write 1: no action
INT1IF	0C.1	R	-	INT1 (PA1) interrupt event pending flag, set by H/W at INT1 pin's falling/rising edge
		W	0	write 0: clear this flag; write 1: no action
INTOIF	0C.0	R	-	INT0 (PA6) interrupt event pending flag, set by H/W at INT0 pin's falling/rising edge
		W	0	write 0: clear this flag; write 1: no action
CLKCTL (0Fh)				Function related to: Fsys
-	0F.7~5	-	-	Reserved
SLOWSTP	0F.4	R/W	0	Stop Slow-clock in Stop Mode 0: no Stop 1: Stop
FASTSTP	0F.3	R/W	0	Stop Fast-clock 0:no Stop 1:Stop
CPUCKS	0F.2	R/W	0	Select Fast-clock 0: Fsys=Slow-clock 1: Fsys=Fast-clock
CPUPSC	0F.1~0	R/W	11	Fsys Prescaler, 0: div 8, 1: div 4, 2: div 2, 3: div 1
TMORLD (10h	ı)			Function related to: TM0
TMORLD	10.7~0	R/W	0	Timer0 reload Data
TM0CTL (11h				Function related to: TM0
	11.7~6			
TM0EDG	11.5	R/W	0	Timer0 prescaler counting edge for TM0CKI pin 0: rising edge 1: falling edge
TM0CKS	11.4	R/W	0	Timer0 prescaler clock source 0: Fsys/2 1: TM0CKI pin (PA2 pin)
TM0PSC	11.3~0	R/W	0	Timer0 prescaler. Timer0 prescaler clock source divided by 0000: /1 0101: /32 0001: /2 0110: /64 0010: /4 0111: /128 0011: /8 1xxx: /256 0100: /16 0100: /16

Name	Address	R/W	Rst	Description
TM1 (12h))			Function related to: Timer1
TM1	12.7~0	R/W	0	Timer1 content
TM1RLD (13)	1)			Function related to: Timer1
TM1RLD	13.7~0	R/W	0	Timer1 reload Data
TM1CTL (14h	ı)			Function related to: Timer1
TM1PSC	14.3~0	R/W	0	Timer1 prescaler. Timer1 clock source 0000: Fsys/2 0001: Fsys/4 0010: Fsys/8 0011: Fsys/16 0100: Fsys/32 0101: Fsys/64 0110: Fsys/128 0111: Fsys/256 1xxx: Fsys/512
T2CTL (15h)				Function related to: T2
T2CKS	15.2	R/W	0	T2 clock source selection. 1: Fsys/128 0: Slow-clock
T2PSC	15.1~0	R/W	0	T2 prescaler. T2 clock source divided by - 00: 32768 01: 16384 10: 8192 11: 128
MF016 (16h)				Function related to: T2/TM1/TM0/LVR/LVD
LVDF	16.7	R	-	Low voltage detection flag, set by H/W while Vcc \leq LVD
LVDEN	16.6	R/W	0	Low voltage detection function enable, (When LVR=2.3V) 1=enable, 0=disable
T2CLR	16.5	R/W	1	T2 counter clear 0: Release 1: Stop counting
TM1STP	16.4	R/W	0	Timer1 counter stop 0: Release 1: Stop counting
TM0STP	16.3	R/W	0	Timer0 counter stop 0: Release 1: Stop counting
LVRSAV	16.2	R/W	1	LVR/LVD power save 1: LVR/LVD auto power off in STOP/IDLE mode 0: LVR/LVD enable in in STOP/IDLE mode
LVDS	16.1~0	R/W	01	LVD select 00: 3.6V 01: 2.8V 1x: 4.17V (When LVR=2.3V)
ADH (17h)				Function related to: ADC
ADH	17.7~0	R	-	ADC output data MSB, ADQ [11:4]
ADCTL (18h)				Function related to: ADC
ADL	18.7~4	R	-	ADC output data LSB, ADQ [3:0]
ADST	18.3	R/W	0	ADC start bit. 0: H/W clear after end of conversion 1: ADC start conversion
ADCKS	18.2~0	R/W	0	ADC clock frequency selection: 000: Fsys/256 100: Fsys/16 001: Fsys/128 101: Fsys/8 010: Fsys/64 110: Fsys/4 011: Fsys/32 111: Fsys/2

Name	Address	R/W	Rst	Description
MF019 (19h)				Function related to: ADC
-	19.7~6	-	-	Reserved
TEST0	19.5	R/W	0	Test bit, Keep 0
BGEN	19.4	R/W	1	Band Gap BG1.25V & Vtemp function enable 0: Disable 1: Enable and Auto disable in STOP/IDLE mode
ADCHS	19.3~0	R/W	0	ADC channel select0000: ADC0 (PA6)0110: ADC6 (PD6)1100: ADC12(PD2)0001: ADC1 (PA1)0111: ADC7 (PB0)1101: ADC13(PD3)0010: ADC2 (PA2)1000: ADC8(PA0)1110: Vtemp0011: ADC3 (PB1)1001: ADC9(PD5)1111: VBG 1.25V0100: ADC4 (PD7)1010: ADC10(PD4)1011: ADC5 (PA5)
TKDL (1Ah)				Function related to: Touch Key
TKDL	1A.7~0	R	-	Touch key data LSB [7~0]
TKDH (1Bh)				Function related to: Touch Key
TKDH	1B.3~0	R	-	Touch key data MSB [11~8]
TKTMRL (1C	h)			Function related to: Touch Key
TKTMRL	1C.7~0	R/W	FF	Touch Key reference counter LSB[7~0]
TKTMRH (1Dh)				Function related to: Touch Key
TKTMRH	1D.3~0	R/W	0	Touch Key reference counter MSB[11~8]
TKCON0 (1Eh)				Function related to: Touch Key
TKPD	1E.7	R/W	1	Touch Key power down 0: Touch Key enable 1: Touch Key disable
TKFJMP	1E.6	R/W	0	TCK Frequency auto adjust option 0: Disable 1: Enable
TKFDB	1E.5	R/W	0	Touch Key reference clock (RCK) double frequency enable 0: select normal RCK 1: select double RCK
TKFSEL	1E.4~3	R/W	0	Touch Key reference clock (RCK) frequency select 00: Lowest frequency 11: Highest frequency
TKREFC	1E.2~0	R/W	100	Touch Key reference clock capacitor select 000: smallest (RCK frequency fastest, conversion time shortest) 111: biggest (RCK frequency slowest, conversion time longest)

Name	Address	R/W	Rst	Description
TKCON1 (1Fh)				Function related to: Touch Key
TKIF	1F.7	R/W	0	Touch Key interrupt event pending flag, set by H/W at the end of Touch Key conversion S/W writes 0 to TKIF or sets the TKSOC bit to clear this flag.
TKIE	1F.6	R/W	0	Touch Key interrupt enable 0: Disable Touch Key interrupt 1: Enable Touch Key interrupt
TKSOC	1F.5	R/W	0	Touch Key Start of Conversion Set 1 to start Touch Key conversion. If SYSCLK is fast enough, this bit will be cleared by H/W at the end of conversion. S/W can also write 0 to clear this flag.
TKEOC	1F.4	R	1	Touch Key end of conversion flag, TKEOC may have 3uS delay after TKSOC=1, so F/W must wait enough time before polling this Flag. 0: Indicates conversion is in progress 1: Indicates conversion is finished
TKCHS	1F.3~0	R/W	0	Touch Key channel select 0000: TK0 (PA6) 0001: TK1 (PA1) 0010: TK2 (PA2) 0011: TK3 (PB1) 0100: TK4 (PD7) 0101: TK5 (PA5) 0110: TK6 (PA0) 0111: TK7 (PB0) 1xxx: TKREF
User Data Men	nory			
RAM	20~6F	R/W	-	RAM Bank0 area (80 Bytes)
RAM	70~7F	R/W	-	RAM common area (16 Bytes)

Name	Address	R/W	Rst	Description			
OPTION (81h	/181h)			Function related to: STATUS/INT0/INT1/WDT/WKT			
HWAUTO	81.7	R/W	0	Save/Restore STATUS w/o TO, PD			
			-	0:disable 1: Enable INT0 pin edge interrupt event			
INT0EDG	81.6	R/W	0	0: falling edge to trigger			
IIII OLD C	01.0	10 11	Ŭ	1: rising edge to trigger			
				INT1 pin edge interrupt event			
INT1EDG	81.5	R/W	0	0: falling edge to trigger			
				1: rising edge to trigger INT0 pin select,			
INTOSEL	81.4	R/W	0	0: PA6 1: PA2			
				WDT pre-scale selections:			
				00: 128mS			
WDTPSC	81.3~2	R/W	11	01: 256mS			
				10: 1024mS 11: 2048mS			
				WKT pre-scale selections:			
				00: 16mS			
WKTPSC	81.1~0	R/W	11	01: 32mS			
				10: 64mS			
				11: 128mS			
PAMODH (80			1	Function related to: Port A			
-	8C.7~6	-	-	Reserved			
PA6MOD	8C.5~4	R/W	01	PA6~PA4 I/O mode control 00: Mode0			
PA5MOD	8C.3~2	R/W	01	01: Model			
PA4MOD	8C.1~0	R/W	01	10: Mode2			
DAMODI (PD	(L)			11: Mode3			
PAMODL (8D	,	DAV	01	Function related to: Port A			
PA3MOD	8D.7~6	R/W	01	PA3~PA0 I/O mode control 00: Mode0			
PA2MOD	8D.5~4	R/W	01	01: Mode1			
PA1MOD	8D.3~2	R/W	01	10: Mode2			
PA0MOD	8D.1~0	R/W	01	11: Mode3			
PBMODL (8Fh	1			Function related to: Port B			
-	8F.7~6	-	-	PB1~PB0 I/O mode control			
-	8F.5~4	-	-	00: Mode0 01: Mode1			
PB1MOD	8F.3~2	R/W	01	10: Mode2			
PB0MOD	8F.1~0	R/W	01	11: Mode3Reserved			
PDMODH (90	h)			Function related to: Port D			
PD7MOD	90.7~6	R/W	01	PD7~PD4 I/O mode control			
PD6MOD	90.5~4	R/W	01	00: Mode0			
PD5MOD	90.3~2	R/W	01	01: Mode1 10: Mode2			
PD4MOD	90.1~0	R/W	01	11: Mode3			
PDMODL (91	PDMODL (91h) Function related to: Port D						
PD3MOD	91.7~6	R/W	01	PD3~PD0 I/O mode control			
PD2MOD	91.5~4	R/W	01	00: Mode0			
PD1MOD	91.3~2	R/W	01	01: Mode1			
PD0MOD	91.1~0	R/W	01	10: Mode2 11: Mode3			
1 DOMOD	91.1~0	11/ 11	01	11. WOUC3			

Name	Address	R/W	Rst	Description
PWM0PRD (92h)				Function related to: PWM0
PWM0PRD	92.7~0	R/W	FF	PWM0 period data
PWM0DH (93	h)			Function related to: PWM0
PWM0DH	93.7~0	R/W	0	PWM0 Duty MSB 8bit
PWM0DL (94)	1)			Function related to: PWM0
PWM0DL	94.1~0	R/W	0	PWM0 Duty LSB 2bit
PWM0CTL (9	5h)			Function related to: PWM0
PWM0CLR	95.5	R/W	0	PWM0 clear and hold 0:PWM0 enable 1:PWM0 clear and hold
PWM0MODE	95.4~3	R/W	0	PWM0 differential output mode 00 : Mode 0, 01 : Mode 1, 10 : Mode 2, 11 : Mode 3
PWM0NOV	95.2~0	R/W	0	PWM0 non-overlap control 000 : original PWM0 001 : non-overlap 4 PWM0CLKs 010 : non-overlap 5 PWM0CLKs 011 : non-overlap 6 PWM0CLKs 100 : non-overlap 7 PWM0CLKs 101 : non-overlap 8 PWM0CLKs
PWMCTL (96	h)			Function related to: PWM0/PWM1
PWM1DIS	96.7	R/W	0	PWM1 Clock Disable and PWM1 clear 0:Clock Enable 1:Clock Disable
PWM0DIS	96.6	R/W	0	PWM0 Clock Disable 0:Clock Enable 1:Clock Disable
PWMCKS	96.5~4	R/W	0	PWM0 Clock Source 0x: Fsys 10:FIRC16M 11:FIRC32M
PWM1PSC	96.3~2	R/W	0	PWM1 Clock Source Prescaler 00: DIV1 01: DIV2 10:DIV4 11:DIV64
PWM0PSC	96.1~0	R/W	0	PWM0 Clock Source Prescaler 00: DIV1 01: DIV2 10:DIV4 11:DIV64
PWM1PRD (9	7h)			Function related to: PWM1
PWM1PRD	97.7~0	R/W	FF	PWM1 (PWM1A/PWM1B/PWM1C) period data
PWM1AD (98	h)			Function related to: PWM1A
PWM1AD	98.7~0	R/W	0	PWM1A Duty
PWM1BD (99)	· · · · · ·			Function related to: PWM1B
PWM1BD	99.7~0	R/W	0	PWM1B Duty
PWM1CD (9Ah)				Function related to: PWM1C
PWM1CD	9A.7~0	R/W	0	PWM1C Duty

Name	Address	R/W	Rst	Description		
MF09B (9Bh)				Function related to: PWM1A/PWM1B/PWM1C		
PWM1COE1	9B.7	R/W	0	PWM1C Output Enable 1 (priority < PWM0P Output Enable 1) 0: Disable 1:Enable, PWM1C output to PB0		
PWM1COE0	9B.6	R/W	0	PWM1C Output Enable 0 0: Disable 1:Enable, PWM1C output to PA5		
PWM1BOE2	9B.5	R/W	0	PWM1B Output Enable 20: Disable1:Enable, PWM1B output to PD2		
PWM1BOE1	9B.4	R/W	0	PWM1B Output Enable 1(priority < PWM0N Output Enable 0)0: Disable1:Enable, PWM1B output to PA4		
PWM1BOE0	9B.3	R/W	0	PWM1B Output Enable 0 0: Disable 1:Enable, PWM1B output to PD7		
PWM1AOE2	9B.2	R/W	0	PWM1A Output Enable 2 0: Disable 1:Enable, PWM1A output to PD1		
PWM1AOE1	9B.1	R/W	0	PWM1A Output Enable 1 (priority < PWM0N Output Enable 1) 0: Disable 1:Enable, PWM1A output to PA0		
PWM1AOE0	9B.0	R/W	0	PWM1A Output Enable 0 0: Disable 1:Enable, PWM1A output to PB1		
MF09C (9Ch)			1	Function related to: PWM0/PWM1/TM1/TC		
TCOE	9C.7	R/W	0	TCOUT Output Enable 0: Disable 1: Enable, output to PD6		
TM1OE	9C.6	R/W	0	Timer1 overflow toggle Output Enable 0: Disable 1:Enable, output to PD0		
PWM1COE3	9C.5	R/W	0	PWM1C Output Enable 30: Disable1:Enable, PWM1C output to PD3		
PWM1COE2	9C.4	R/W	0	PWM1C Output Enable 2 (priority < PWM0P Output Enable 0)0: Disable1:Enable, PWM1C output to PA3		
PWM0NOE1	9C.3	R/W	0	PWM0N Output Enable 1 (priority > PWM1A Output Enable 1)0: Disable 1:Enable, PWM0N output to PA0		
PWM0NOE0	9C.2	R/W	0	PWM0N Output Enable 0 (priority > PWM1B Output Enable 1) 0: Disable 1:Enable, PWM0N output to PA4		
PWM0POE1	9C.1	R/W	0	PWM0P Output Enable 1 (priority > PWM1C Output Enable 1) 0: Disable 1:Enable, PWM0P output to PB0		
PWM0POE0	9C.0	R/W	0	PWM0P Output Enable 0 (priority > PWM1C Output Enable 2)0: Disable 1:Enable, PWM0P output to PA3		
User Data Mem			1			
RAM	A0~EF	R/W	-	RAM Bank1 area (80 Bytes)		
TESTREG (10)			1	Function related to: TEST		
TESTREG	105.1~0	R/W	11	Test bits, Keep 11		
LVRPD (109h)				Function related to: LVR		
LVRPD	109	W	-	Write 0x37 to force LVR disable		
User Data Mem	User Data Memory					
RAM	120~16F	R/W	-	RAM Bank2area (80 Bytes)		

Name	Address	R/W	Rst	Description
DPL				Function related to: Table Read
DPL	185.7~0	R/W	0	Table read low address, data ROM pointer (DPTR) low byte
DPH				Function related to: Table Read
DPH	186.3~0	R/W	0	Table read high address, data ROM pointer (DPTR) high byte
(F18F) IRCF				Function related to: Internal RC
IRCF	18f.6~0	R/W		FIRC frequency adjustment:
inter	101.0 0			00h: Lowest frequency 7Fh: Highest frequency

INSTRUCTION SET

Each instruction is a 14-bit word divided into an Op Code, which specifies the instruction type, and one or more operands, which further specify the operation of the instruction. The instructions can be categorized as byte-oriented, bit-oriented and literal operations list in the following table.

For byte-oriented instructions, "f" represents the address designator and "d" represents the destination designator. The address designator is used to specify which address in Program memory is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If "d" is "0", the result is placed in the W register. If "d" is "1", the result is placed in the address specified in the instruction.

For bit-oriented instructions, "b" represents a bit field designator, which selects the number of the bit affected by the operation, while "f" represents the address designator. For literal operations, "k" represents the literal or constant value.

Field/Legend	Description	
f	F-Plane Register File Address	
b	Bit address	
k	Literal. Constant data or label	
d	Destination selection field, 0: Working register, 1: Register file	
W	Working Register	
Z	Zero Flag	
С	Carry Flag or/Borrow Flag	
DC	Decimal Carry Flag or Decimal/Borrow Flag	
PC	Program Counter	
TOS	Top Of Stack	
GIE	Global Interrupt Enable Flag (i-Flag)	
[]	Option Field	
()	Contents	
	Bit Field	
В	Before	
А	After	
←	Assign direction	

Rev 0.93, 2019/12/09

Mnemor	nic	Op Code	Cycle	Flag Affect	Description
		-	Ţ	ister Instructio	-
ADDWF	f, d	00 0111 dfff ffff	1	C, DC, Z	Add W and "f"
ANDWF	f, d	00 0101 dfff ffff	1	Z	AND W with "f"
CLRF	F	00 0001 1fff ffff	1	Z	Clear "f"
CLRW		00 0001 0100 0000	1	Z	Clear W
COMF	f, d	00 1001 dfff ffff	1	Z	Complement "f"
DECF	f, d	00 0011 dfff ffff	1	Z	Decrement "f"
DECFSZ	f, d	00 1011 dfff ffff	1 or 2	-	Decrement "f", skip if zero
INCF	f, d	00 1010 dfff ffff	1	Z	Increment "f"
INCFSZ	f, d	00 1111 dfff ffff	1 or 2	-	Increment "f", skip if zero
IORWF	f, d	00 0100 dfff ffff	1	Z	OR W with "f"
MOVF	f,d	00 1000 dfff ffff	1	Z	Move "f"
MOVFW	f	00 1000 Offf ffff	1	Z	Move "f" to W
MOVWF	f	00 0000 1fff ffff	1	-	Move W to "f"
RLF	f, d	00 1101 dfff ffff	1	С	Rotate left "f" through carry
RRF	f, d	00 1100 dfff ffff	1	С	Rotate right "f" through carry
SUBWF	f, d	00 0010 dfff ffff	1	C, DC, Z	Subtract W from "f"
SWAPF	f, d	00 1110 dfff ffff	1	-	Swap nibbles in "f"
TSTF	f	00 1000 1fff ffff	1	Z	Test if "f" is zero
XORWF	f, d	00 0110 dfff ffff	1	Z	XOR W with "f"
		Bit-Oriented	l File Regi	ster Instruction	1
BCF	f, b	11 00bb bfff ffff	1	-	Clear "b" bit of "f"
BSF	f, b	11 01bb bfff ffff	1	-	Set "b" bit of "f"
BTFSC	f, b	11 10bb bfff ffff	1 or 2	-	Test "b" bit of "f", skip if clear
BTFSS	f, b	11 11bb bfff ffff	1 or 2	-	Test "b" bit of "f", skip if set
		Literal a	nd Contro	l Instruction	
ADDLW	k	01 1100 kkkk kkkk	1	C, DC, Z	Add Literal "k" and W
ANDLW	k	01 1011 kkkk kkkk	1	Z	AND Literal "k" with W
CALL	k	10 Okkk kkkk kkkk	2	-	Call subroutine "k"
CLRWDT		01 1110 0000 0100	1	TO, PD	Clear Watch Dog Timer
GOTO	k	10 1kkk kkkk kkkk	2	-	Jump to branch "k"
IORLW	k	01 1010 kkkk kkkk	1	Z	OR Literal "k" with W
MOVLW	k	01 1001 kkkk kkkK	1	-	Move Literal "k" to W
NOP		$00 \ 0000 \ 0000 \ 0000$	1	-	No operation
RET		00 0000 0100 0000	2	-	Return from subroutine
RETI		$00 \ 0000 \ 0110 \ 0000$	2	-	Return from interrupt
RETLW	k	01 1000 kkkk kkkk	2	-	Return with Literal in W
SLEEP		01 1110 0000 0011	1	TO, PD	Go into Power-down mode, Clock oscillation stops
SUBLW	k	01 1111 kkkk kkkk	1	C, DC, Z	Subtract W from literal
TABRH		00 0000 0101 1000	2	-	Lookup ROM high data to W
TABRL		00 0000 0101 0000	2	-	Lookup ROM low data to W
XORLW	k	01 1101 kkkk kkkk	1	Z	XOR Literal "k" with W

Note: SLEEP / CLRWDT instructions can only be executed when RP0 = 0.

ADDLW	Add Literal ''k'' an	d W
Syntax	ADDLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) + k$	
Status Affected	C, DC, Z	
OP-Code	01 1100 kkkk kkkk	
Description	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.	
Cycle	1	
Example	ADDLW 0x15	B: W = 0x10
		A : W =0x25

ADDWF	Add W and "f"	
Syntax	ADDWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	$(destination) \leftarrow (W) + (f)$	
Status Affected	C, DC, Z	
OP-Code	00 0111 dfff ffff	
Description	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.	
Cycle	1	
Example	ADDWF FSR, 0	B : W =0x17, FSR =0xC2 A : W =0xD9, FSR =0xC2

ANDLW	Logical AND Literal "k" with W	
Syntax	ANDLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) AND k$	
Status Affected	Ž	
OP-Code	01 1011 kkkk kkkk	
Description	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.	
Cycle	1	
Example	ANDLW 0x5F	B: W = 0xA3
-		A: W = 0x03

ANDWF	AND W with "f"	
Syntax	ANDWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	$(destination) \leftarrow (W) ANE$	D (f)
Status Affected	Z	
OP-Code	00 0101 dfff ffff	
Description	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.	
Cycle	1	Ũ
Example	ANDWF FSR, 1	B: W = 0x17, FSR = 0xC2
-		A: W = 0x17, FSR = 0x02

BCF	Clear "b" bit of "f"		
Syntax	BCF f [,b]		
Operands	f : 00h ~ 7Fh, b : 0 ~ 7		
Operation	$(f.b) \leftarrow 0$		
Status Affected	-		
OP-Code	11 00bb bfff ffff		
Description	Bit 'b' in register 'f' is cleared.		
Cycle			
Example	BCF FLAG_REG, 7	B : FLAG_REG =0xC7 A : FLAG_REG =0x47	
BSF	Set "b" bit of "f"		
Syntax	BSF f [,b]		
Operands	f : 00h ~ 7Fh, b : 0 ~ 7		
Operation	$(f.b) \leftarrow 1$		
Status Affected	-		
OP-Code	11 01bb bfff ffff		
Description	Bit 'b' in register 'f' is set.		
Cycle	1 DSE ELAC DEC 7		
Example	BSF FLAG_REG, 7	B : FLAG_REG =0x0A A : FLAG_REG =0x8A	
		A . FLAU_KEU -0X0A	
BTFSC	Test "b" bit of "f", skip i	f clear(0)	
Syntax	BTFSC f [,b]		
Operands	f : 00h ~ 7Fh, b : 0 ~ 7		
Operation	Skip next instruction if (f.b) =0		
Status Affected	-		
OP-Code	11 10bb bfff ffff		
Description	If bit 'b' in register 'f' is 1, then the next instruction is executed. If bit 'b' in register 'f' is 0, then the next instruction is discarded, and a NOP is executed instead, making this a 2nd cycle instruction.		
Cycle	1 or 2		
Example	LABEL1 BTFSC FLAG, 1	B : PC = LABEL1	
-	TRUE GOTO SUB1	A : if FLAG.1 =0, PC =FALSE	
	FALSE	if FLAG.1 =1, PC =TRUE	
BTFSS	Test "b" bit of "f", skip i	f sot(1)	
Syntax	BTFSS f [,b]		
Operands	$f: 00h \sim 7Fh, b: 0 \sim 7$		
Operation	Skip next instruction if (f.b) =1		
Status Affected	-		
OP-Code	11 11bb bfff ffff		
Description	If bit 'b' in register 'f' is 0, then the next instruction is executed. If bit 'b' in register		
r r	'f' is 1, then the next instruction is discarded, and a NOP is executed instead		
	making this a 2nd cycle instruction.		
Cycle	1 or 2		
Example	LABEL1 BTFSS FLAG, 1	B : PC = LABEL1	
	TRUE GOTO SUB1	A : if FLAG.1 =0, PC =TRUE	

FALSE ...

if FLAG.1 =1, PC =FALSE

CALL	Call subroutine "k"	
Syntax	CALL k	
Operands	k : 000h ~ 7FFh	
Operation	Operation: TOS \leftarrow (PC) + 1, 1	$PC.10\sim 0 \leftarrow k$
Status Affected	-	
OP-Code	10 Okkk kkkk	
Description	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH. CALL is a two-cycle instruction.	
Cycle	2	
Example	LABEL1 CALL SUB1	B : PC =LABEL1 A : PC =SUB1, TOS =LABEL1 + 1

CLRF	Clear "f"		
Syntax	CLRF f		
Operands	f : 00h ~ 7Fh		
Operation	(f) \leftarrow 00h, Z \leftarrow 1	(f) \leftarrow 00h, Z \leftarrow 1	
Status Affected	Z		
OP-Code	00 0001 1fff ffff		
Description	The contents of register 'f' are cleared and the Z bit is set.		
Cycle	1		
Example	CLRF FLAG_REG	$B : FLAG_REG = 0x5A$	
		A : FLAG_REG = $0x00$, Z = 1	

CLRW	Clear W	
Syntax	CLRW	
Operands	-	
Operation	$(W) \leftarrow 00h, Z \leftarrow 1$	
Status Affected	Z	
OP-Code	00 0001 0100 0000	
Description	W register is cleared an	nd Z bit is set.
Cycle	1	
Example	CLRW	B: W = 0x5A
-		A : W =0x00, Z =1

CLRWDT	Clear Watchdog	ſimer
Syntax	CLRWDT	
Operands	-	
Operation	WDT/WKT Timer ←	00h
Status Affected	TO, PD	
OP-Code	01 1110 0000 0100	
Description	CLRWDT instruction clears the Watchdog/Wakeup Timer	
Cycle	1	
Example	CLRWDT	B : WDT counter =?
-		A : WDT counter $=0x00$

Note: CLRWDT instruction can only be executed when RP0 = 0

COMF	Complement "f"	
Syntax	COMF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) $\leftarrow (\overline{f})$	
Status Affected	Ž	
OP-Code	00 1001 dfff ffff	
Description	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W.	
-	If 'd' is 1, the result is stored back in register 'f'.	
Cycle	1	
Example	COMF REG1, 0	B: REG1 = 0x13
		A : REG1 =0x13, W =0xEC

DECF	Decrement "f"	
Syntax	DECF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	$(destination) \leftarrow (f) - 1$	
Status Affected	Z	
OP-Code	00 0011 dfff ffff	
Description	Decrement register 'f'. If result is stored back in re	'd' is 0, the result is stored in the W register. If 'd' is 1, the egister 'f'.
Cycle	1	-
Example	DECF CNT, 1	B : CNT =0x01, Z =0
		A : CNT =0x00, Z =1

DECFSZ	Decrement "f", Skip if 0	
Syntax	DECFSZ f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (f) - 1, skip nex	t instruction if result is 0
Status Affected	-	
OP-Code	00 1011 dfff ffff	
Description	register. If 'd' is 1, the result is p	ecremented. If 'd' is 0, the result is placed in the W blaced back in register 'f'. If the result is 1, the next esult is 0, then a NOP is executed instead, making
Cycle	1 or 2	
Example	LABEL1 DECFSZ CNT, 1	B : PC = LABEL1
-	GOTO LOOP	A: CNT = CNT - 1
	CONTINUE	if CNT =0, PC =CONTINUE
		if CNT $\neq 0$, PC =LABEL1 + 1

GOTO	Unconditional Branch	
Syntax	GOTO k	
Operands	k : 000h ~ 7FFh	
Operation	$PC.10 \sim 0 \leftarrow k$	
Status Affected	-	
OP-Code	10 1kkk kkkk kkkk	
Description		anch. The 11-bit immediate value is loaded into PC f PC are loaded from PCLATH. GOTO is a two-
Cycle	2	
Example	LABEL1 GOTO SUB1	B : PC =LABEL1 A : PC =SUB1

INCF	Increment "f"	
Syntax	INCF f [,d]	
Operands	f : 00h ~ 7Fh	
Operation	(destination) \leftarrow (f) + 1	
Status Affected	Z	
OP-Code	00 1010 dfff ffff	
Description	ę	" are incremented. If 'd' is 0, the result is placed in the W ult is placed back in register 'f'.
Cycle	1	
Example	INCF CNT, 1	B : CNT = 0xFF, Z = 0
-		A : CNT =0x00, Z =1

INCFSZ	Increment "f", Skip if 0	
Syntax	INCFSZ f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (f) + 1, skip ne	xt instruction if result is 0
Status Affected	-	
OP-Code	00 1111 dfff ffff	
Description	register. If 'd' is 1, the result is	ncremented. If 'd' is 0, the result is placed in the W placed back in register 'f'. If the result is 1, the next esult is 0, a NOP is executed instead, making it a 2
Cycle	1 or 2	
Example	LABEL1 INCFSZ CNT, 1	B : PC = LABEL1
	GOTO LOOP	A: CNT = CNT + 1
	CONTINUE	if CNT =0, PC =CONTINUE
		if CNT $\neq 0$, PC =LABEL1 + 1

IORLW	Inclusive OR Liter	al with W
Syntax	IORLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) OR k$	
Status Affected	Z	
OP-Code	01 1010 kkkk kkkk	
Description	The contents of the W r placed in the W register	register are OR'ed with the eight-bit literal 'k'. The result is
Cycle	1	
Example	IORLW 0x35	B: W = 0x9A
-		A: W = 0xBF, Z = 0

IORWF	Inclusive OR W with	"f"
Syntax	IORWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (W) OR k	
Status Affected	Z	
OP-Code	00 0100 dfff ffff	
Description	Inclusive OR the W registe	r with register 'f'. If 'd' is 0, the result is placed in the
-	W register. If 'd' is 1, the res	ult is placed back in register 'f'.
Cycle	1	
Example	IORWF RESULT, 0	B : RESULT =0x13, W =0x91
		A : RESULT =0x13, W =0x93, Z =0

MOVF	Move f
Syntax	MOVF f,d
Operands	f : 00h ~ 7Fh
Operation	$(destination) \leftarrow (f)$
Status Affected	Z
OP-Code	00 1000 dfff ffff
Description	The contents of register 'f' are moved to a destination dependent upon the status of d. If d=0, destination is W register. If d =1, the destination is file register f itself. $d=1$ is useful to test a file register, since status flag Z is affected.
Cycle	1
Example	MOVF FSR,0 B : FSR =0xC2, W =? A : FSR =0xC2, W 0xC2

MOVFW	Move "f" to W	
Syntax	MOVFW f	
Operands	f : 00h ~ 7Fh	
Operation	$(W) \leftarrow (f)$	
Status Affected	Z	
OP-Code	00 1000 Offf ffff	
Description	The contents of register '	are moved to W register.
Cycle	1	C
Example	MOVFW FSR	B : FSR = 0xC2, W = ?
-		A : FSR $=0xC2$, W $0xC2$

MOVLW	Move Literal to W	
Syntax	MOVLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow k$	
Status Affected	-	
OP-Code	01 1001 kkkk kkkk	
Description	The eight-bit literal 'k' is loa	ded into W register. The don't cares will assemble as
	0's.	
Cycle	1	
Example	MOVLW 0x5A	B : W =?
		A: W = 0x5A

MOVWF	Move W to "f"	
Syntax	MOVWF f	
Operands	f : 00h ~ 7Fh	
Operation	$(f) \leftarrow (W)$	
Status Affected	-	
OP-Code	00 0000 1fff ffff	
Description	Move data from W register	to register 'f'.
Cycle	1	-
Example	MOVWF REG1	B : REG1 = 0xFF, W = 0x4F
-		A : REG1 =0x4F, W =0x4F

NOP	No Operation
Syntax	NOP
Operands	-
Operation	No Operation
Status Affected	-
OP-Code	00 0000 0000
Description	No Operation
Cycle	1
Example	NOP -
RET	Return from Subroutine
	RET
Syntax Operanda	KE1
Operands	$PC \leftarrow TOS$
Operation Status Affected	$PC \leftarrow 10S$
Status Affected	-
OP-Code	00 0000 0100 0000 Determ subsection. The stack is DODed and the ten of the stack (TOS) is
Description	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.
Cycle	2
Example	RET A : PC =TOS
DETI	Determs for an Internet
RETI	Return from Interrupt
Syntax	RETI
Operands	-
Operands Operation	RETI - PC ← TOS, GIE ← 1
Operands Operation Status Affected	PC \leftarrow TOS, GIE $\leftarrow 1$
Operands Operation Status Affected OP-Code	- PC ← TOS, GIE ← 1 - 00 0000 0110 0000
Operands Operation Status Affected	PC \leftarrow TOS, GIE $\leftarrow 1$
Operands Operation Status Affected OP-Code	- PC ← TOS, GIE ← 1 - 00 0000 0110 0000 Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the
Operands Operation Status Affected OP-Code Description	- PC ← TOS, GIE ← 1 - 00 0000 0110 0000 Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the PC. Interrupts are enabled. This is a two-cycle instruction.
Operands Operation Status Affected OP-Code Description Cycle Example	PC ← TOS, GIE ← 1 00 0000 0110 0000 Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the PC. Interrupts are enabled. This is a two-cycle instruction. 2 RETI A : PC =TOS, GIE =1
Operands Operation Status Affected OP-Code Description Cycle Example RETLW	PC ← TOS, GIE ← 1 00 0000 0110 0000 Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the PC. Interrupts are enabled. This is a two-cycle instruction. 2 RETI A : PC =TOS, GIE =1 Return with Literal in W
Operands Operation Status Affected OP-Code Description Cycle Example RETLW Syntax	PC ← TOS, GIE ← 1 00 0000 0110 0000 Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the PC. Interrupts are enabled. This is a two-cycle instruction. 2 RETI A : PC =TOS, GIE =1 Return with Literal in W RETLW k
Operands Operation Status Affected OP-Code Description Cycle Example RETLW Syntax Operands	PC \leftarrow TOS, GIE \leftarrow 1 00 0000 0110 0000 Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the PC. Interrupts are enabled. This is a two-cycle instruction. 2 RETI A : PC =TOS, GIE =1 RETLW k k : 00h ~ FFh
Operands Operation Status Affected OP-Code Description Cycle Example RETLW Syntax Operands Operation	PC ← TOS, GIE ← 1 00 0000 0110 0000 Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the PC. Interrupts are enabled. This is a two-cycle instruction. 2 RETI A : PC =TOS, GIE =1 Return with Literal in W RETLW k
Operands Operation Status Affected OP-Code Description Cycle Example RETLW Syntax Operands Operation Status Affected	PC \leftarrow TOS, GIE \leftarrow 1 00 0000 0110 0000 Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the PC. Interrupts are enabled. This is a two-cycle instruction. 2 RETI A : PC =TOS, GIE =1 RETLW k k : 00h ~ FFh PC \leftarrow TOS, (W) \leftarrow k -
Operands Operation Status Affected OP-Code Description Cycle Example RETLW Syntax Operands Operation Status Affected OP-Code	PC \leftarrow TOS, GIE \leftarrow 1 00 0000 0110 0000 Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the PC. Interrupts are enabled. This is a two-cycle instruction. 2 RETI A : PC =TOS, GIE =1 RETLW k k : 00h ~ FFh PC \leftarrow TOS, (W) \leftarrow k - 01 1000 kkkk kkkk
Operands Operation Status Affected OP-Code Description Cycle Example RETLW Syntax Operands Operation Status Affected	PC ← TOS, GIE ← 1 00 0000 0110 0000 Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the PC. Interrupts are enabled. This is a two-cycle instruction. 2 RETI A : PC =TOS, GIE =1 RETLW k k : 00h ~ FFh PC ← TOS, (W) ← k - 01 1000 kkkk kkkk The W register is loaded with the eight-bit literal 'k'. The program counter is
Operands Operation Status Affected OP-Code Description Cycle Example RETLW Syntax Operands Operation Status Affected OP-Code	PC ← TOS, GIE ← 1 - 00 0000 0110 0000 Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the PC. Interrupts are enabled. This is a two-cycle instruction. 2 RETI A : PC =TOS, GIE =1 RETLW k k : 00h ~ FFh PC ← TOS, (W) ← k - 01 1000 kkkk kkkk The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle
Operands Operation Status Affected OP-Code Description Cycle Example RETLW Syntax Operands Operation Status Affected OP-Code Description	 PC ← TOS, GIE ← 1 00 0000 0110 0000 Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the PC. Interrupts are enabled. This is a two-cycle instruction. 2 RETI A : PC =TOS, GIE =1 Return with Literal in W RETLW k k : 00h ~ FFh PC ← TOS, (W) ← k 01 1000 kkkk kkkk The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.
Operands Operation Status Affected OP-Code Description Cycle Example RETLW Syntax Operands Operation Status Affected OP-Code Description Cycle	 PC ← TOS, GIE ← 1 00 0000 0110 0000 Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the PC. Interrupts are enabled. This is a two-cycle instruction. 2 RETI A : PC =TOS, GIE =1 Return with Literal in W RETLW k k : 00h ~ FFh PC ← TOS, (W) ← k 01 1000 kkkk kkkk The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction. 2
Operands Operation Status Affected OP-Code Description Cycle Example RETLW Syntax Operands Operation Status Affected OP-Code Description	 PC ← TOS, GIE ← 1 00 0000 0110 0000 Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the PC. Interrupts are enabled. This is a two-cycle instruction. 2 RETI A : PC =TOS, GIE =1 Return with Literal in W RETLW k k : 00h ~ FFh PC ← TOS, (W) ← k 01 1000 kkkk kkkk The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.

TABLE ADDWF PCL, 1 RETLW k1 RETLW k2 : RETLW kn

RLF	Rotate Left "f" through Carry
Syntax	RLF f [,d]
Operands	f : 00h ~ 7Fh, d : 0, 1
Operation	C Register f
Status Affected	С
OP-Code	00 1101 dfff ffff
Description	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.
Cycle	1
Example	RLF REG1, 0 A : REG1 =1110 0110, C =0 A : REG1 =1110 0110 W =1100 1100, C =1

RRF	Rotate Right ''f'' through Carry
Syntax	RRF f [,d]
Operands	f : 00h ~ 7Fh, d : 0, 1
Operation	C Register f
Status Affected	С
OP-Code	00 1100 dfff ffff
Description	The contents of register 'f' are rotated one bit to the right through the Carry Flag.
	If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.
Cycle	1
Example	RRF REG1, 0 B : REG1 =1110 0110, C =0
	A : REG1 =1110 0110
	W =0111 0011, C =0

SLEEP	Go into Power-down mode, Clock oscillation stops
Syntax	SLEEP
Operands	-
Operation	-
Status Affected	TO, PD
OP-Code	01 1110 0000 0011
Description	Go into Power-down mode with the oscillator stops.
Cycle	1
Example	SLEEP -

Note: SLEEP instruction can only be executed when RP0 = 0.

SUBLW	Subtract W from L	iteral
Syntax	SUBLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) + k$	
Status Affected	C, DC, Z	
OP-Code	01 1111 kkkk kkkk	
Description	The W register is subtra "k". The result is placed	acted (2's complement method) from the eight-bit literal in the W register.
Cycle	1	-
Example	SUBLW 0x15	B: W = 0x25
		A: W = 0x10

SUBWF	Subtract W from "f"	
Syntax	SUBWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	$(destination) \leftarrow (f) - (W)$	
Status Affected	C, DC, Z	
OP-Code	00 0010 dfff ffff	
Description		method) W register from register 'f'. If 'd' is 0, the result If 'd' is 1, the result is stored back in register 'f'.
Cycle	1	, C
Example	SUBWF REG1, 1	B : REG1 =0x03, W =0x02, C =?, Z =?
L		A : REG1 =0x01, W =0x02, C =1, Z =0
	SUBWF REG1, 1	B : REG1 =0x02, W =0x02, C =?, Z =?
		A : REG1 =0x00, W =0x02, C =1, Z =1
	SUBWF REG1, 1	B : REG1 =0x01, W =0x02, C =?, Z =? A : REG1 =0xFF, W =0x02, C =0, Z =0

SWAPF	Swap Nibbles in ''f''		
Syntax	SWAPF f [,d]		
Operands	f : 00h ~ 7Fh, d : 0, 1		
Operation	$(destination, 7\sim 4) \leftarrow (f.3\sim$	0), (destination.3~0) \leftarrow (f.7~4)	
Status Affected	-		
OP-Code	00 1110 dfff ffff		
Description	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W register. If 'd' is 1, the result is placed in register 'f'.		
Cycle	1		
Example	SWAPF REG, 0	B : REG1 =0xA5 A : REG1 =0xA5, W =0x5A	

TABRH	Return D	PTR high byte to W	V
Syntax	TABRH		
Operands	-		
Operation	$(W) \leftarrow ROI$	M[DPTR] high byte conte	nt, Where $DPTR = \{DPH[max:8], FSR[7:0]\}$
Status Affected	-		
OP-Code	00 0000 01	01 1000	
Description	The W reg instruction.	ister is loaded with high	h byte of ROM[DPTR]. This is a two-cycle
Cycle	2		
Example			
-	MOVLW	(TAB1&0xFF)	
	MOVWF	FSR	;Where FSR is F-Plane register
	MOVLW	(TBA1>>8)&0xFF	-
	MOVWF	DPH	;Where DPH is F-Plane register
	TABRL		:W =0x89
	TABRH		;W =0x37
	TAB1:	ORG 0234H	
	DT	0x3789, 0x2277	;ROM data 14 bits

TABRL	Return DPTR low byte to W		
Syntax	TABRL		
Operands	-		
Operation	$(W) \leftarrow RO$	M[DPTR] low byte conte	ent, Where DPTR = {DPH[max:8], FSR[7:0]}
Status Affected	-		
OP-Code	00 0000 01	01 0000	
Description	The W register is loaded with low byte of ROM[DPTR]. This is a two-cycle instruction.		
Cycle	2		
Example			
	MOVLW	(TAB1&0xFF)	
	MOVWF	FSR	;Where FSR is F-Plane register
	MOVLW	(TBA1>>8)&0xFF	
	MOVWF	DPH	;Where DPH is F-Plane register
	TABRL		;W=0x89
	TABRH		;W =0x37
	TAB1:	ORG 0234H	
	DT	0x3789, 0x2277	;ROM data 14 bits

TSTF	Test if "f" is zero		
Syntax	TSTF f		
Operands	f : 00h ~ 7Fh		
Operation	Set Z flag if (f) is 0		
Status Affected	Z		
OP-Code	00 1000 1fff ffff		
Description	If the content of register	'f' is 0, Zero flag is set to 1.	
Cycle	1	-	
Example	TSTF REG1	B : REG1 =0, Z =?	
-		A : REG1 =0, Z =1	

XORLW	Exclusive OR Litera	al with W
Syntax	XORLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) XOR k$	
Status Affected	Z	
OP-Code	01 1101 kkkk kkkk	
Description	The contents of the W register is placed in the W register	gister are XOR'ed with the eight-bit literal 'k'. The result r.
Cycle	1	
Example	XORLW 0xAF	B: W = 0xB5
-		A: W = 0x1A

XORWF	Exclusive OR W wit	h ''f''	
Syntax	XORWF f [,d]		
Operands	f : 00h ~ 7Fh, d : 0, 1		
Operation	$(destination) \leftarrow (W) XOR$. (f)	
Status Affected	Z		
OP-Code	00 0110 dfff ffff		
Description	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is		
-	stored in the W register. If	f 'd' is 1, the result is stored back in register 'f'.	
Cycle	1		
Example	XORWF REG, 1	B : REG = 0xAF, W = 0xB5	
-		A : REG = 0x1A, W = 0xB5	

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

Parameter	Rating	Unit
Supply voltage	V_{SS} -0.3 to V_{SS} +5.5	
Input voltage	V_{SS} -0.3 to V_{CC} +0.3	V
Output voltage	V_{SS} -0.3 to V_{CC} +0.3	
Output current high per 1 PIN	-25	
Output current high per all PIN	-80	
Output current low per 1 PIN	+30	mA
Output current low per all PIN	+150	
Maximum operating voltage	5.5	V
Operating temperature	-40 to +85	ംറ
Storage temperature	-65 to +150	

2. DC Characteristics ($T_A = 25^{\circ}C$, $V_{DD} = 5.0V$, unless otherwise specified)

Parameter	Sym	Co	onditions	Min	Тур	Max	Unit
Onensting Valtage	V	Fsy	s=16Mhz	2.8		5.5	
Operating Voltage	V_{cc}	Fsy	vs= 8Mhz	LVR		5.5	
Input High Voltage	V _{IH}	All Input, except PA7	$V_{CC} = 3 \sim 5V$	0.6Vcc	-	Vcc	V
		PA7	$V_{CC} = 3 \sim 5V$	0.6Vcc	-	Vcc	V
Input Low Voltage	V_{IL}	All Input, except PA7	$V_{CC} = 3 \sim 5V$	Vss	_	0.2Vcc	V
		PA7	$V_{CC} = 3 \sim 5V$	Vss	-	0.2Vcc	V
Output High Current	I _{OH}	All Output	$V_{\rm CC} = 5V, V_{\rm OH} = 4.5V$	5	10	_	mA
output High Current	TOH	7 m Output	$V_{\rm CC} = 3V, V_{\rm OH} = 2.7V$	2.5	5	_	11/2 1
Output Low Current	I _{OL}	All Output	$V_{\rm CC} = 5V, V_{\rm OL} = 0.5V$	20	40	-	mA
-	-01		$V_{\rm CC} = 3V, V_{\rm OL} = 0.3V$	10	20	-	
Input Leakage Current (pin high)	$\mathbf{I}_{\mathrm{ILH}}$	All Input	$V_{IN} = V_{CC}$	-	—	1	uA
Input Leakage Current (pin low)	I _{ILL}	All Input	$V_{IN} = 0V$	-	_	-1	uA
		FAST mode FIRC 16 MHz	$V_{\rm CC} = 5V$	_	4.6	-	
		FAST mode FIRC 8 MHz	$V_{CC} = 5V$		3		
		FAST mode FIRC 4 MHz	$V_{CC} = 5V$	_	2.3	Ι	mA
		FAST mode FIRC 2 MHz	$V_{CC} = 5V$		1.9		
Power Supply Current (No Load)	I _{CC}	FAST mode FIRC 2 MHz	$V_{\rm CC} = 3V$		1.3		
		SLOW mode SIRC 65 KHz FIRC STOP BGEN = 1	$V_{\rm CC} = 5.0 V$	_	1250	_	uA
		SLOW mode SIRC 65 KHz FIRC STOP BGEN = 1	$V_{CC} = 3.0V$	_	700	_	uA

Parameter	Sym	Co	onditions	Min	Тур	Max	Unit
		IDLE mode	$V_{CC} = 5.0V$	-	6	_	
		SIRC 65 KHz LVRSAV= 1	$V_{CC} = 3.0 V$	_	1.8	_	uA
Power Supply Current (No Load)	I _{CC}	STOP mode LVRSAV = 1	$V_{CC} = 5.0 V$	-	2	-	uA
	ICC .	PA7 = 1	$V_{\rm CC} = 3.0 V$	_	0.5	-	un
		STOP mode	$V_{\rm CC} = 5.0 V$	-	0.1	1	
		LVRSAV = 1 $PA7=0$	$V_{\rm CC} = 3.0 V$	-	0.1	_	uA
Pull-up Resistor		$V_{IN} = 0 V$	$V_{CC} = 5.0 V$	-	39	_	KΩ
	$R_{UP} = \frac{Ports A/B/D/E}{V_{IN} = 0 V}$ $PA7$	Ports A/B/D/E	$V_{\rm CC} = 3.0 \rm V$	-	70	_	K 32
		$V_{IN} = 0 V$	$V_{CC} = 5.0V$	_	194	_	- ΚΩ
		PA7	$V_{CC} = 3.0V$	_	196	_	

3. Clock Timing $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Condition	Min	Тур	Max	Unit
FIRC Frequency (*)	-40° C ~ 85°C, V _{CC} = 3.0 ~ 5.0V	-6.5%	16	+1.5%	
	-40° C ~ 85° C, V _{CC} = 4.0 V	-5%	16	+1.5%	
	0° C ~ 70°C, V _{CC} = 4.0 V	-2%	16	+1.5%	MHz
	25° C, V _{CC} = $3.0 \sim 5.0$ V	-1.0%	16	+1.2%	
	25°C, V _{CC} =4.0 V	-0.5%	16	+0.5%	

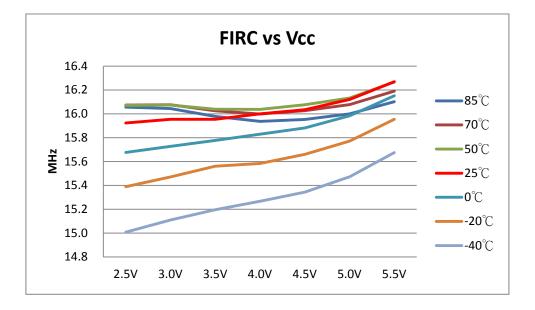
(*) FIRC frequency can be divided by 1/2/4/8.

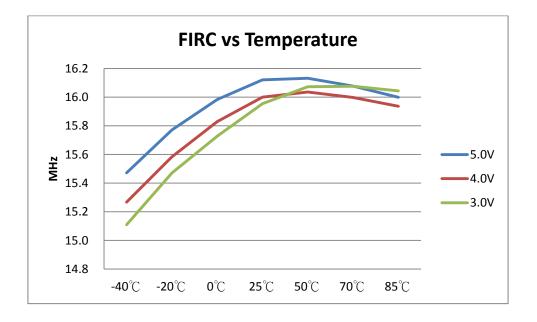
4. Reset Timing Characteristics ($T_A = -40^{\circ}C$ to $+85^{\circ}C$)

Parameter	Conditions	Min	Тур	Max	Unit
RESET Input Low width	Input $V_{CC} = 5 V \pm 10 \%$	30	_	—	μs
WDT time	$V_{CC} = 3 V$, WDTPSC = 11		2120	_	ms
WDT time	$V_{CC} = 5 V$, WDTPSC = 11		1930		
WKT time	$V_{CC} = 3 V, WKTPSC = 11$		133		
w K i ume	$V_{CC} = 5 V, WKTPSC = 11$	_	123		ms
CPU start up time	$V_{CC} = 5 V$	-	26	_	ms

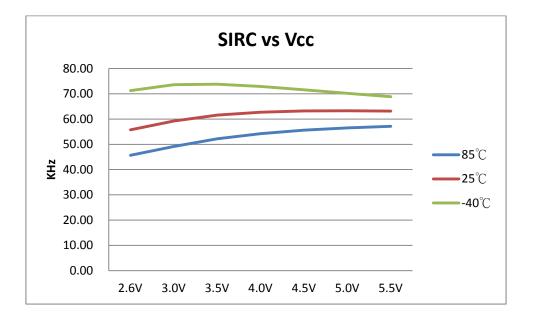
5. LVR Circuit Characteristics ($T_A = 25^{\circ}C$)

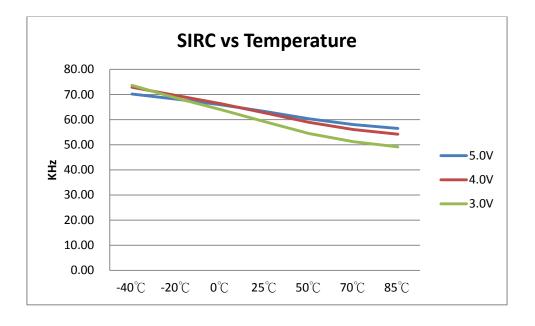
Parameter	Symbol	Min	Тур	Max	Unit
LVR Reference Voltage		-	2.3	-	v
	LVR _{th}	_	2.8	_	
		-	3.6	-	
		_	4.2	_	
LVR Hysteresis Voltage	V _{HYST}	-	±0.1	_	V
Low Voltage Detection time	t _{LVR}	100	-	—	μs

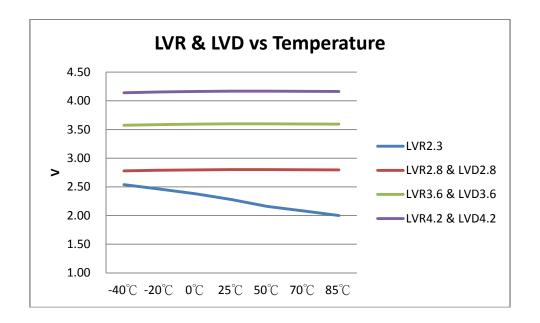



Parameter	Conditions	Min	Тур	Max	Units
Total Accuracy		-	±2.5	±13	
Integral Non-Linearity	$V_{CC} = 5V, V_{SS} = 0V, f_{ADC} = 1 \text{ MHz}$		±3.2	±15	LSB
Differential Non-linearity		-	±1	±4	
	Source impedance (Rs<10K omh)	-	_	2	
May Imput Cleals from (f	Source impedance (Rs<20K omh)	-	-	1	MHz
Max Input Clock freq. (f_{ADC})	Source impedance (Rs<50K omh)	-	_	0.5	MHZ
	Source is VBG (ADCHS=1111)	-	-	2	
Conversion Time	$f_{ADC} = 1 \text{ MHz}$	-	50	_	μs
Input Voltage	_	V _{ss}	_	Vcc	V

6. ADC Electrical Characteristics ($T_A = 25^{\circ}C$, VCC = 3.0V to 5.5V, VSS = 0V)

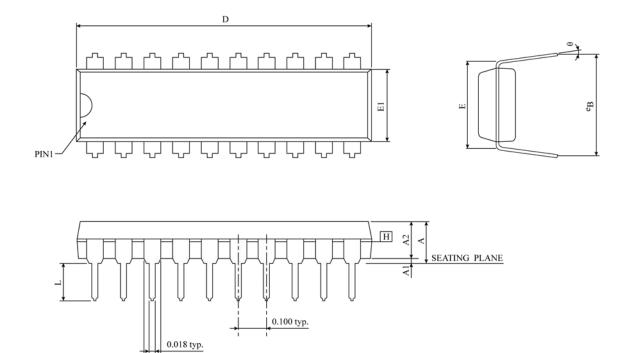



7. Characteristic Graphs



PACKAGING INFORMATION

The ordering information:


Ordering number	Package
TM55M8228-MTP	Wafer/Dice blank chip
TM55M8228-COD	Wafer/Dice with code
TM55M8228-MTP-21	SOP 20-pin (300 mil)
TM55M8228-MTP-05	DIP 20-pin (300 mil)
TM55M8228-MTP-16	SOP 16-pin (150 mil)

Ordering number	Package
TM55M8428-MTP	Wafer/Dice blank chip
TM55M8428-COD	Wafer/Dice with code
TM55M8428-MTP-21	SOP 20-pin (300 mil)
TM55M8428-MTP-05	DIP 20-pin (300 mil)
TM55M8428-MTP-16	SOP 16-pin (150 mil)

Ordering number	Package
TM55M8428T-MTP-21	SOP 20-pin (300 mil)
TM55M8428T-MTP-05	DIP 20-pin (300 mil)
TM55M8428T-MTP-16	SOP 16-pin (150 mil)

• DIP-20 (300mil) Package Dimension

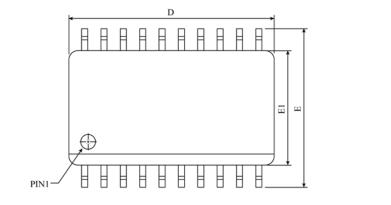
SYMBOL	DI	MENSION IN N	ſМ	DIMENSION IN INCH				
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX		
А	-	-	4.445	-	-	0.175		
A1	0.381	-	-	0.015	-	-		
A2	3.175	3.302	3.429	0.125	0.130	0.135		
D	25.705	26.061	26.416	1.012	1.026	1.040		
Е	7.620	7.747	7.874	0.300	0.305	0.310		
E1	6.223	6.350	6.477	0.245	0.250	0.255		
L	3.048	3.302	3.556	0.120	0.130	0.140		
е _В	8.509	9.017	9.525	0.335	0.355	0.375		
θ	0°	7.5°	15°	0°	7.5°	15°		
JEDEC		MS-001 (AD)						

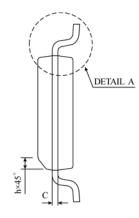
NOTES :

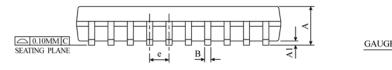
1. ${\rm ``D''}$, ${\rm ``E1''}$ dimensions do not include mold flash or protrusions. Mold flash or protrusions shall notexceed .010 inch.

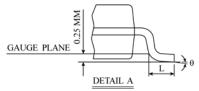
2. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.

0.060 typ.

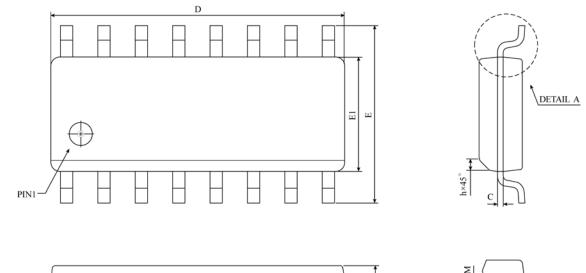

3. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.

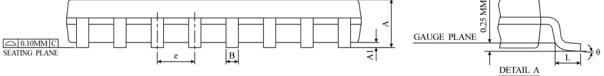

4. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.


5. DATUM PLANE III COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.



• SOP-20 (300mil) Package Dimension




SYMBOL	DI	MENSION IN M	ſM	DIMENSION IN INCH			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
А	2.35	2.50	2.65	0.0926	0.0985	0.1043	
Al	0.10	0.20	0.30	0.0040	0.0079	0.0118	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.23	0.28	0.32	0.0091	0.0108	0.0125	
D	12.60	12.80	13.00	0.4961	0.5040	0.5118	
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910	
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992	
e		1.27 BSC		0.050 BSC			
h	0.25	0.50	0.75	0.0100	0.0195	0.0290	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	MS-013 (AC)						

* NOTES : DIMENSION " D " DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

• SOP-16 (150mil) Package Dimension

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
А	1.35	1.55	1.75	0.0532	0.0610	0.0688	
A1	0.10	0.18	0.25	0.0040	0.0069	0.0098	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.19	0.22	0.25	0.0075	0.0087	0.0098	
D	9.80	9.90	10.00	0.3859	0.3898	0.3937	
Е	5.80	6.00	6.20	0.2284	0.2362	0.2440	
E1	3.80	3.90	4.00	0.1497	0.1536	0.1574	
e		1.27 BSC		0.050 BSC			
h	0.25	0.38	0.50	0.0099	0.0148	0.0196	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC		MS-012 (AC)					

* NOTES : DIMENSION " D " DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.